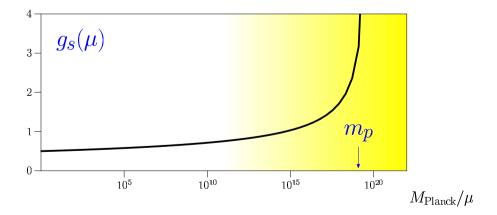
Little Higgs Models

Theory & Phenomenology

Wolfgang Kilian (Karlsruhe)

Karlsruhe January 2003

- How to make a light Higgs (without SUSY)
- Minimal models: The Littlest Higgs and the Minimal Moose
- Phenomenology


Electroweak symmetry breaking (beyond the SM):

- Dynamics responsible for the electroweak scale?
 - $v = 246 \text{ GeV} \approx 10^{-17} M_{\text{Planck}}$
 - New idea (and very old): geometrical origin = extra dimensions
 - Old idea: field-theoretical origin = renormalization-group running and field condensation
- Why would we like dynamical scale generation?
 - We see it at work (QCD):

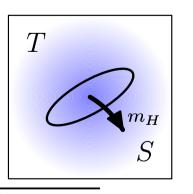
 $\langle GG \rangle \sim \langle qq \rangle \sim 1 \text{ GeV} \approx 10^{-19} M_{\text{Planck}}$

without GUT: $g_s(M_{\text{Planck}}) \approx 1/2$

 \Rightarrow The proton mass is natural

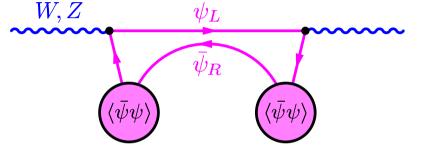
Technicolor?

Dynamical scale generation:


Why not simply copy QCD? Susskind/Weinberg (1979)

- New QCD' (Technicolor), $\Lambda \sim 3 \text{ TeV} = 4\pi v$
- \Rightarrow Compositeness (of W, Z, \ldots)
- \Rightarrow Resonances in the TeV range

This is elegant, but ...


- EW precision data
- Flavor Physics

suggest:

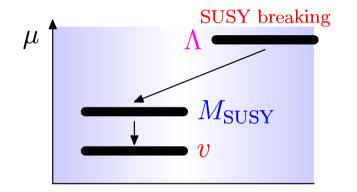
- \Rightarrow TeV-scale physics is weakly interacting
- \Rightarrow Strongly interacting physics (if any) is beyond 10 TeV and/or decoupled
- \Rightarrow There is a ~ 100 GeV scalar:

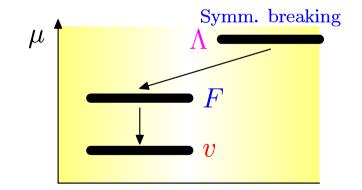
The Higgs boson

Supersymmetry?

Possible solution: Indirect (dynamical) scale generation

Supersymmetric Models:


• Field condensation in new (hidden) sector with SUSY


 \Rightarrow SUSY breaking \Rightarrow Scale generation

- Scalars are present because of SUSY
- Scalar potential by radiative corrections
- Top sector triggers EWSB

Little Higgs Models:

- Field condensation in new sector with global symmetry
 - \Rightarrow spontaneous symmetry breaking \Rightarrow Scale generation
- Scalars are present because of Goldstone theorem
- Scalar potential by radiative correctons
- Top sector triggers EWSB

Little Higgs Models

Higgs = Pseudo-Goldstone boson: Georgi, Pais (1974); Georgi, Dimopoulos, Kaplan (1984); ...

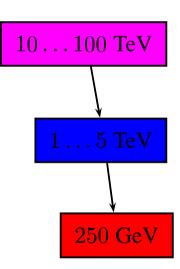
Problem: Without fine-tuning, $v = F \sim \Lambda/4\pi$

 \Rightarrow two-scale model (like technicolor)

Three-scale models: Arkani-Hamed, Cohen, Georgi (2001); ...

 $v \sim F/4\pi$ and $F \sim \Lambda/4\pi \Rightarrow$ *little Higgs*

• Scale Λ :


Compositeness, new dynamics

• Scale *F*:

Pseudo-Goldstone scalars, extra vector bosons, extra fermions

• Scale v:

Higgs bosons, known vector bosons and fermions

W. Kilian, Karlsruhe 2003

How to make a Little Higgs Model:

- Extended gauge theory: $SM' \otimes \mathcal{G}_{new} \to SM$ Compare: GMSB-type SUSY, Z' models
- Enlarged global symmetry: $\mathrm{SM}'\otimes\mathcal{G}_{\mathrm{new}}$ embedded in \mathcal{H} Compare: SM custodial symmetry
- Extended top sector: New vector-like quark(s) coupled to both $\rm SM'$ and ${\cal G}_{\rm new}$ Compare: See-saw topcolor models

LHM = Extended Gauge Theory:

Generic symmetry breaking pattern:

 $\mathrm{SM}' \otimes \mathcal{G}_{\mathrm{new}} \rightarrow \mathrm{SM}$

Fermions: Charged under SM and SM', neutral under \mathcal{G}_{new}

Minimal version:

 $\begin{array}{rcl} (SU(2)\otimes U(1))_1 & \otimes & (SU(2)\otimes U(1))_2 \\ (g_1,g_1') & (g_2,g_2') \\ \\ & \rightarrow & (SU(2)\otimes U(1))_{\mathrm{SM}} \\ & (g,g') \end{array}$

 \Rightarrow Four heavy vector bosons (at least): $W^{\pm \prime}$, Z' and B'

W. Kilian, Karlsruhe 2003

Little Higgs Models

Vector bosons: $W^{\pm \prime}$, Z' and B'

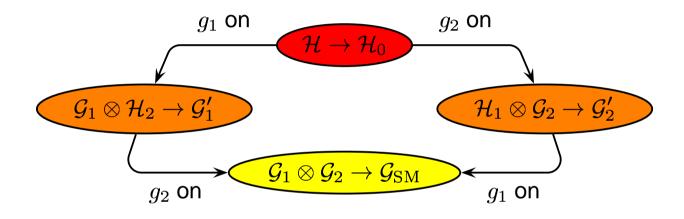
Mass scale: $F \sim 4\pi v \Rightarrow \text{TeV}$ range

Couplings:

$$\frac{1}{g^2} = \frac{1}{g_1^2} + \frac{1}{g_2^2}$$
 and $\frac{1}{g'^2} = \frac{1}{g_1'^2} + \frac{1}{g_2'^2}$

$$\Rightarrow$$
 Both g_1 and g_2 are $> g$

Limits:


- $g_1 \gg g_2 \Rightarrow W', Z'$ superheavy and strongly coupled to fermions
- $g_1 \approx g_2 \Rightarrow W', Z'$ masses of order *F*, standard fermion couplings
- $g_1 \ll g_2 \Rightarrow W', Z'$ superheavy and decouple from fermions (fermiophobic)

Larger gauge symmetry: Additional heavy vectors, e.g.

 $\mathcal{G}_2 = SU(3) \quad \Rightarrow \quad \text{complex } SU(2) \text{ doublet } V^{\pm}, V^0, \bar{V}^0$

Enlarged global symmetry

Embed the gauge group $\mathcal{G}_1\otimes \mathcal{G}_2$ in a larger global symmetry $\mathcal H$

Switch on gauge couplings g_1, g_2 : Symmetry is reduced

- Some Goldstone bosons of $\mathcal{H} \to \mathcal{H}_0$ are eaten $\Rightarrow W'_L, Z'_L, B'_L$
- Some become heavy (mass of order $F \sim \Lambda/4\pi$) \Rightarrow TeV-scale scalars
- Some become light (mass of order $v = g_1 g_2 \Lambda / 16\pi^2$) \Rightarrow Higgs boson candidates Requirement: \mathcal{H}_1 and \mathcal{H}_2 don't commute

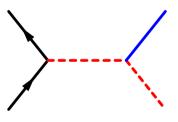
W. Kilian, Karlsruhe 2003

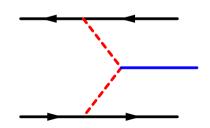
Radiatively generated Higgs potential

Heavy scalars: H

Light scalars: h (includes Goldstone bosons W_L, Z_L)

1-loop Coleman-Weinberg potential for H and h: determined by symmetry pattern


$$V(h,H) = aF^2H^2 + bF(hHh) + ch^4 + \dots$$


Integrate out the H fields:

$$V(h) = c' h^4 + \dots$$

- \Rightarrow *h* is massless to one-loop order
- \Rightarrow Positive mass² at two-loop order
- \Rightarrow Trilinear couplings *Hhh*:

production and decay channels for heavy scalars

W. Kilian, Karlsruhe 2003

Extended top quark sector:

Extra massive singlet fermion(s) with top quantum numbers: $t'_{L,R}$

Yukawa coupling (model dependent):

$$\lambda_1 F \operatorname{Tr}[(\overline{t_L} \ \overline{b}_L \ \overline{t'_L}) \times \Sigma(H, h)] t_R + \lambda_2 F \ \overline{t'_L} t'_R$$

$$\Rightarrow$$
 Top Yukawa coupling $rac{1}{\lambda_t} = rac{1}{\lambda_1} + rac{1}{\lambda_2}$

t, t' loop correction \Rightarrow negative Higgs mass squared

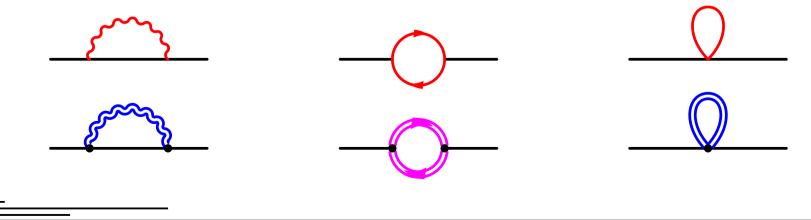
$$V(h) = -a\frac{\lambda_1^2 F^2}{16\pi^2}h^2$$

 \Rightarrow Higgs VEV $\langle h \rangle = v$

- \Rightarrow Top mass $m_t = \lambda_t v$
- \Rightarrow Top' mass $m_{t'} = \lambda_2 F$

Yukawa couplings of heavy scalars H: suppressed by v/F

W. Kilian, Karlsruhe 2003


Summary: LHM particle content

- Light Higgs doublet(s), possibly extra light scalar multiplets
- Heavy Higgs multiplets, coupled to Higgs/Goldstone pairs, decoupled from fermions, mixed with light Higgses (mixing angle $\sim v/F$)
- Heavy vector bosons:

 $W^{\pm \prime}, Z', B'$ coupled to SM fermions, mixed with W^{\pm}, Z (mixing angle $\sim v/F$)

• Heavy up-type quark(s): t'

Effective theory above *F*: cancellation of quadratic divergences in Higgs self-energy

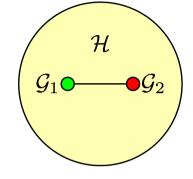
\Rightarrow low-energy effective theory can be the minimal SM

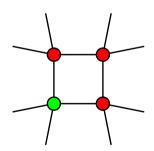
Minimal version: $(SU(2) \otimes U(1))^2$ embedded in SU(5)

Theory space (Moose Models):

 \Rightarrow exotic Higgs representations,

Two classes of LHM have been proposed:

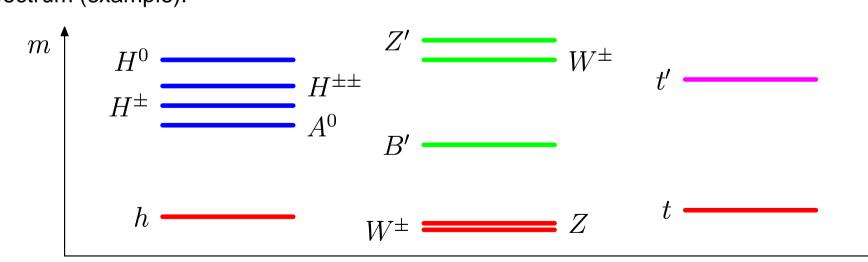

Extended gauge symmetry $(\mathcal{G}_{\rm SM})^n$ embedded in semisimple group \mathcal{G}^{4n}


Extended gauge symmetry $\mathcal{G}_1 \otimes \mathcal{G}_2$ embedded in simple group \mathcal{H}

- \Rightarrow many copies of scalar (and vector) multiplets
- \Rightarrow low-energy effective theory contains at least two Higgs doublets

Minimal version: $(SU(2) \otimes U(1))^2$ embedded in $SU(3)^8$

The Littlest Higgs

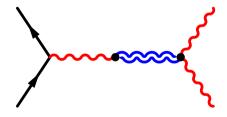

W. Kilian, Karlsruhe 2003

Simple group:

The Littlest Higgs: Arkani-Hamed/Cohen/Katz/Nelson (2002)

- Global symmetry breaking $SU(5) \rightarrow SO(5) \Rightarrow 24 10 = 14$ Goldstone bosons
- Gauge symmetry breaking $(SU(2) \otimes U(1))^2 \rightarrow SU(2) \otimes U(1) \implies W_L^{\pm}, Z'_L, B'_L$
- 10 scalars remain:
 - Complex doublet (light) \Rightarrow Higgs boson *h* and W_L^{\pm}, Z_L with $\langle h \rangle = v$
 - Complex triplet (heavy) \Rightarrow $H, A, H^{\pm}, H^{\pm\pm}$ with $\langle H \rangle \sim v^2/F$

Spectrum (example):

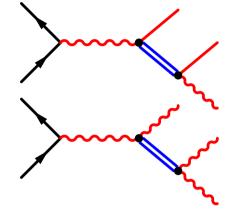


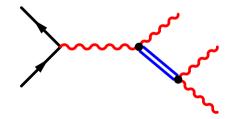
The Littlest Higgs

Heavy vectors

Vector bosons with TeV scale masses:

- * B' significantly lighter than W', Z', production at LC 800?
 - \Rightarrow Resonance in $e^+e^- \rightarrow f\bar{f}$ and $qq \rightarrow qq$ (\rightarrow Tevatron Run 2)
 - \Rightarrow Fermion couplings suppressed if $g'_1 < g'_2$, enhanced if $g'_1 > g'_2$
 - \Rightarrow Hypercharge boson: coupling to W^+W^- suppressed
 - \Rightarrow Measurements of mass, width and BRs determine scale *F*, quantum numbers and gauge sector parameters
- * W'^{\pm} and Z' are heavier
 - ⇒ Indirect constraints from contact interactions
 - \Rightarrow Effect on triple gauge couplings
 - \Rightarrow GigaZ




W. Kilian, Karlsruhe 2003

Heavy scalars

Scalars with TeV scale masses, unsuppressed couplings to light Higgs and Goldstones:

- $* A^0$ could be the lightest state
 - \Rightarrow Associated production $e^+e^- \rightarrow Ah$
 - \Rightarrow Fermion couplings suppressed \Rightarrow decay into hZ_L
- * Charged Higgs H^{\pm}
 - \Rightarrow Single production in $e^+e^- \rightarrow H^+W_L^-$, decay into W_LZ_L
- * Doubly charged Higgs $H^{\pm\pm}$
 - \Rightarrow Single production in $e^-e^- \rightarrow \nu \nu H^{--}$, decay into $W_L^- W_L^-$
- * Heavy Higgs H^0
 - \Rightarrow Higgs-strahlung $e^+e^- \rightarrow Z_L H$
 - \Rightarrow Decay into $Z_L Z_L$ and hh, but not $W^+ W^-$
- ... but they may be too heavy \Rightarrow indirect constraints from Higgs, Z and W observables

The Littlest Higgs

Light scalars

Higgs boson h mixes with heavy scalar H, mixing angle $\sim v/F$:

- \Rightarrow Light Higgs *h* mass significantly decreased
- \Rightarrow Yukawa couplings slightly decreased
- \Rightarrow Anomalous hVV and hhh couplings

Precise measurements of all Higgs couplings very important!

Heavy quarks

Top quark t mixes with heavy fermion t'

- * t' production at LHC?
- * Decay into bW_L and th

Linear collider: Precise measurements of t quark couplings!

W. Kilian, Karlsruhe 2003

Precision observables

Violation of the custodial $SU(2)_C$ symmetry \Rightarrow contributions to the ρ parameter $O(v^2/F^2)$

- * extra hypercharge boson B'
- * Higgs triplet
- * extended top quark sector
- * $[m_h > 100 \text{ GeV}]$

Light hypercharge boson B'

* Limits from Drell-Yan processes / contact terms at Tevatron, LEP2

Extra *t*′

* Contributions to t, b couplings and R_b

W. Kilian, Karlsruhe 2003

The Littlest Higgs

Present limits:

```
Csaki/Hubisz/Kribs/Meade/Terning (2002)

M_{B'} > 650 \text{ GeV} and M_{W'} > 2.7 \text{ TeV}

Caveat: Top sector neglected

Hewett/Petriello/Rizzo (2002)

F > 3.5 \text{ TeV} and m_{t'} > 10 \text{ TeV}
```

Caveat: Scalar sector neglected

- \Rightarrow Need to take into account all contributions (cancellations!)
- \Rightarrow Favored: Models with
 - Different hypercharge embedding: B' heavier
 - Custodial SU(2) symmetry: $SU(2) \otimes SU(2) \subset \mathcal{G}_2$?
 - Fermiophobic vector bosons

Han/Logan/McElrath/Wang (2003)

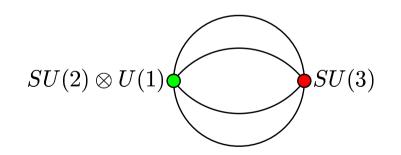
W. Kilian, Karlsruhe 2003

The Minimal Moose

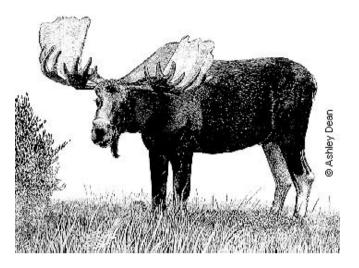
The Minimal Moose Model: Arkani-Hamed/Cohen/Katz/Nelson/Gregoire/Wacker (2002)

• Global symmetry breaking:

 $(SU(3)\otimes SU(3))^4 \to SU(3)^4$


with four independent scalar multiplets \Rightarrow 32 Goldstone bosons

• Gauge symmetry breaking:


 $SU(3) \otimes SU(2) \otimes U(1) \rightarrow SU(2) \otimes U(1)$

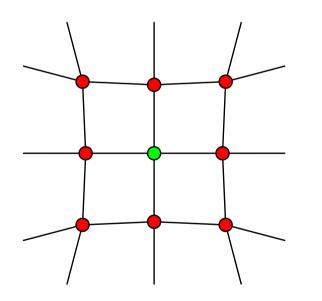
- \Rightarrow Heavy vectors $W^{\pm\prime},Z^{\prime},B^{\prime}$ and $V^{\pm},V^{0},\bar{V}^{0}$
- Light scalars: 2 Higgs doublets, 2 real triplets, 2 real singlets
- Heavy scalars:
 1 singlet, 1 doublet, 1 triplet
- Top sector: Vector-like heavy fermion(s)

```
W. Kilian, Karlsruhe 2003
```


The Minimal Moose

Phenomenology of the Minimal Moose:

- * B' is candidate for the lightest new vector boson
- * Rich low-energy Higgs phenomenology (100...1000 GeV)
 - Two Higgs doublets: h, H, A^0, H^{\pm}
 - Scalar triplet ϕ^{\pm}, ϕ^{0} and singlet η^{0} bosons (no VEV)
- * Additional heavy Higgs states (mixing with light Higgs)
- * Anomalous top sector


W. Kilian, Karlsruhe 2003

Theory space

Multiple gauge groups: sites

Goldstone multiplets, charged under two gauge groups: links

Spontaneous symmetry breaking in the Goldstone sectors \Rightarrow breaking of $\mathcal{G}^n \rightarrow SM$

Little Higgs Models:

- Extra links \Rightarrow closed cycles
- Two-dimensional lattice ⇒ unsuppressed quartic couplings ⇒ EWSB by Goldstone VEV
- \Rightarrow Many multiplets of scalars and vector bosons
- ⇒ Spectrum and interactions similar to 6D extradimension model

(Scalars = 5-6 components of 6D gauge fields)

What should we look for?

Direct observation

- LHC/LC: Light Higgs boson?
- LHC: Heavy vector bosons, heavy colored fermions
- LHC/LC: Uncover Higgs sector completely (how many sub-TeV scalars are there?)

Precision observables

- Tevatron/LHC/LC: Contact terms \Rightarrow constrain four-fermion operators
- LHC/LC: Triple gauge couplings (fermiophobic vector bosons)
- LHC/LC: Quartic gauge couplings (vector bosons and heavy scalars)
 - \Rightarrow Analysis similar to strong-WW scattering, but in the presence of light Higgs
- LC: Higgs self-coupling(s), quartic Higgs-vector boson couplings

W. Kilian, Karlsruhe 2003

More phenomenology:

- Grand Unification:
 - The SM $SU(2) \otimes U(1)$ symmetry is continued above the TeV scale. If the extra \mathcal{G}_2 symmetry is strongly coupled, the shifts in the SM couplings are small
 - \Rightarrow The SM mismatch in unification could be a consequence of \mathcal{G}_2
 - \Rightarrow Coupling sum rule: The GUT scale is lowered ... unless $SU(3)_{QCD}$ is also affected.

• Dark Matter:

- If there is an unbroken discrete symmetry in the LHM, there will be a dark matter candidate. (Not in the minimal model.)
- \Rightarrow Heavy neutral scalar?
- Supersymmetry:
 - LHM symmetry structure could come with SUSY breaking in the 10 TeV range
 - \Rightarrow Superpartners much more heavy?

Conclusions:

- Little Higgs Models = indirect EW scale generation: symmetry breaking in new sector (analogous to SUSY models)
- Special role of top quark
- ... but no solution to flavor problem Chivukula/Evans/Simmons (2002)
- Phenomenology:
 - Light Higgs boson (multiple light states possible)
 - Heavy scalar states
 - Heavy vector bosons: recurrences of W, Z, γ (and others)
 - Heavy quarks mixed with 3rd generation
- Significant sensitivity of precision observables, even if no new states accessible
 - \Rightarrow get a complete and consistent picture of all Higgs and vector boson couplings!

W. Kilian, Karlsruhe 2003