$$
\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }+\gamma\right)
$$

Juliet Lee-Franzini
Laboratori Nazionali di Frascati

Cape Cod, June 2003

1. Why measure σ (hadrons $+\gamma$)
2. $\sigma_{\text {had }}\left(s^{\prime}\right)$ at fixed s
3. Advantages
4. Disadvantages
5. First results from KLOE 6. What next for KLOE

The question: "is there a discrepancy between standard model estimates and measurements" is important enough to warrant any possible check.
"Radiative return" due to initial state radiation, allows the measurement of hadro-production for $2 m_{\pi}<s^{\prime}<s$, at fixed collider s.

Recall that to calculate of a_{μ} we need the vacuum polarization corrections due to quark loops:

which cannot be calculated for low s, but

$K(s) \approx 1 / s$, i.e. enhance low s. Some authors substitute:

$$
\sigma_{e^{+} e^{-} \rightarrow \operatorname{hadr}}(s) \Rightarrow \frac{4483.124}{4483.124} \frac{s}{s} \sigma_{\mathrm{hadr}}(s)=\frac{R_{\mathrm{hadr}}}{s \times 4483.124} .
$$

$1 /(s \times 4483.124)\left(4 \pi \alpha^{2} / 3 s\right)$ is the lowest order QED cross section for $e^{+} e^{-}$annihilation into massless muons.
"Radiative return" due to initial state radiation, gives us the possibility of measuring hadro-production for $2 m_{\pi}<s^{\prime}<s$, at fixed collider s.
To lowest order the ISR ONLY amplitude is $\left(W^{2}=s\right)$:

$$
\frac{\mathrm{d} \sigma(\text { hadrons }+\gamma)}{\mathrm{d} s_{\pi} \mathrm{d} \cos \theta_{\gamma}}=\frac{\alpha}{\pi s} \sigma_{\text {hadr }}\left(s^{\prime}\right)\left[\frac{s^{2}+s^{\prime 2}}{s^{\prime}\left(s-s^{\prime}\right)} \frac{1}{\sin ^{2} \theta}-\frac{s-s^{\prime}}{2 s^{\prime}}\right]
$$

Binner, Kühn and Melnikov

Example: hadr $=\pi^{+} \pi^{-}, s^{\prime}=s_{\pi}=M_{\pi^{+} \pi^{-}}^{2}$.

$$
\frac{\mathrm{d} \sigma(\pi \pi \gamma)}{\mathrm{d} s_{\pi} \mathrm{d} \cos \theta_{\gamma}} \sim \sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, s_{\pi}\right) \times \sigma\left(e^{+} e^{-} \rightarrow \gamma \gamma, s\right)
$$

Advantages

1. Do not need to operate the collider at different energies
2. The overall energy scale, at least in a detector like KLOE is established at $\mathrm{W}=\mathrm{m}_{\phi}$ and applies to all values of M (hadr)
3. The luminosity is measured at fixed energy, for the entire data set, avoiding painful corrections

Disadvantages I.

$$
\begin{aligned}
& s_{\gamma}=s^{\prime} \\
& s_{\gamma}=s \neq s^{\prime}
\end{aligned}
$$

FS radiation is $\mathcal{O}(1)$ background to σ of interest! Cannot distinguish two processes, need precise estimates.

Must also remove correct for NoNO

and
properly retain

Disadvantages II.

One must perform an absolute measurement of a cross section which is only a tiny fraction of the total cross section
At KLOE, σ (Bhabha) $\sim 100 \mu \mathrm{~b}$ σ (hadrons) $\sim 3 \mu \mathrm{~b}$
$\sigma\left(\pi^{+} \pi^{-} \gamma\right) \sim 0.01 \mu \mathrm{~b}$

$$
e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, \gamma \gamma, \gamma \pi^{+} \pi^{-}
$$

$\mathfrak{M} \propto e^{2} J_{e}^{\mu} A_{\mu} \frac{1}{s}\left(p^{\prime}-p\right)^{\nu} A_{\nu} F_{\pi}(s)$

$$
\sigma_{\pi \pi}=\frac{\pi \alpha^{2}}{3 s} \beta^{3}\left|F_{\pi}(s)\right|^{2}
$$

$$
\overline{|\mathfrak{M}|^{2}}=2 e^{4}\left(\frac{u}{t}+\frac{t}{u}\right) \quad \frac{\mathrm{d} \sigma_{\gamma \gamma}}{\mathrm{d} \cos \theta}=\frac{2 \pi \alpha^{2}}{s} \frac{1+\cos ^{2} \theta}{\left(\sin ^{2} \theta\right.}
$$

Radiative corrections

ISR. This is a well understood process and we have the appropriate, tested tools for dealing with it.

PHOKHARA =

 full NLO - calculation to $\pi \pi \gamma$ initial state radiationH. Kühn, H. Czyz, G. Rodrigo

We have performed together with S. Jadach a comparison between Phokhara and KKMC for radiative muon pair production
\Rightarrow Agreement on few permil level in entire energy range
\Rightarrow Effect of higher order corr.
(3 rd photon, ...) only visible
$>$ ca. $0.9 \mathrm{GeV}^{2}$ and small
Radiative corrections on the level of few per-mil
$26^{\text {th }}$ Meeting LNF Scientific Committee

Cape Cod, June 2003 Juliet Lee-Franzini - $\sigma\left(e^{+} e^{-} \rightarrow\right.$ hadrons+ $\left.\gamma\right) 11$

Vacuum Polarization

This is the same for everybody and presumably very well understood, today. The question is to apply it, correctly, to data and whatever normalizing process is used to get \mathcal{L} (usually Bhabha scattering).

FSR 1. Hard photon

Ways out?

Take only small angle γ, ISR dominates, FSR not important.

But small $s_{h a d}$ is lost

Simultaneously measure 3 "form factors", F_{π}, F_{1}, F_{2}. Inclusive σ preferred. (F.J.)

A truly inclusive measurement, as recommended, is never possible. Background channels invalidate the measurement. There are possible compromises, but with poorer statiscs.

Otherwise try $\chi \mathrm{PT}$ calculations. In any case 3-body processes are suppressed, $\sim 1 / 32 \pi^{2}$. Likewise $\rho \pi \gamma$ small. It is quite reasonable to begin with point like pions and correct the result (G.I.)

FSR 2. Soft photons

This refers to the presence of soft radiation in the final state, together with radiation of a hard photon by the initial electron-positron which allows one to measure $\sigma\left(s^{\prime}<s\right)$. One needs proper modelling to ensure that whatever FSR has been removed by the event selection criteria, is reintroduced for a proper measurement to get to the muon anomaly.

Not Quite Final Results from KLOE

I am reporting now on a precision measurement of the $\pi^{+} \pi^{-}$cross section around the ρ region, performed with KLOE, with 2 million $\pi^{+} \pi^{-} \gamma$ events I wish to remind you why our first effort is concentrated in this energy region by showing the impact of related measurements on a_{μ}. Let us remember that out of a contribution to a_{μ} of $\sim 685 \times 10^{-10}, \sim 441 \times 10^{-10}$ is due to the $\pi^{+} \pi^{-}$channel, whose best measurement comes from CMD-2 at Novosibirsk with 110,000 events and a combination of τ data, in the $\pi^{ \pm} \pi^{0}$ channels, from LEP and CESR, which appear to disagree.

KLOE contributions

1. a_{μ}. Comparison of measurement and calculations.

The situation is somewhat embarrassing: we can't say if there is agreement with experiment... there is possibly a problem with $\tau-e^{+} e^{-}$data.
2. $e^{+} e^{-}$data are clearly lower than τ extracted info, around the ρ region

$\Delta a_{\mu}\left(\tau-e^{+} e^{-}\right)=\left(24.3 \pm 7.9_{\exp } \pm 3.8_{\mathrm{rad}} \pm 2.8_{I-\text { spin }}\right) \times 10^{-10}$
2.6σ discrepancy

The disagreement is in fact stronger, when comparing $B R$: $\sim 6 \%$ or $\sim 4.6 \sigma$. 6% is a rather large I-spin violation!

KLOE can

$\mathrm{e}^{+} \mathrm{e}^{-}-$data with CMD-2 results
2) Cross check the central value of $a_{\mu}^{\text {hadr }}=\left(684.7 \pm 6.0_{\exp } \pm 3.6_{\mathrm{rad}}\right) \times 10^{-10}$

- At which precision can we be significant/competitive?

$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$ simplified

To lowest order, but only ISR, Binner, Kühn and Melnikov give:

$$
\frac{\mathrm{d} \sigma(\pi \pi \gamma)}{\mathrm{d} s_{\pi} \mathrm{d} \cos \theta_{\gamma}}=\frac{\alpha^{3}}{3 s^{2}}\left|F_{\pi}\left(s_{\pi}\right)\right|^{2} \beta_{\pi}^{3}\left[\frac{s^{2}+s_{\pi}^{2}}{s_{\pi}\left(s-s_{\pi}\right)} \frac{1}{\sin ^{2} \theta}-\frac{s-s_{\pi}}{2 s_{\pi}}\right]
$$

where $s_{\pi}=M_{\pi \pi}^{2}$ and $\beta_{\pi}=\sqrt{1-4 m_{\pi}^{2} / s_{\pi}}$ is the pion velocity in the $\pi \pi$ system.
Integrating over $\cos \theta$, from $x_{1}=\cos \theta_{1}$ to $x_{2}=\cos \theta_{2}\left(\theta_{1}>\theta_{2}\right)$ we get:

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma(\pi \pi \gamma)}{\mathrm{d} s_{\pi}}=\frac{\alpha^{3}}{3 s s_{\pi}}\left|F_{\pi}\left(s_{\pi}\right)\right|^{2} \beta_{\pi}^{3} \times \\
& {\left[\frac{1}{2} \frac{s^{2}+s_{\pi}^{2}}{s\left(s-s_{\pi}\right)}\left(\log \frac{1+x_{2}}{1-x_{2}}+\log \frac{1-x_{1}}{1+x_{1}}\right)-\frac{s-s_{\pi}}{2 s}\left(x_{2}-x_{1}\right)\right] }
\end{aligned}
$$

For $\theta<\theta_{\gamma}<180-\theta, x=\cos \theta$

$$
\begin{aligned}
\frac{\mathrm{d} \sigma(\pi \pi \gamma)}{\mathrm{d} s_{\pi}}= & \frac{\alpha^{3}}{3 s_{\pi}}\left|F_{\pi}\left(s_{\pi}\right)\right|^{2} \beta_{\pi}^{3}\left[\frac{s^{2}+s_{\pi}^{2}}{s\left(s-s_{\pi}\right)} \log \frac{1+x}{1-x}-\frac{s-s_{\pi}}{2 s} 2 x\right] \\
= & \frac{\alpha}{s \pi}\left[\frac{s^{2}+s_{\pi}^{2}}{s\left(s-s_{\pi}\right)} \log \frac{1+x}{1-x}-\frac{s-s_{\pi}}{s} x\right] \sigma\left(\pi \pi, s_{\pi}\right) \\
& =H \times \sigma\left(\pi \pi, s_{\pi}\right)
\end{aligned}
$$

Definition of H, the radiator function.

Cape Cod, June 2003 Juliet Lee-Franzini - $\sigma\left(e^{+} e^{-} \rightarrow\right.$ hadrons+ $\left.\gamma\right) 22$

$$
\frac{\delta a_{\mu}}{a_{\mu}} \sim 1.45 \frac{\delta \overline{\sigma_{\pi \pi \gamma}}}{\overline{\sigma_{\pi \pi \gamma}}}
$$

From PHOKARA

$$
e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma ; 30^{\circ}<\theta_{\pi}<150^{\circ}
$$

Magnet
SC Coil, B=0.6 T
EM Calor.
$\mathrm{Pb}-$ scint fiber 4880 pm

Drift Ch.
12582 sense wires
52140 tot wires
Al-Be beam pipe
$\mathrm{r}=10 \mathrm{~cm}, 0.5 \mathrm{~mm}$ thick

$\sigma_{\mathrm{E}} / \mathrm{E}=5.7 \% / \sqrt{\mathrm{E}(\mathrm{GeV})}$ $\sigma_{\mathrm{T}}=54 \mathrm{ps} / \sqrt{\mathrm{E}(\mathrm{GeV})} \oplus 50 \mathrm{ps}$
(Bunch length contribution subtracted from constant term)

Electromagnetic calorimeter

Driftchamber

$$
\begin{aligned}
& \sigma_{p} / \mathrm{p}=0.4 \% \text { (for } 90^{0} \text { tracks) } \\
& \sigma_{\mathrm{xy}} \approx 150 \mu \mathrm{~m}, \sigma_{\mathrm{z}} \approx 2 \mathrm{~mm}
\end{aligned}
$$

The photon momentum and angle are obtained from $\vec{p}_{\gamma}=-\left(\vec{p}_{\pi^{+}}+\vec{p}_{\pi^{-}}\right)$.

Photons with
$\theta<15^{\circ}$ ($>165^{\circ}$) from the interaction region do not reach the calorimeter.

Pions are accepted for $40^{\circ}<\theta_{\pi}<140^{\circ}$.

PHOKHARA for KLOE angular regions

FSR contribution is negligible for

$$
\begin{gathered}
\theta_{\gamma}<15^{\circ}\left(>165^{\circ}\right) \\
40^{\circ}<\theta_{\pi^{+}} \pi^{-}<140^{\circ}
\end{gathered}
$$

$$
\frac{\mathrm{d} \sigma\left(\pi^{+} \pi^{-} \gamma\right)}{\mathrm{d} M_{\pi \pi}^{2}}=\frac{N^{\mathrm{obs}}-N^{\mathrm{bkg}}}{\Delta M_{\pi \pi}^{2}} \times \frac{1}{\epsilon_{\mathrm{sel}} \times \epsilon_{\mathrm{acc}}} \times \frac{1}{\mathcal{L}}
$$

Signal
$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma \quad \sigma \sim 5-25 \mathrm{nb}$
Some background processes
$e^{+} e^{-} \rightarrow \phi \rightarrow K_{S} K_{L}, K_{S} \rightarrow \pi^{+} \pi^{-}, K_{L}$ does not decay, $\sigma \sim 0.4 \mu \mathrm{~b}$
$e^{+} e^{-} \rightarrow \phi \rightarrow \rho \pi \rightarrow \pi^{+} \pi^{-} \pi^{0}, \sigma \sim 0.5 \mu \mathrm{~b}$
Radiative Bhabha \sim a fraction of $\mu \mathrm{b}-$ (large $e^{+} e^{-}$angles)
$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-} \gamma$: for $s^{\prime}<600 \mathrm{MeV} \sigma(\mu \mu \gamma)$ is larger than $\sigma\left(\pi^{+} \pi^{-} \gamma\right)$.

$$
\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}\right) \text {and } \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)
$$

Event candidate, probably $\pi^{+} \pi^{-} \pi^{0}$

$\pi^{+} \pi^{-} \gamma$ events are selected requiring two opposite charged particles in the drift chamber, rather loosely coming from the interaction point. Most background events, such as $\phi \rightarrow K_{S} \rightarrow \pi^{+} \pi^{-}+K_{L}$ not decaying and $\phi \rightarrow \pi^{+} \pi^{-} \pi^{0}$, are removed early in reconstruction by kinematics and cuts on m_{x}, computed from
$\left(M_{\phi}-\sqrt{p_{+}^{2}+m_{x}^{2}}-\sqrt{p_{-}^{2}+m_{x}^{2}}\right)^{2}-\left(\vec{p}_{+}+\vec{p}_{-}\right)^{2}=0$,
i.e. assuming that a pair of same mass particles are produced according to $e^{+} e^{-} \rightarrow x^{+} x^{-} \gamma$.

We do not want to apply restrictive kinematical requirements, or insist on multiple photon detection, to avoid imposing restrictive cuts on soft radiation, to be later corrected.

The observed mass, m_{x}, spectrum for the accepted two track events is shown below

Particle identification is obtained with an estimator that uses time of flight, compared to momentum, and the energy deposit pattern in the EM calorimeter. Its effectiveness is apparent. At least one of the two particle must be a pion, ~95\% of the signal is retained.
m_{x} spectrum for candidates

Distribution in the $\left\{M^{2}, m_{x}\right\}$ plane

Fiducial region in the $\left\{M_{\pi^{+} \pi^{-}}, m_{x}\right\}$ plane.

$\pi^{+} \pi^{-} \pi^{0}$ and $\mu^{+} \mu^{-} \gamma$ background subtraction

Backgrounds are estimated from data and subtracted.
Monte Carlo simulations are in excellent agreement

Radiative Bhabha, $e^{+} e^{-} \gamma$, background

This process could represent a background for our analysis if electron and positron go along the beam pipe.

From $M C$ (old $M C$ generator from F. Anulli),
we expect a background contribution at
From MC (old MC generator from F. Anulli)
we expect a background contribution at low Q^{2} values.

Background is removed by m_{x} cut.

Efficiencies

Trigger

Includes CR veto
Reconstr. Filter filfo

Event Classification
Track eff, vertex eff
PID
like
m_{x}
mtrk

Measuring the luminosity

Acceptance:

Comparison DATA - MC to understand systematic effect Normalize to same number of events

$-\quad$	Monte Carlo (BABAYAGA)
* \quad Data Points $\left(1.1 \mathrm{pb}^{-1}\right)$	

Only Polar Angle makes an non-negligible effect, the other distributions are "safe" what concerns systematics

SUMMARY LUMI SYSTEMATIC ERROR

Theory	0.5%	
Acceptance	0.3%	correct by 0.28%
Knowledge $\sqrt{ }$ s	0.1%	
Background	0.1%	correct by 0.53%
Tracking	0.1%	
Clustering	0.1%	correct by 0.23%
Trigger	$<0.1 \%$	correct by 0.51%

Total 0.5% th., 0.4% exp. $\quad \ominus 0.6 \%$

Luminosity comparisons

BHABHA

1. BABAYAGA (Pavia, Carloni et al.)
2. BHAGEN (Modified Berends)

$$
\begin{aligned}
& \sigma(\mathrm{VLAB}, 1)=428.8 \pm 0.3 \mathrm{nb} \quad \text { diff. } 0.1 \pm 0.1 \% \\
& \sigma(\mathrm{VLAB}, 1)=428.5 \pm 0.3 \mathrm{nb}
\end{aligned}
$$

Large angle $\gamma \gamma .45^{\circ}<\theta_{\gamma}<135^{\circ}, \sigma=120 \mathrm{nb}$ $|\mathcal{L}(\mathrm{BHABHA})-\mathcal{L}(\gamma \gamma)|=0.2 \%$

$$
\sigma\left(\pi^{+} \pi^{-} \gamma\right)
$$

Acceptance: $\theta_{\pi \pi}<15^{\circ}\left(\theta_{\pi \pi}>165^{\circ}\right), 40^{\circ}<\theta_{\pi}<140^{\circ}, \mathrm{E}_{2}>10 \mathrm{MeV}$

KLOE dipion mass resolution has been unfolded from the spectrum after all corrections

PION FORM FACTOR

From

$$
\sigma\left(\pi^{+} \pi^{-}, s_{\pi}\right)=\frac{1}{H} \frac{\mathrm{~d} \sigma(\pi \pi \gamma)}{\mathrm{d} s_{\pi}}
$$

and

$$
\sigma\left(\pi^{+} \pi^{-}, s_{\pi}\right)=\frac{\pi \alpha^{2}}{3 e_{\pi}} \beta^{3}\left|f_{\pi}\right|^{2}
$$

we get the pion form factor. $H\left(s_{\pi}\right)$ is obtained from PHOKHARA with $F_{\pi}=1$.

The KLOE $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$ cross section extracted from the measured $\pi^{+} \pi^{-} \gamma$ cross section above, compared with CMD-2 results.

A discrepancy at low mass is evident PRELIMINARY!

$$
\begin{gathered}
a_{\mu} \propto \int \sigma\left(s_{\pi}\right) K\left(s_{\pi}\right) \mathrm{d} s \\
\mathrm{KLOE} \\
\triangle a_{\mu}=424.7 \\
\triangle a_{\mu}=381.4 \\
\triangle a_{\mu}=240.1
\end{gathered}
$$

* our calculation, we use values w/o FSR and VP correc. (like us)

PRELIMINARY

$0.30<M_{\pi \pi}^{2}<0.95 \mathrm{GeV}^{2}$
$0.37<M_{\pi \pi}^{2}<0.93 \mathrm{GeV}^{2}$
$0.50<M_{\pi \pi}^{2}<0.93 \mathrm{GeV}^{2}$

CMD-2 $\left(\Delta a_{\mu}=368.1\right)$

$$
\begin{aligned}
& \triangle a_{\mu}=376.7^{*} \\
& \triangle a_{\mu}=241.4^{*}
\end{aligned}
$$

$$
\begin{aligned}
& 0.37<M_{\pi \pi}^{2}<0.93 \mathrm{GeV}^{2} \\
& 0.50<M_{\pi \pi}^{2}<0.93 \mathrm{GeV}^{2}
\end{aligned}
$$

$1 / 2 \%$ agreement with CMD-2 above $0.5 \mathrm{GeV}^{2}$ VP and FSR corrections need checking!

What's next for KLOE
Measure large photon angle region

1. Access The Low Mass Region

There have been no recent measurement of $\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}\right)$at small mass. It is worth noting however that the region from threshold to $M_{\pi \pi}<600 \mathrm{MeV}\left(s_{\pi}<0.36 \mathrm{GeV}^{2}\right.$, contributes $\sim 80 \times$ 10^{-10} to the muon anomaly.

By choosing small values for θ_{γ} we removed some problems with FSR but lost the pions recoiling against the photon, inside the unaccessible forward and backward cones.

By going to the large angle photon region, KLOE will recover this portion of the cross section.
2. At large angle we can also study the scalar meson contribution to σ (hadrons) proposed by Narison.

Photon tag
i.e. photon is detected
$45^{\circ}<\theta_{\gamma}<145^{\circ}$
Fit improves if a σ contribtion is added

3. Measure pion angular distribution.

With more information it will also be possible to clarify the validity of present modelling of FSR or learn how to deal with it better.

