

KLOE Physics Workshop, 23-25 May 2001

S. Giovannella 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 7. $\phi \to f_o \gamma \to \pi^o \pi^o \gamma$ selection: - $\chi^2 _{f_o \gamma} / \text{ndof} < 10$ ٌ۲ – $M_{\pi\pi} > 700$ MeV $-\cos\psi_{\omega\pi} > 0.8$ خاريبون الأكارين المسعاقي ال Ë others 800 600 400 200 Analysis steps of 1999 KLOE data analysis 5. Second kinematic fit for both photons 1. Time Window cut: 5 EMC clusters with momentum conservation and the 4. Photons' pairing in both the $f_o\gamma$ (two neutral pions with $M_{\pi\pi}\,>\,600$ MeV) pairings, requiring also constraints on 3. First kinematic fit requiring the 4-"promptness" constraint $({
m T}-{
m R}/c=0)$ and $\omega\pi^o$ (two neutral pions and $M_{\pi\gamma}=$ pion masses of the assigned $\gamma\gamma$ pairs The 1999 analysis scheme $E_{\gamma} > 7$ MeV and $|{
m T-R/c}| < 5\,\sigma_{
m T}$ 2. Acceptance: $21^\circ < \theta_{\rm EMC} < 159^\circ$ 6. $e^+e^- \rightarrow \omega \pi^o \rightarrow \pi^o \pi^o \gamma$ selection: $(f_o$ and a_o treated as $q\overline{q}$ states): $0.4 < \cos\psi_{\omega\pi} < 0.8$ $-\chi^2_{\omega\pi}/\mathrm{ndof} < 20$ M_ω) hypotheses

KLOE Physics Workshop, 23-25 May 2001

The f_o invariant mass shape is strongly dependent on the meson nature

M_{f0} (MeV)

250

1000

4000

3000

2000

1000

750

500

M_{f0} (MeV)

with MeV A new f_o model $(q\overline{q}q\overline{q})$, with an higher contribution from low $\begin{array}{ll} {\rm Only} & {\rm events} \\ M_{\pi\pi} & > & 700 \end{array}$ 200 masses, studied

1000

cost

The $\cos\psi_{\omega\pi}$ cut is strongly

dependent on $M_{\pi\pi}$ shape!

 $0.2 \quad 0.4 \quad 0.6 \quad 0.8$

0

 $M_{\pi\pi}$ (MeV)

1000

2000

2000

3000

	Final S/B	13.2	17.1	27.7	8.4		M _{a0} (MeV)		$M_{\pi\pi} (MeV)$
kground (1)	Analysis eff.	2.1%	6.5%	3.8%	0.1%		$M_{a0} (MeV)$ 200 [150 150 50 50	$\frac{1}{5}$ $\frac{1}{7.5}$ 10 0.500 7.5 χ^2 /ndof
is on the bac	Natural S/B	0.7	2.7	2.5	0.02	S 4000 5000			0 <u>[[:</u>]
Effect of the new analysis	Background decay	$e^+e^- \to \omega \pi^o \to \pi^o \pi^o \gamma$	$\phi \to \rho \pi^o \to \pi^o \pi^o \gamma$	$\phi \to a_o \gamma \to \eta \pi^o \gamma \to \gamma \gamma \pi^o \gamma$	$\lambda_o \mu_o \mu_o \mu \leftarrow \lambda \mu \leftarrow \phi$	Also the a_o mass shape in not perfectly known	Different shapes bring to a different analysis efficienc	A MC flat distribution cor rected to resemble the SNI	shape

IVIAY ZUUL 20 Ś ŝ KLOE Physics **W**

Effect of the new analysis on the background (2)

250 -- ψ (rad)

 ψ (rad)

0.5

0.5

 E^{λ}

√ (rad)

ψ (rad)

0.5

0.5

0

(**V**9M) 250 250 S. Giovannella

Status of the $\phi o f_o \gamma o \pi^o \pi^o \gamma$ analysis

ψ (rad)

0.5

	Technique for BR evaluation
•	Even assuming a perfect knowledge of the background, the observed spectrum can be corrected for the analysis efficiency on bin by bin basis
•	only if the reconstruction effects do not modify the shape significantly ln well reconstructed events the gaussian smearing is $\sim 6~{\rm MeV}$
•	A wrong photons' combination happens in 6% of the cases, giving rise to a different shape for the various quantities
••	Also wrong clustering $(4 \div 5\%)$ give rise to distorted shapes To take into account these effects, a fit procedure that convolutes any
	theoretical dN/dM shape with the expected gaussian smearing and the wrong pairing distribution has been developed. These smearing effects
	have been applyed to one of the analytic function used for the EVA generator. The reconstructed $M_{\pi\pi}$ shape was successfully fitted with a smeared fit function
••	Same fit procedure applyed on $q\bar{q}q\bar{q}$ MC production Once the procedure will be completed, it will be applied on data. BR will be evaluated directly from fit results and the new parameters will
KLOE Physics Wor	be used to reproduce the new shape in MC events $\frac{1}{23-25 \text{ May 2001}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \pi^{0} \times \frac{1}{23-25 \text{ May 2001}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \pi^{0} \times \frac{1}{23-25 \text{ May 2001}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \pi^{0} \times \frac{1}{23-25 \text{ May 2001}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \pi^{0} \times \frac{1}{23-25 \text{ May 2001}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \pi^{0} \times \frac{1}{23-25 \text{ May 2001}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \pi^{0} \times \frac{1}{23-25 \text{ May 2001}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \pi^{0} \times \frac{1}{23-25 \text{ May 2001}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \pi^{0} \times \frac{1}{23-25 \text{ May 2001}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \pi^{0} \times \frac{1}{23-25 \text{ May 2001}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \pi^{0} \times \frac{1}{23-25 \text{ May 2001}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \pi^{0} \times \frac{1}{23-25 \text{ May 2001}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \pi^{0} \times \frac{1}{23-25 \text{ May 2001}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \times \frac{1}{23-25 \text{ May 2001}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \times \frac{1}{23-25 \text{ May 2101}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \times \frac{1}{23-25 \text{ May 2101}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \times \frac{1}{23-25 \text{ May 2101}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \times \frac{1}{23-25 \text{ May 2101}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \times \frac{1}{23-25 \text{ May 2101}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \times \frac{1}{23-25 \text{ May 2101}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \times \frac{1}{23-25 \text{ May 2101}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \times \frac{1}{23-25 \text{ May 2101}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \times \frac{1}{23-25 \text{ May 2101}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \times \frac{1}{23-25 \text{ May 2101}} \xrightarrow{\text{Status of the } d \to f_{2} \times \to \pi^{0} \times \frac{1}{23-25 \text{ May 2101}} \xrightarrow{\text{Status of the } d \to \pi^{0} \times \frac{1}{23-25 \text{ May 210}} \xrightarrow{\text{Status of the } d \to \pi^{0} \times \frac{1}{23-25 \text{ May 210}} \xrightarrow{\text{Status of the } d \to \pi^{0} \times \frac{1}{23-25 \text{ May 210}} \xrightarrow{\text{Status of the } d \to \pi^{0} \times \frac{1}{23-25 \text{ May 210}} \xrightarrow{\text{Status of the } d \to \pi^{0} \times \frac{1}{23-25 \text{ May 210}} \text{Status$

MC generated mass fitted with the analytic form Same curve used to fit reconstructed mass using:

- 1. bin by bin analysis efficiency
- 2. 6 MeV gaussian smearing
- ciency, using a flat bad 3. bin by bin pairing effipairing distribution
- 4. no clustering effects taken into account

 $+ q \overline{q} q \overline{q}$ MC events

Some contamination from 3 photons final state can be seen

A cut $E_{\gamma \rm rad} > 10$ MeV reduces this background

The $e^+e^- o \omega \pi^o o \pi^o \pi^o \gamma$ decay

							122					\$ 20 •	IdoT	22		
	Final S/B		8.4	23.0	54.8	47.1	s 59					0 12 14 16 18	χ /n	s 59	-	
	Analysis eff.	53.7%	9.8%	9.5%	3.8%	0.04%	Entrie Entrie	<u>+</u> 4	••	<u>ہ_</u> ا		2 4 6 8 1		Entrie		
	Natural S/B		1.5	4.1	3.8	0.03	L	alysis 600 E	400	200		0				
Analysis efficiencies (from MC):	Background decay	$e^+e^- o \omega \pi^o o \pi^o \pi^o \gamma$	$\phi \to f_o \gamma \to \pi^o \pi^o \gamma$	$\phi \to \rho \pi^o \to \pi^o \pi^o \gamma$	$\phi \to a_o \gamma \to \eta \pi^o \gamma \to \gamma \gamma \pi^o \gamma$	$\phi \to \eta\gamma \to \pi^o \pi^o \pi^o \gamma$		Number of events surviving an	cuts:		N(TW cut) = 24797		$N(acc c_{11}) = -17876$		$N(\chi^2 ext{ cut}) = 6597$	

Status of the $\phi o f_o \gamma o \pi^o \pi^o \gamma$ analysis

KLOE Physics Workshop, 23-25 May 2001

S. Giovannella

 ∞

9

4

0

0

10

4468

||

 $N(M_\omega ext{ cut})$

The $e^+e^- \rightarrow \omega \pi^o \rightarrow \pi^o \pi^o \gamma$ decay: energy distributions

S. Giovannella

Status of the $\phi \to f_o \gamma \to \pi^o \pi^o \gamma$ analysis

The $\phi o f_o \gamma o \pi^o \pi^o \gamma$ decay: χ^2 cut

S. Giovannella

Status of the $\phi \to f_o \gamma \to \pi^o \pi^o \gamma$ analysis

$\checkmark The \ \phi \to f_o \gamma \to \pi^o \pi^o \gamma \ decay:$	Data-MC comparison
Fit procedure not complete & MC f_o mass shape arbitrarly choosen. The comparison is done in 4 steps:	ScF can be applied to the original MC f_o mass distribution to check the new shape:
 f_oγ MC events analyzed in slices of M_{ππ} to obtain the various histograms shapes, for both f_oγ and ωπ^o events For each mass bin, determination of the scale factor (ScF) that applied on the MC M_{ππ} shape reproduces data ScF applied to all MC "sliced" histograms to reproduce all the spectral Data-MC distributions compared 	$\left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
Using the ScF, the overall analysis efficer	icy for the signal is $arepsilon_{ m tot}\sim 42\%$

KLOE Physics Workshop, 23-25 May 2001

The $\phi \rightarrow f_o \gamma \rightarrow \pi^o \pi^o \gamma$ decay: final distributions

S. Giovannella

Status of the $\phi \to f_o \gamma \to \pi^o \pi^o \gamma$ analysis

The $\phi \to f_o \gamma \to \pi^o \pi^o \gamma$ decay: energy distributions

S. Giovannella