$$K_S \rightarrow \pi^+ \pi^- / K_S \rightarrow \pi^0 \pi^0$$
 status

S. Miscetti, M. Palutan, T. Spadaro and P. Valente

Summary

- 1. K_L crash tag efficiency ratio
- 2. $K_S \rightarrow \pi^0 \pi^0$ selection \implies Prompt cluster counting

3. $K_S \rightarrow \pi^+ \pi^-$ selection \blacksquare Track selection and

counting methods

Tag efficiency ratio (1)

 $K_S \rightarrow \pi^+ \pi^-$ sample (2 track + inv. mass cut): comparison between β^* spectra before and after T0STEP1 correction

Tag efficiency ratio (2)

Tag efficiency ratio (3)

Tag stability (Summer 2000, ≈ 3.5 pb-1)

 $K_{\rm S} \rightarrow \pi^0 \pi^0$: β^* distribution vs. run

$K_S \rightarrow \pi^0 \pi^0$: prompt cluster counting (1)

Selection:

- K crash
- $|\mathbf{t} \mathbf{R/c}| \le \min(5 \sigma_t; 3 \text{ ns})$
- $\cos \theta < 0.9$
- $E > E_{cutoff}$

# prompt	3	4	≥5
DATA	33.8 %	62.7 %	3.5 %
MC no thr	30.8 %	66.0 %	3.2 %
MC thr*	32.0 %	66.0 %	2.0 %

 $E_{outoff} = 7 \text{ MeV}$

All numbers normalized to ≥ 3 cluster

- prompt clusters with smallest distance: $E^{ij}_{\ min} \ vs \ d^{ij}$

$K_S \rightarrow \pi^0 \pi^0$: prompt cluster counting (2)

$E_{cutoff} = 20 \text{ MeV}$				
# prompt	3	4	≥ 5	
DATA	37.5 %	61.8 %	0.7 %	
MC thr	36.7 %	63.0 %	0.3 %	

All numbers normalized to ≥ 3 cluster

• prompt clusters distribution: DATA vs. Monte Carlo, E > 20 MeV

Prompt clusters: DATA vs MC

• 4 prompt clusters: Energy spectrum and angular distribution

• Total energy distribution

$K_S \rightarrow \pi^0 \pi^0$ trigger efficiency

- 1. Assignment of the clusters to the K_S and K_L hemievent cutting at -15 ns
- 2. Cluster \rightarrow trigger sector \rightarrow unbiased multiplicities
- 3. $1-\varepsilon_{\text{trig}} = S(0) \bullet L(0) + S(1) \bullet L(0) + S(0) \bullet L(1)$

$$K_S \rightarrow \pi^0 \pi^0$$
 signal

$K_S \rightarrow \pi^+ \pi^-$: track selection (1)

- K crash
- tracks from IP:
 - closest approach:

80

70

60

50

40

30

20

10

0

0

2.5

5

7.5

• first hit:

12.5

10

zmini vs dxy

17.5

15

20

10 3

$K_S \rightarrow \pi^+ \pi^-$: track selection

• acceptance and momentum cuts:

- $\cos \theta < 0.9$
- $190 \le p^* \le 220 \text{ MeV}/c$

 p^* = track momentum in the center of mass system of K_S $(p_S = p_{\phi} - p_L)$

$K_S \rightarrow \pi^+ \pi^-$: DATA vs. MC

LAB momentum

Background after cut (estimated from Monte Carlo):

1 track events: 2.8×10^{-3}

2 track events: $\approx 10^{-5}$

Track efficiency: DATA vs. MC (1)

• 1 track selected according to previous cuts and looking for the second one with $p_{2, \text{ estimated}} = p_{\phi} - p_L - p_1$

Track efficiency: DATA vs. MC (2)

• track efficiency vs. θ and p_{T}

DATA/MC = 98.5 %

$$K_{S} \rightarrow \pi^{+} \pi^{-} \text{ signal (1)}$$

Method 1: Use 2 track sample and MC efficiency

$$S^{+-} = N_{2TRK} / \epsilon_{t0 \cdot trig} / \epsilon^{MC}_{2TRK}$$

 $(\epsilon^{\text{MC}}_{\text{2TRK}} \text{ corrected for DATA/MC})$

Method 2: Double tag

$$N_{1} = 2 \cdot \varepsilon_{\text{single}} \cdot S^{+-} \qquad N_{1} = N_{1TRK} / \varepsilon_{t0 \cdot \text{trig}} + 2 \cdot N_{2TRK} / \varepsilon_{t0 \cdot \text{trig}}^{*}$$

$$N_{2} = (1 - \rho) \cdot (\varepsilon_{\text{single}})^{2} \cdot S^{+-} = \varepsilon_{\text{double}} \cdot S^{+-} \qquad N_{2} = N_{2TRK} / \varepsilon_{t0 \cdot \text{trig}}^{*}$$

$$1 - \rho = (N_{2}/S) / (N_{1}/2S)^{2} \qquad \text{from MC}$$

$$N_{1} \text{ and } N_{2} \qquad \text{from DATA}$$

$$S^{+-} = (1-\rho) \cdot (N_1)^2 / 4N_2$$

 t_0 and trigger efficiency corrections

1. Efficiencies estimation

$$\begin{array}{c} t_0 \\ trigger \end{array} \right\} \quad \begin{array}{c} \text{pion efficiencies from data} \\ \text{(in bins of } p_T \text{ and } \theta) \end{array}$$

2. Convolution with Monte Carlo spectrum, separately for events with 1 and 2 track

$$\varepsilon^{1,2} = \varepsilon_{\rm L} \times \varepsilon^{1,2}_{t0} + (1 - \varepsilon_{\rm L}) \varepsilon^{1,2}_{t0 \cdot \rm trig}$$

 $\varepsilon_{\rm L} = K_{\rm L}$ crash trigger efficiency = $(40.5 \pm 2.5)\%$

$$K_S \rightarrow \pi^+ \pi^-$$
 signal (2)

	DATA	Monte Carlo
K _L crash	1 055 596	461 397
2 tracks	239 726	260 187

 $K_S \rightarrow \pi^+ \pi^-$ signal (3)

	DATA	Monte Carlo
K _L crash	1 055 596	1 839 914
1 track	162 634	618 962
2 tracks	214 831	962 650

Method 2

 $1-\rho = 1.095$ (1.024 in acceptance)

$$\epsilon_1 = 84.9 \%$$

 $\epsilon_2 = 97.8 \%$

S+-= 493 500
$$\frac{\delta S^{+-}}{S^{+-}} = 1.7 \times 10^{-3}$$

stat

 $R = 2.35 (1 \pm 3.4 \times 10^{-3} (stat))$

Conclusions

Systematics

- **Tag efficiency** 1.3%
- ✓ Cluster counting $\approx 1\%$
- Track efficiency 1.5%
- $\Box \quad t_0 \text{ and trigger}$

β^* spectra deviation

convolution to be checked

Method 1

- \checkmark Reasonable results, with respect to 1999 and PDG
- Stability to be checked on whole statistics

Method 2

□ Larger impact of MC efficiency convolution problems/errors on final result mainly arising from the single tagged events

Improvements

 $\Box \quad \text{Use } K_L \rightarrow \pi^+ \pi^- \pi^0 \text{ events for rephasing and } t_0$

