A preliminary measurement of $BR(K_L \rightarrow \pi^+\pi^-)$ using a double-tag method

M. Antonelli, M. Dreucci, M. Moulson, T. Spadaro KLOE Physics Workshop, Isola d'Elba, 24 May 2001

The double-tag method

Tag cuts:

- Track residual
- Cluster residual

• p^* (CM frame of KL tag)

 $N_{1} = 2\varepsilon_{1}S + B_{1}$ $N_{2} = \varepsilon_{1}^{2}(1-\rho)S + B_{2}$ $S = 4(1-\rho)N_{1}^{2}/N_{2}$ $\varepsilon = 2N_{2}/[N_{1}(1-\rho)]$

Input from MC:

Background (B_1, B_2) Dominantly from $K_{\mu 3}$ Shape from MC Sideband/fit normalization

Tagging correlation $(1 - \rho)$: $(1-\rho) = \varepsilon_2^{MC}/(\varepsilon_1^{MC})^2$

Data:

All **ks2p** Ntuples as of 18 May 2001 Runs 13732-14678: July/Aug 2000 (4.1 pb⁻¹) Runs 16211-17186: Nov 2000 (13.3 pb⁻¹) 7441626 total K_L tags found

MC Signal: Y2K cpv_cksh, Runs 5-16 $K_S \rightarrow \pi^+\pi^-, K_L \rightarrow \pi^+\pi^- (K_L \rightarrow \pi^0\pi^0 \text{ removed})$ 81755 total K_L tags in FV (208 pb⁻¹ assuming $\sigma_{\phi} = 3.1 \,\mu\text{b}$)

MC Background:

Y2K neu_kaon, Runs 26-225 $K_S \rightarrow \pi^+\pi^-, K_L \rightarrow \text{all } (K_S \rightarrow \pi^0\pi^0, K_L \rightarrow \pi^+\pi^- \text{ removed})$ 3302226 K_L tags (4.6 pb⁻¹ assuming $\sigma_{\phi} = 3.1 \ \mu\text{b})$

$K_L tag$

1 vertex, zero net charge

 $r_{xy} < 5 \text{ cm}, -20 \text{ cm} < z < 20 \text{ cm}$ $M - M_K < 20 \text{ MeV}$

Tree/vertex extension

1 track (or daughter of recognized kink) analytically extrapolates to cluster d < 30 cm, E > 50 MeV

Primary decay position from extrapolation of p_{KS} to beam line

 K_s momentum from boost \sqrt{s} , boost components run-by-run

$$\sigma(K_L \text{ tag}):$$
428 nb, using L_{datarec}
477 nb, using $\sigma_{\phi} = 3.1 \,\mu\text{b}, \,\varepsilon_{\text{KLtag}}(\text{MC})$

K_L tag efficiency

 K_L tag efficiencies from MC:

 $K_L \rightarrow$ all, everywhere: 0.6631 ± 0.0003

 $K_L \to \pi^+ \pi^-$ in FV: 0.7017 ± 0.0016

Tag bias:

 $f = 0.945 \pm 0.002$

 $BR = \frac{N_{\text{decay}} / \mathcal{E}_{\text{tag}}^{\text{decay}}}{N_{\text{tag}} / \mathcal{E}_{\text{tag}}}$ $f = \mathcal{E}_{\text{tag}} / \mathcal{E}_{\text{tag}}^{\text{decay}}$

Assume 50% systematic error on this correction

MC $K_S \rightarrow \pi^+ \pi^-$ and:	81755 evts $K_L \rightarrow \pi^+ \pi^-$ in FV		3302226 evts $K_L \rightarrow$ all	
Trigger	77753	0.951	2860194	0.866
FILFO	81643	0.999	3218969	0.975
ECL K_L tag	62277	0.762	2562475	0.775
Our K_L tag selection	59354	0.726	2430574	0.736
Overall	57369	0.702	2189761	0.663

Decay tag

Tree extend excluding K_S tracks

Select branch of each tree with smallest track residual

Construct p_{miss} from p, p_{KL}

Analytically extrapolate to EmC Apply track, cluster distance cuts

Retain +/- track with best p^*

Fiducial volume

Important for cleaning events

No background rejection

Cut placed at 10 cm

Cluster residual cut

Optimization of cluster residual cut

Time of flight

 $\Delta TOF =$

$$T_{cl} - L_{KL}/c\beta(p_{KLtag}) - L_{proj}/c\beta(p_{proj}) - 0.42 \text{ ns}$$

No rejection power beyond cluster distance cut

Loose cut applied at 2.5 ns Slewing correction undone, but not in these plots

E/p also explored, no help

Can only eliminate background from e (not μ , π)

 K_{e3} less than 50% of background

Single tag p* spectra

Signal (~210 pb-1)

Background (~4.6 pb-1)

MC signal + background, norm $|p^*| < 50$ MeV

MC roughly reproduces *p** spectrum Resolution underestimated Background overestimated at low *p**

Signal extraction by HMCMLL fit to MC signal MC background *S*, *B* fit parameters Optional Gaussian convolution

Statistical error includes MC statistics

Fit region: $|p^*| < 25 \text{ MeV}$ Signal region: $|p^*| < 5 \text{ MeV}$

No convolution

Convolution, $\sigma = 0.7$ MeV

Fit interval: Upper bound $p^* = 25$ MeV Lower bound $-10 \rightarrow -35$ MeV 2.0% effect on S χ^2 /dof blows up for broader range

Shape agreement:

Explored effect of varying σ With σ a free parameter Some probs. with convergence $\sigma \rightarrow 0.94$ MeV, **3.0% effect on** *S*

MC efficiencies and correlation

MC signal sample: 57369 $K_L \rightarrow \pi^+\pi^-$ decays in FV 53729 single tags 15839 double tags

Tagging efficiency:

$$\varepsilon_1 = N_1 / 2N_{\text{KLFV}}$$
$$= 0.468 \pm 0.002$$
$$\varepsilon_2 = N_2 / N_{\text{KLFV}}$$

$$_2 = N_2 / N_{\text{KLFV}}$$

= 0.276 ± 0.002

Correlation:

$$1 - \rho = \varepsilon_2 / \varepsilon_1^2$$

= 1.259 ± 0.012

Cross checks:

Tagging efficiency from "data" $\varepsilon_1 = 2N_2/N_1(1-\rho)$ 0.433 ± 0.019

Conditional tag efficiency: $R_{21} = 2N_2/N_1 = \varepsilon_1(1-\rho)$ 0.590 ± 0.003 MC 0.545 ± 0.006 Data

Safe systematic error on $(1-\rho)$: 50% of difference in R_{21} (3.8%)

Summary (stat. error only):

 $N_{1} = 3658 \pm 123 \quad (210 \text{ datarec pb})$ $N_{2} = 996 \pm 34 \quad (57 \text{ datarec pb})$ $1 - \rho = 1.259 \pm 0.012$ $\varepsilon_{\text{tag}} = 2N_{2}/N_{1}(1 - \rho) = 0.433 \pm 0.019$ $N_{\pi + \pi -} = N_{1}/2\varepsilon_{\text{tag}} = 4226 \pm 287$ $N_{KS} = 7441626$ $\varepsilon_{\text{FV}} = 0.2653 \pm 0.0009$ $f = 0.945 \pm 0.002$

Single tag	6.7%
Double tag	3.4%
Sample correlation	-3.4%
Tag correlation	0.9%
Fiducial volume*	0.3%
Statistical error	6.8%
Conditional track efficiency	3.8%
Tag bias	2.8%
Fit interval	2.0%
Resolution MC/data	3.0%
Systematic error	5.9%
Total error	9.1%

 $BR(K_L \rightarrow \pi^+\pi^-) = fN_{\pi^+\pi^-}/N_{KS}\varepsilon_{FV} = (2.02 \pm 0.19) \times 10^{-3}$

BR($K_L \rightarrow \pi^+ \pi^-$)(2.02 ± 0.19) × 10^{-3}KLOE preliminary?(2.056 ± 0.033) × 10^{-3}PDG 2000

Prospects for reducing systematic errors:

Fit-related problems tractable

More MC statistics, background from data, work on fit technique Errors on $1-\rho$, *f* are more difficult but have been conservatively estimated

Statistical error considerations:

Error scales as $2\sqrt{(S+2B)} \approx 4\sqrt{S}$ $100 \text{ pb}^{-1} = 21000 \text{ single tags} = 2.8\% \text{ statistical error}$ Compare vertex method with kinematic fit, assume error simply \sqrt{S} $17.4 \text{ pb}^{-1} = 2260 \text{ events} = 2.1\% \text{ statistical error}$ $100 \text{ pb}^{-1} = 13000 \text{ events} = 0.9\% \text{ statistical error}$

Recommendation: pursue vertex method without abandoning this approach

Valuable checkpoint

Mature structure for tracking efficiency estimates