Measuring $\Gamma(K_{e3})$ and $|V_{us}|$ Paolo Franzini ELBA, May 2001

From PDG

	m MeV	∆ Mev	Г 10 ⁷ s ⁻¹	BR(<i>e</i> 3)	$\Gamma(e3)$ 10 ⁶ s ⁻¹
K^{\pm}	493.677	358.190	8.07	0.0482	3.89
error	_	-	0.19%	1.24%	1.26%
K_L	497.672	357.592	1.93	0.3878	7.50
error	-	-	0.77%	0.72%	1.06%

The above rates for K_{e3} determine, in principle, $|V_{us}|^2$ to 0.8% and $|V_{us}|$ to 0.4%. Yet in PDG

 $|V_{us}| = 0.2196 \pm 1.05\%.$

The problem is estimating-guessing matrix element corrections due to isospin and $SU(3)_{flavor}$ symmetry breaking.

KLOE can improve the accuracy in the knowledge of the decay width $\Gamma(e3)$ and can in fact measure the kaon partial width in a more direct way than usually done.

Partial widths for channel j are typically obtained from measurements of the total width, $\Gamma = 1/\tau$ and the branching ratio, BR_j. Then $\Gamma_j = BR_j \times \Gamma$. This however means that the final result has a fractional error equal to the quadrature of the fractional errors on each measurement:

$$\frac{\delta\Gamma_j}{\Gamma_j} = \sqrt{\left(\frac{\delta\tau}{\tau}\right)^2 + \left(\frac{\delta(BR)}{BR}\right)^2}$$

This is avoidable *in principle* in KLOE. In practice the dependence on $\delta \tau / \tau$ can be reduced by a significant factor, $\sim \times 5$.

STATEMENT OF THE PROBLEM

Consider the decays $A \to B$, $B = \{B_1 \dots B_j \dots\}$. Let N(t) be the number of A states and dN_j the decays to B_j in dt. Partial and total widths, Γ_j and Γ , satisfy

 $dN_j = \Gamma_j \times N(t)dt$, $dN = \Gamma \times N(t)dt$ with $\Gamma = \sum \Gamma_j$ from which

$$dN = -\sum dN_j = -Ndt$$
 and $N(t) = N(t=0)e^{-t\Gamma}$.

Decay widths or rates are measured by counting the number of decays ΔN_i in a time interval Δt . Then

$$\Gamma_j = (\Delta N_j / \Delta t) / N.$$

For ²³⁸U: Γ =4.89×10⁻¹⁸ s⁻¹ (per nucleus) or 661 decays per second per gram (τ =2.05 × 10¹⁷ s).

KLOE. By tag, count the number of K_L produced, N_{K_L} . Count the number $N_{\ell 3}$ of semileptonic decays in 1 cm, *i.e.* in 150.7 picoseconds in the K rest frame:

$$\Gamma_{\ell 3} = (N_{\ell 3}/N_{K_L}) \times 6.638 \times 10^9 \text{ s}^{-1}.$$

 Γ is still needed because:

- 1. Even in one centimeter parent particles are lost to other channels
- 2. We cannot begin counting at t = 0.
- 3. We need $10^6 K_{\ell 3}$ decays, *i.e.* many cm of decay path

Corrections for Γ_{K_L} in KLOE.

1. $\delta \Gamma_{\ell 3} / \Gamma_{\ell 3} < l/\lambda \sim 3 \times 10^{-3} (\lambda = \gamma \beta c / \Gamma = 343.2 \text{ cm})$

2. Take $L_K > R = 50$ cm. $R/343.2 \sim 1/7$. Need to know Γ to 0.7%, to reach 0.1% accuracy.

3. Same as above for a decay space of 50 cm.

The exact result is that one needs knowing Γ to ~0.5% for an accuracy on $\Gamma_{\ell 3}$ of 0.14%*. Using $\Gamma_{\ell 3} = BR(\ell 3) \times \Gamma$ requires an accuracy of 0.1% on Γ .

$$N_{j} = N_{0}\Gamma_{j}\int_{t_{1}}^{t_{2}} e^{-\Gamma t} dt = N_{0}(\Gamma_{j}/\Gamma)(e^{-\Gamma t_{1}} - e^{-\Gamma t_{2}})$$

^{*}For equal contributions from Γ and $\Gamma_{\ell 3}$

Expand the exponential up to third order in Δt . To first order there is no dependence on Γ :

 $N_j = N_0 \Gamma_j (t_2 - t_1) \left(1 - \Gamma (t_1 + t_2)/2 + \Gamma^2 (t_1^2 + t_1 t_2 + t_2^2)/6 \right)$ The second order correction is -22%, to all orders -19.57%. For 40 cm+40 cm, one gains ×6.2 instead of ×5.1.

Decay rates for $|i\rangle \rightarrow |f\rangle$ are obtained from the transition probability density $\overline{w}_{fi} = |T_{fi}|^2$ (S = 1 + iT): $\overline{w}_{fi} = (2\pi)^4 \delta^4 (p_i - p_f) (2\pi)^4 \delta^4 (0) |\mathfrak{M}|^2$

where

$$\mathfrak{M} = \langle f | \mathcal{H} | i \rangle$$

from which

$$\mathrm{d}\Gamma = \frac{1}{8M(2\pi)^3} |\mathfrak{M}|^2 \mathrm{d}E_1 \mathrm{d}E_2.$$

 $\Gamma(\ell 3) \propto G_F^2 \times |V_{us}|^2$ but we must deal with a few details.

- 1. Numerical factors equivalent to an overlap integral between final and initial state. Symmetry breaking corrections, both isospin and $SU(3)_F$.
- 2. An integral over phase space of $|\mathfrak{M}|^2$.
- 3. Experiment dependent radiative corrections. Or, bad practice, correct the data.

We are interested in $|V_{us}|$ and we must do something about 1.) through 3.). 2.) is easy, including the q^2 dependence of form factors. Carefull with double counting.

Corrections. We want the amplitude

 $\langle \pi | J^H_{\alpha} | K \rangle$

with

$$J_{\alpha}^{H} = \bar{u}\gamma_{\alpha}(1-\gamma_{5})s.$$

From *L*-invariance, $\langle \pi | \bar{u} \gamma_{\alpha} \gamma_5 s | K \rangle \equiv 0$ and

$$\pi \bigvee_{\substack{p \\ K \\ P}} \begin{array}{c} k_{\nu} & k_{e} \\ k_{\nu} & k_{e} \\ k_{e$$

 $\langle \pi | J^H_\alpha | K \rangle = f_+(q^2)(P+p)_\alpha + f_-(q^2)(P-p)_\alpha$

with P and p the kaon and pion four momenta and $q = P - p = k(\nu) + k(e)$. Figure above. For $K \to \pi e \nu$ the f_- term gets an m_e from $(\not p - m)u = 0$. Ignore f_- , error $\sim (m_e/\Delta \sim 1/350)^2 \sim 10^{-5}$.

For
$$m(u) = m(d) = m(s)$$
, $\psi(\pi) \equiv \psi(K)$. Then
 $\langle \pi^0 | J^H_{\alpha} | K^+ \rangle = \langle (u\bar{u} - d\bar{d})/\sqrt{2} | u\bar{u} \rangle = 1/\sqrt{2}$
 $\langle \pi^- | J^H_{\alpha} | K^0 \rangle = \langle d\bar{u} | d\bar{u} \rangle = 1$
 $\langle \pi^+ | J^H_{\alpha} | K_L \rangle = \langle d\bar{u} | d\bar{u} \rangle/\sqrt{2} = -1/\sqrt{2}$
 $\langle \pi^- | J^H_{\alpha} | K_L \rangle = \langle d\bar{u} | d\bar{u} \rangle/\sqrt{2} = 1/\sqrt{2}$
 $\langle \pi^+ | J^H_{\alpha} | K_S \rangle = \langle d\bar{u} | d\bar{u} \rangle/\sqrt{2} = 1/\sqrt{2}$
 $\langle \pi^- | J^H_{\alpha} | K_S \rangle = \langle d\bar{u} | d\bar{u} \rangle/\sqrt{2} = 1/\sqrt{2}$
 $\langle \pi^- | J^H_{\alpha} | K_S \rangle = \langle d\bar{u} | d\bar{u} \rangle/\sqrt{2} = 1/\sqrt{2}$
 $\langle \pi^- | J^H_{\alpha} | K_S \rangle = \langle d\bar{u} | d\bar{u} \rangle/\sqrt{2} = 1/\sqrt{2}$ (× $f_+q_{\alpha} \langle J^L \rangle^{\alpha} \dots$)
Ignoring phase space and form factor differences:

$$\Gamma(K_L \to \pi^{\pm} e^{\mp} \bar{\nu}(\nu)) = \Gamma(K_S \to \pi^{\pm} e^{\mp} \bar{\nu}(\nu))$$
$$= 2\Gamma(K^{\pm} \to \pi^0 e^{\pm} \nu(\bar{\nu}))$$

An approximate integration gives

$$\Gamma = \frac{G^2 |V_{us}|^2}{768\pi^3} |f_+(0)|^2 M_K^5(0.57 + 0.004 + 0.14\delta\lambda_+)$$

with $\delta \lambda = \lambda - 0.0288$. Integration over phase space gives a leading term $\propto \Delta^5$, where $\Delta = M_K - \sum_f (m)$. $(\Delta_+^5 - \Delta_0^5)/\Delta^5 = 0.008$.

From data, $\Gamma_0 = (7.5 \pm 0.08) \times 10^6$, $2\Gamma_+ = (7.78 \pm 0.1) \times 10^6$ and $(2\Gamma_+ - \Gamma_-)/\Gamma = (3.66 \pm 0.06)\%$.

This is quite a big difference, but typical of violation of I-spin invariance.

The slope difference is ~0.001, thus irrelevant. The big problem remains the s - u, d mass difference. For K^0 the symmetry breaking is $\propto (m_s - \langle m_{u,d} \rangle)^2$ in accordance with A-G. But then $(m_s - \langle m_{u,d} \rangle)^2$ acquires dangerous divergences, from a small mass in the denominator. It is argued that it is not a real problem.

Leutwyler and Roos (1985) deal with all these points and radiative corrections. They are quoted by PDG (Gilman *et al.*, 2000), for the value of $|V_{us}|$. After isospin violation corrections, K^0 and K^+ values agree to 1%, experimental errors being 0.5%, 0.6%. I find the paper very confusing and unclear.

They distinguish G_{μ} from G_F for *K*-decays and G'_F for hyperon decays. Thencon top put their radiative corretions, distinguishing old corrections (δ_1) a la Alberto Sirlin form new ones (δ_2) in the e-w interaction. As if the Fermi constant in the books were incorrect. They write (Sirlin)

$$\Gamma(\mu) = \frac{G^2 M^5}{192\pi^3} \left(1 - 8 \left(m_e/m_\mu \right)^2 \right) \left\{ 1 - \frac{\alpha}{2\pi} \left(\pi^2 - \frac{25}{4} \right) \right\}$$

but *G* above is called *G*_µ in that paper.

Be as it may, I summarize.

1.
$$m_s - m_{u,d} = ?$$
, is it small?
2. $m_K/m_\pi = 3.6$
3. $f_K/f_\pi = 1.27$
4. $2 \times (2\Gamma(K_{e3}^+) - \Gamma(K_{e3}^0))/(\Gamma_+ + \Gamma_-) = 0.0366 \pm 0.0006$
5. $\Gamma(K^0 \to 2\pi)/\Gamma(K^+ \to 2\pi) \sim 655$
6. Error on $\sqrt{\langle \Gamma(K_{e3}) \rangle} \sim 0.4\%$
7. $|V_{us}| = 0.2196 \pm 0.0023, \sim 1.05\%$

 $\Gamma(K_{e3})$ can be measured better Both K^0 and K^{\pm} must be measured KLOE CAN DO IT IN A UNIQUE WAY

To convert from eV to s⁻¹, multiply by 1.5192676×10^{15}

From τ_{μ} =2.19703 × 10⁻⁶ s and the Sirlin formula above one gets G_F =1.16637 × 10⁻⁵ GeV⁻² to be compared with the PDG value of 1.16637(1) × 10⁻⁵ GeV⁻² given by J. Erler and P. Langacker in section 10, Electroweak model and constraints on new physics and 1.16639(1) × 10⁻⁵ in section 1, Physical Constants.

$$\delta_1(K_{e3}^+) = -2\%$$

$$\delta_1(K_{e3}^+) = +0.5\%$$

$$\delta_2(K_{e3}^+) \sim \alpha/\pi \sim 0.2\%$$

$$(\alpha/2\pi) [\pi^2 - (25/4)] = 0.4\%, \quad (3/5)(m_\mu/M_W)^2 \sim 10^{-6}$$