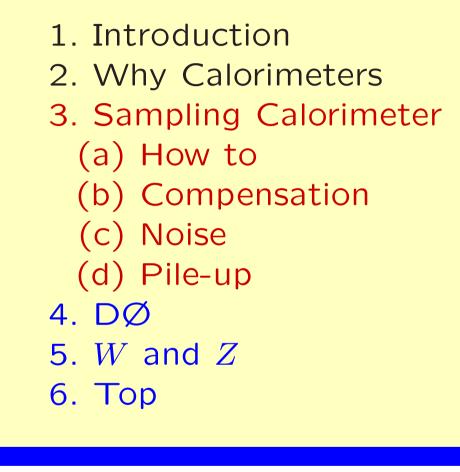
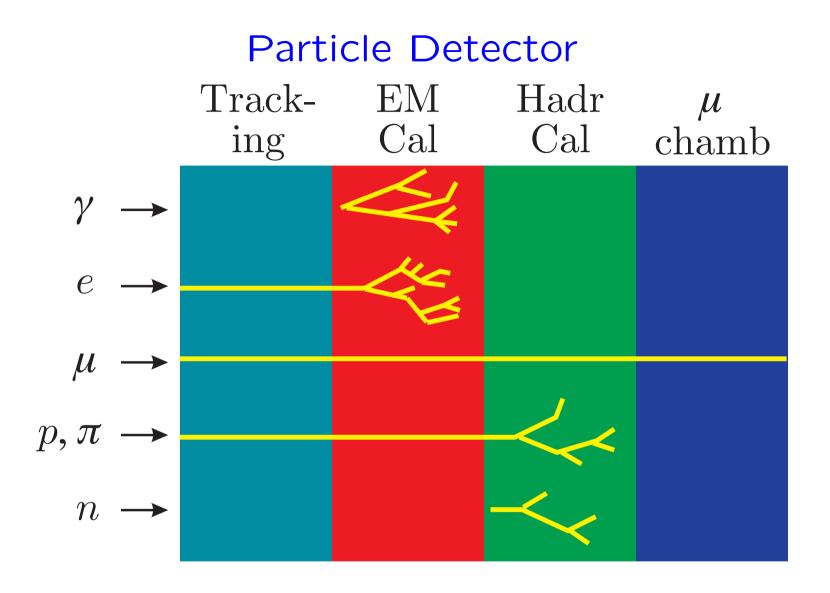
Calorimetry at Hadron Colliders: DØ

Paolo Franzini

Università di Roma, *La Sapienza* Karlsruhe University

Karlsruhe, Winter 2003





Hadronic jets \approx partons.

u by $\not\!\!E_{\perp}$ or missing E_{\perp} (Kin closure only for one u)

Calorimetry in HEP

A calorimeter is a device which responds to the total absorbed energy. In order to measure a particle energy, all of its energy must be transferred to a medium which produces a signal proportional to the particle energy.

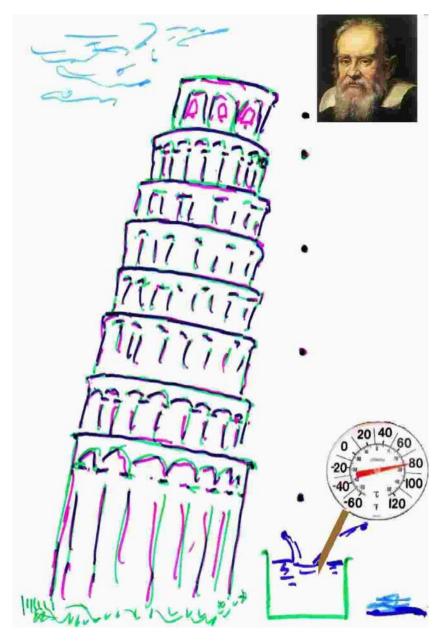
We do not measure $\Delta Temp$. This was in done in early electron accelerator days, absorbing the beam in Hg and measuring ΔT . It is also done in WIMP searches etc. We get our signal from ionization due to charged particles and the signal is charge or light.

For a perfect calorimeter, into which N energy deposits E_i are delivered, the output signal is $S = R_E \sum E_i$. In transducer's theory, R_E is called responsivity, in our case measured in C/MeV or other appropriate units.

Each energy deposit is measured with an rms accuracy δE_i and, for a perfect calorimeter, the correlation between fluctuations, $G_{ij} = (E_i - \overline{E}_i)(E_j - \overline{E}_j) = 0$ $(i \neq j)$. It follows that the rms fluctuation of the measurement of $\sum E_i$ is given by $\sqrt{\sum(\delta E_i)^2}$, therefore $\sigma_E = \kappa \times \sqrt{E}$ or $\frac{\sigma_E}{E} = \frac{\kappa}{\sqrt{E}}$.

A calorimeter thus allows us to perform measurements whose fractional accuracy increases with energy.

Compare to a 10 GeV/c particle in a 1 T field. For 1 m track and δs =150 μ m, $\delta p/p \sim 4\%$. For p=1000 GeV/c, to maintain accuracy, need $l \times 100$ or $B \times 100$ or $(l, B) \times 10$. $(\delta p/p \propto E.)$



Early use of calorimeters at linear accelerators.

How do they work

Only charged particles are detectable but $e, \gamma \Rightarrow em$ showers, as we saw. Need $\gtrsim 20X_0$

Hadrons \Rightarrow hadronic cascades: $h+(Z, A) \rightarrow \pi+N+$ nucl. frag. Need ~5 nuclear int. lengths, λ_I .

Mat.	X ₀	λ_I	dE/dx	density
	cm	cm	MeV/cm	g/cm ³
AI	8.9	39	4.4	2.7
Fe, Cu	1.8, 1.4	17, 15	11.5, 12.5	8, 9
Pb	0.6	17.1	12.7	11.4
U	0.3	10.5	20.5	19.0

 $L(U):L(Pb):L(Cu):L(AI)=1:2:5:30|_{em}=1:1.5:1.5:4|_{hadr}$

Sampling calorimeter

In practice homogeneous calorimeters are not affordable at high energy and mostly not necessary, especially for hadrons which typically require 4-8 times the thickness.

One resorts to sampling, *i.e.* the calorimeter is built of many layers of inert material in which the shower or cascade develops, alternating with active layers where a signal is produced, ideally proportional to the local energy loss.

Shower position is found from segmented sampling layers:

scintillator tiles

charge collecting pads, etc.

Shower development information is easily available in sampling calorimeters.

Sampling materials

Mat.	dE/dx	Comments	
	MeV/cm		
PI. scint	2	pm gain large, unstable	
Ar	2.1	no gain, electronics noise	
Si	3.9	no gain, $Q \times 8$, fast, heat, cost	
Xe	3.7	no gain, cost	

Sampling fraction

$$S_m = \frac{(dE/dx)_A \Delta x_A}{(dE/dx)_A \Delta x_A + (dE/dx)_I \Delta x_I}$$

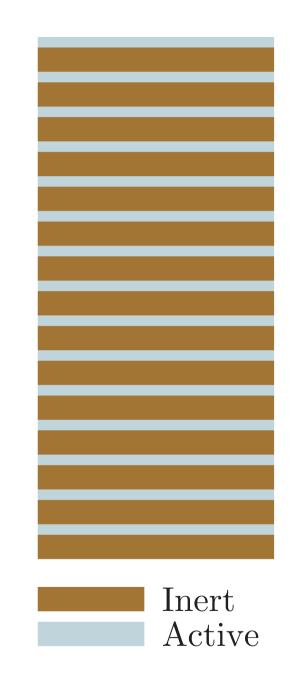
Vith reasonable but realistic

assumptions ($N \gg 1$, etc.) we find

$$\frac{\sigma_E}{E} = \frac{\kappa' \sqrt{S_m}}{\sqrt{E}}.$$

In general $S_{true} < 2 \times S_m$. A 10% sampling calorimeter has a resolution $\gtrsim 3 \times poorer$ than a homogeneous calorimeter.

The structure must be repeated many times over the shower development.



 \mathbf{V}

Early calorimeters, using Fe or Cu, observed em/hadr~2. This is well explained by the energy lost to breaking-up nuclei and to neutrinos from weak decays. The problem is π^{0} 's. They decay into γ 's with higher response. Since $N(\pi^{0})$ is small, its fractional fluctuation is large, especially at low energy, degrading the hadronic response.

It should be noted that already in the late 70s-early 80s it was realized that in a segmented calorimeter it is easy to correct the problem (CDHS).

Still in the 80's many people made a living exaggerating the problem and creating a big confusion about it. (thermal neutrons, hydrogen, gap tuning, compensating layers, timing...)

Compensation: *e*/h=1

There is more confusion on the subject than at Babel's Tower time. It was suggested U would, by fission, increase hadron response. Measurements "proved" the effect! But it is clearly nonsense since fission fragments have a range in U of 1 U calorimeters are however μm. "compensated" because the em response is approximately halved. In U there is strong self absorption of the low energy debris of the em shower, Pb is almost as good. The photoelectric effect $\propto Z^3$

Dore's Babel Tower aolo Franzini - Calorimetry... 11

Brueghel's Babel

Mr. W. insists that the only comp. calorimeter is in Zeuss ($\sim 1 e/GeV$). The DØ U-Ar calorimeter has an em/had response ratio of 1.02 at 150 GeV. And that's very good, especially for jets which begin as a parton shower, *i.e.* many hadrons and not a single high energy hadron.

These points are presented quite incorrectly in accepted textbooks.

In the design of the LHC calorimeters, e/h has been, correctly, ignored.

High energy hadron collision kinematics

Rapidity

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

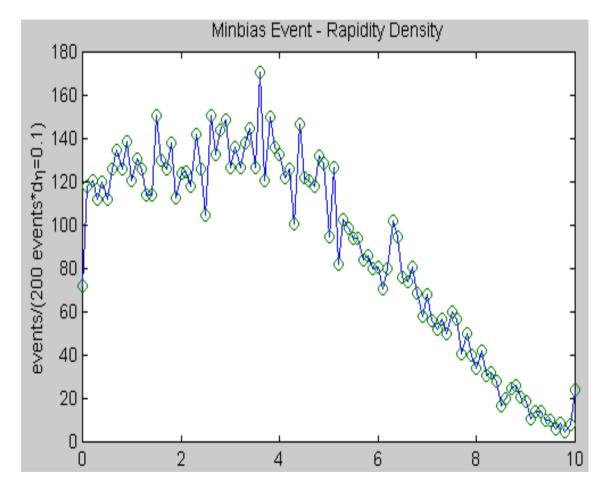
Invariant x-section

$$E\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}^{3}p} = \frac{\mathrm{d}^{3}\sigma}{\mathrm{d}\phi\,\mathrm{d}y\,p_{\perp}\mathrm{d}p_{\perp}}$$

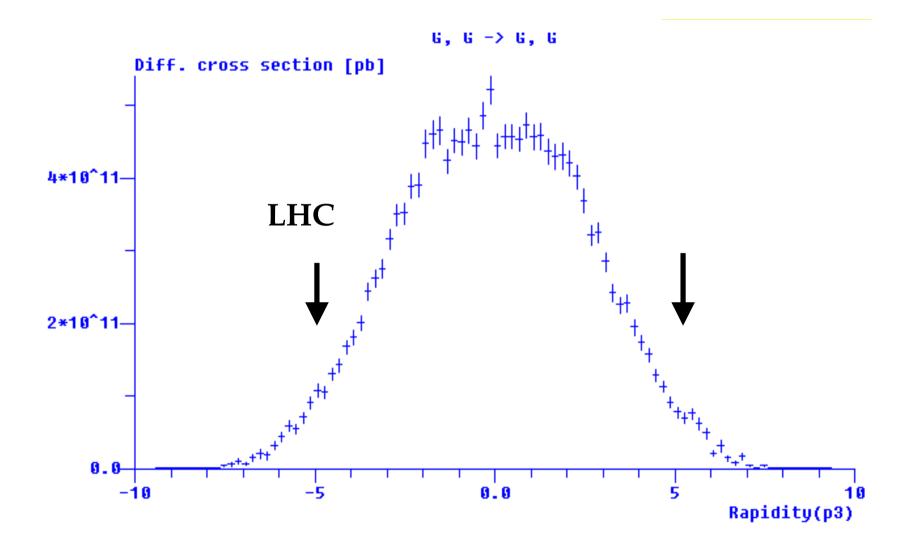
Under a boost along z, to a frame with velocity β , $y \rightarrow y' = y - \tanh^{-1}\beta$, *i.e.* dy = dy' and the shape of dN/dy is invariant. In high energy hadron collisions, the single particle cross section $d\sigma/d\phi dy$ is approximately constant in y, because p_{\perp} is limited, and ϕ - unpolarized beams. For $p \gg m$ and $\theta \gg 1/\gamma$, with $\cos \theta = p_z/p$,

 $y \sim -\ln \tan(\theta/2) \equiv \eta$

A collider detector should be segmented in slices of equal $\Delta \phi$ and $\Delta \eta$. $\eta_{\text{Max}} - \eta_{\text{min}}$ varies slowly with energy: ~19 at 1+1 TeV, ~24 at 20 TeV. Also, σ is large (plateau) only for $-2 < \eta < 2$ (high mass) or $-5 < \eta < 5$ (low mass).



Hard gluons at LHC



Calorimeters have been used in: ν , LEP, TeV-I, HERA and LHC.... They are complex devices and their usage is still evolving. We can list the essentials:

- 1. Energy resolution
- 2. Spatial resolution: for kinematics and non-isolated eor μ inside jet cone. Define $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$. Then jet $\Delta R < 0.3 - 0.7$
- 3. Depth segmentation: particle id

But also: occupancy, pile-up, noise...and COST!

The signal must be measurable and fast. The advantage of liquid Ar is that the response is determined by one number: C/MeV. At worst, change the argon. Otherwise it's just mechanical tolerances, even only in average.

Final resolution in Ar will be strongly affected by: Total argon traversed depth, gap size Quality of electronics, thermal noise is important ϕ , η segmentation to control confusion – pile-up Noise above the thermal minimum – *i.e.* "coherent"

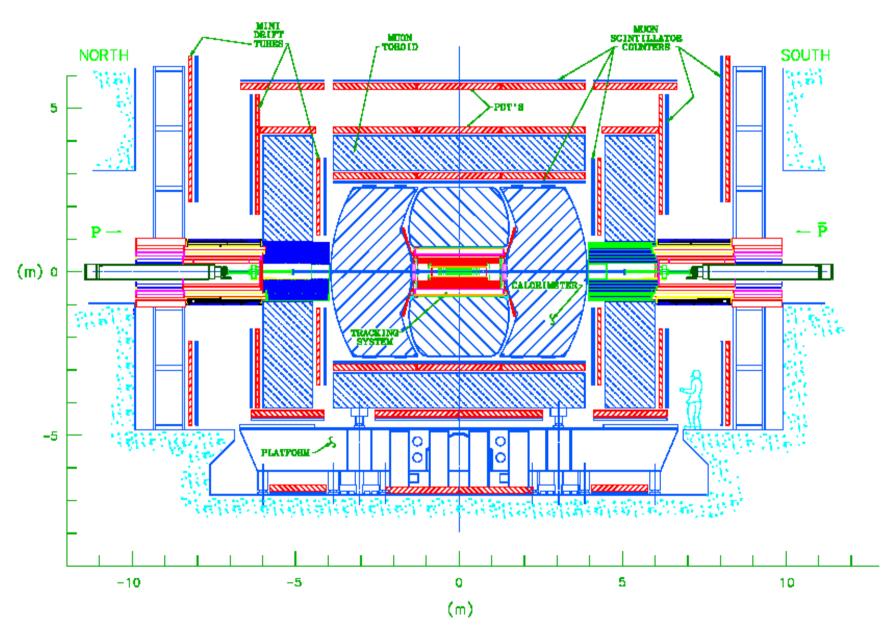
Rather than go to it by first principles let me use DØ, for which I'm largely responsible, as an example.

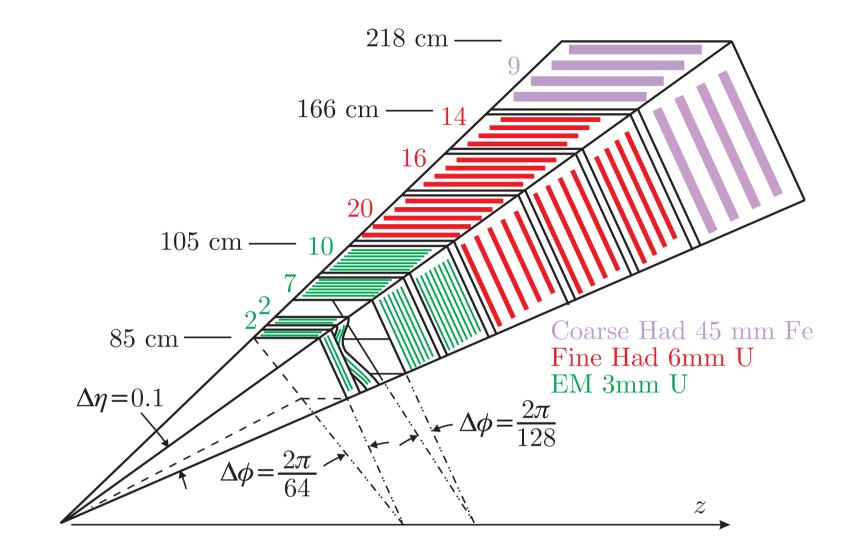
U is chosen for dimensions and cost rather than for compensation, even if desirable. Ar, for the absolute response.

The basic parameters for the calorimeters are:

EM: 3mm U, 4mm Ar, 21 gaps, 22 X_0 , 4 depth segments, ~10,000 towers 0.1×0.1, ×4 at shower maximum Hadr: 6mm U, 4mm Ar, 50 gaps, 30cm U, (1+3) λ_I , 3 seg. Hadr., tail catcher: 4.5 cm Fe, 9 gaps, ~2 λ_I

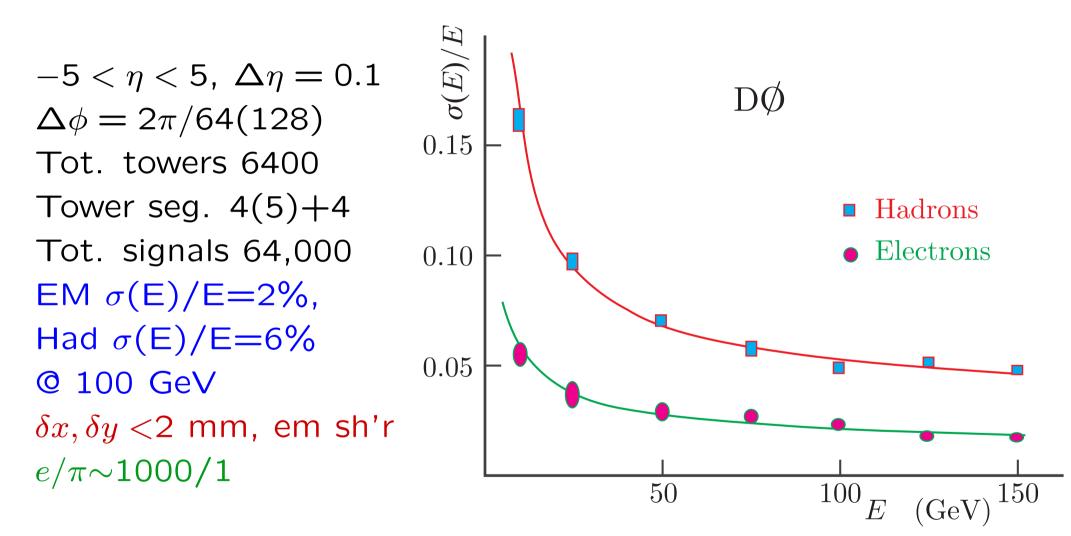
DØ Detector





800 ton of U (+Fe) 45,000 I of Ar

DØ calorimeter



Read-out and response

```
1 ADC count=3600 'e'=3.1 MeV of em energy deposited
```

Preamp noise, 1 em cell, \sim 1nF: 5000 e

Contributions to resolution:

Sampling fluctuations ${\mathcal S}$

Preamp noise \mathcal{N} : thermal, (3×3 em towers)

Constant term \mathcal{C} : calibration, response non-uniformities

$$\frac{\sigma(E)}{E} = \frac{S}{\sqrt{E}} \oplus \frac{N}{E} \oplus \mathcal{C}, \quad E \text{ in GeV}$$

 $\mathcal{S},~\mathcal{N},~\mathcal{C}$ in % for DØ*

section	S	\mathcal{N}	\mathcal{C}
em	16	16	0.3
hadr	49	40	2

*9 em towers or 1 jet cone

NOISE

The thermal electronics noise is effectively proportional to the shunt capacitance. Dividing the detector into N readout segments, reduces the single channel noise by $\times(1/N)$ and the total noise by $\times(1/\sqrt{N})$. This is a way to make the noise acceptable. We must avoid adding empty channels, which only increases noise. We can however run into a problem in systems with additional, correlated, noise.

Let $S_{tot} = \sum S_i$ and **G** the matrix of the signal fluctuations:

$$\mathbf{G} = \begin{pmatrix} \overline{\delta_1 \delta_1} & \overline{\delta_1 \delta_2} & \dots & \overline{\delta_1 \delta_n} \\ \overline{\delta_2 \delta_1} & \overline{\delta_2 \delta_2} & \dots & \overline{\delta_2 \delta_n} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{\delta_n \delta_1} & \overline{\delta_n \delta_2} & \dots & \overline{\delta_n \delta_n} \end{pmatrix}$$

with $\overline{\delta_i \delta_j} = \langle (S_i - \overline{S}_i)(S_j - \overline{S}_j) \rangle$. Then the mean square fluctuation on the sum is

$$(\delta S_{\text{tot}})^2 = \left(\frac{\partial \sum S_i}{\partial S_i}\right)^T \mathbf{G}\left(\frac{\partial \sum S_i}{\partial S_i}\right) = \sum_{ij} G_{ij}$$

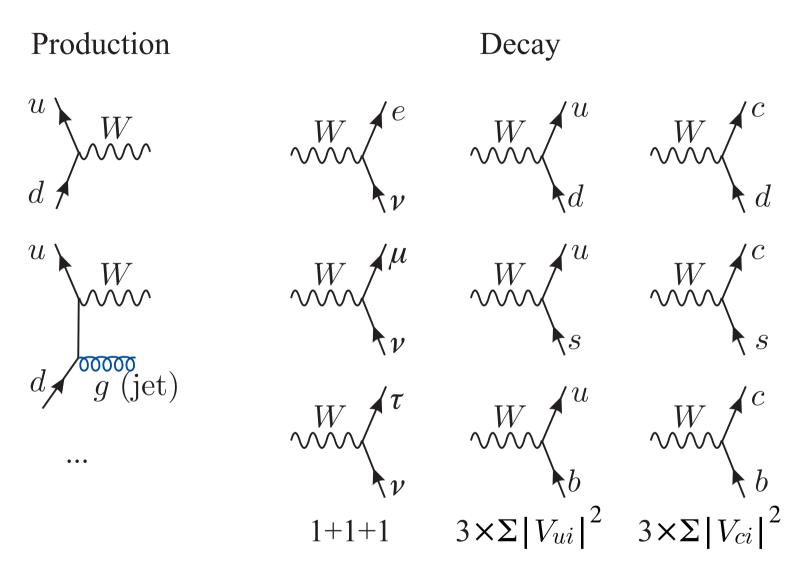
For
$$\overline{\delta_i \delta_i} = \sigma^2$$
 and $\overline{\delta_i \delta_j} = \alpha^2 \sigma^2$

$$\mathbf{G} = \begin{pmatrix} \sigma^2 & \dots & \alpha^2 \sigma^2 \\ \vdots & \ddots & \vdots \\ \alpha^2 \sigma^2 & \dots & \sigma^2 \end{pmatrix}$$

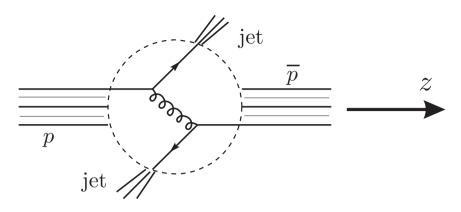
and $\delta S_{\text{tot}} = \sigma \sqrt{n} + \alpha \sigma \sqrt{n(n-1)} \sim \sigma \sqrt{n} + \sigma n \alpha$. Unless $\alpha < 1/\sqrt{n}$, the accuracy of the measurement is degraded. Example: n=10,000, $\alpha = 0.1$. $\delta S_{\text{tot}} = 1000 \times \sigma$, instead of $100 \times \sigma$.

In DØ $\alpha \sim 0.01$, can add 10,000 channels.

The W boson mass

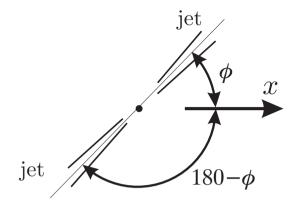


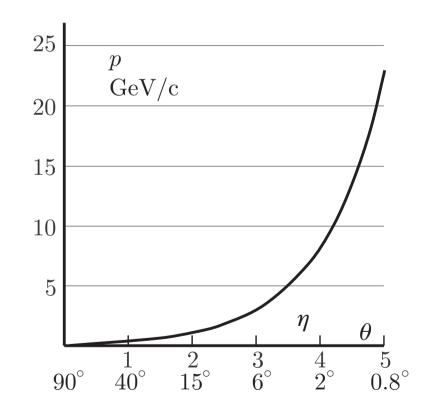
side view



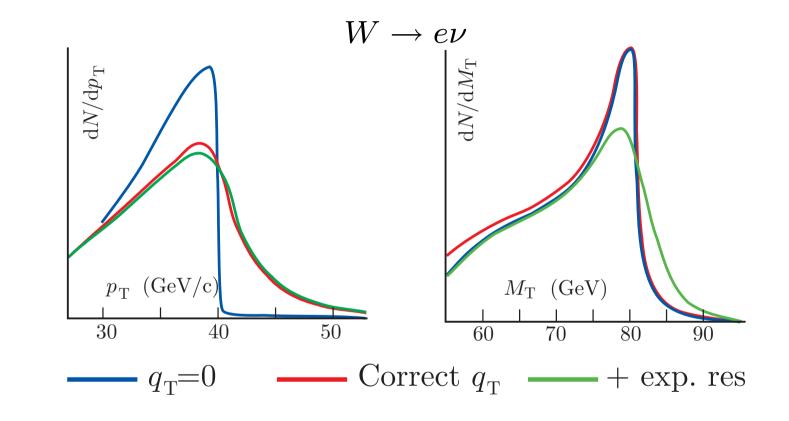
 p_z unknown, $p_\perp \sim e^{-p/p_0}$ d $\sigma/{
m d}\eta \sim {
m const}$

 $q\bar{q}$ SCATTERING $\langle p_{\perp}^{\text{in}} \rangle \sim 300 \text{ MeV/c} \sim 0$ Large angle: low pSmall angle: high pW PRODUCTION $\langle p_{\perp}(e,\nu) \rangle \sim M_W/2, \sum p_{\perp} \sim 0$ beam view

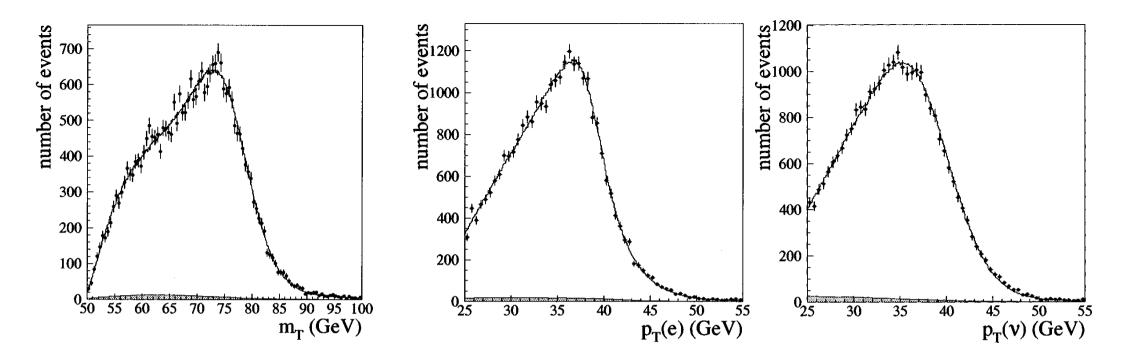




Hard processes in $p\bar{p}(p)$ collisions $pp \rightarrow W(q\bar{q} \rightarrow W + \text{radiation}), \ s(q\bar{q}) > (80 \text{ GeV})^2$ How good is it to assume $P_{\perp} = 0$?



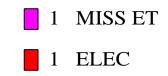
$$M_{\perp}$$
 is better than p_{\perp} . $M_{\perp} = \sqrt{p_{\perp,e}^2 p_{\perp,\nu}^2 (1 - \cos(\phi_e - \phi_{\nu}))}$.

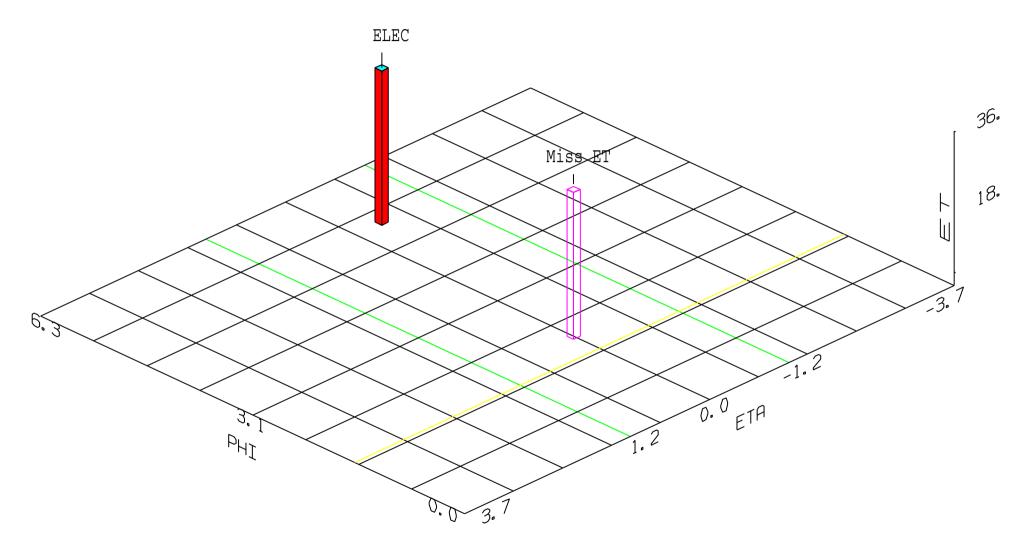


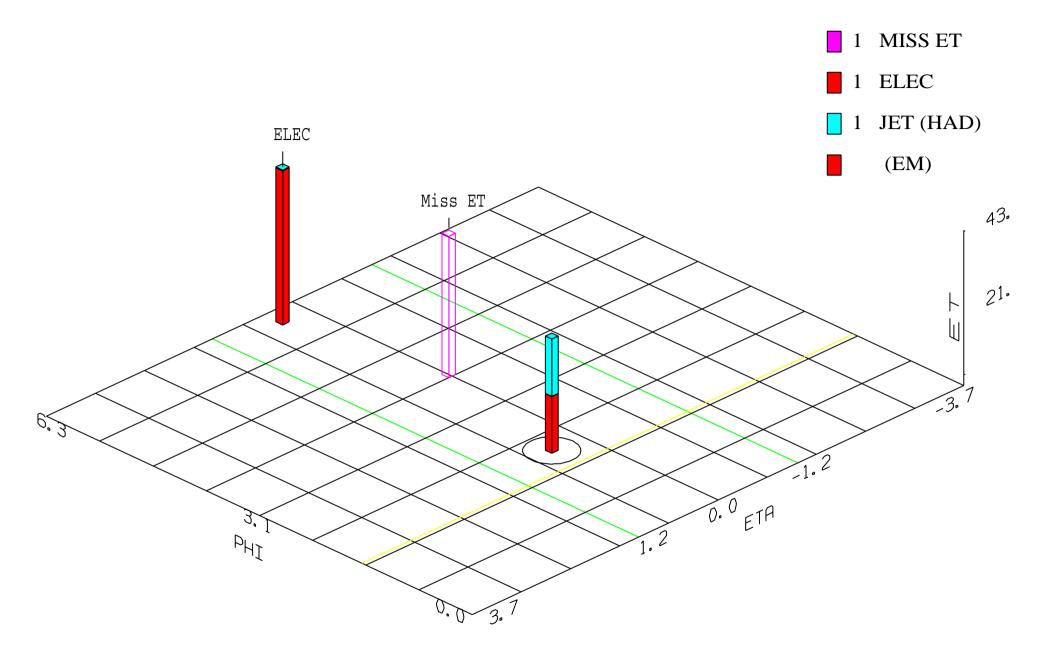
All three distributions, M_{\perp} , $p_{\perp}(e)$ and $p_{\perp}(\nu)$ are shown. They are not independent. $p_{\perp}(\nu)$ is measured as $\not\!\!E_{\perp} = -\sum E_{i,\perp}$.

Note the very small background, which vanishes toward the end of the spectra.

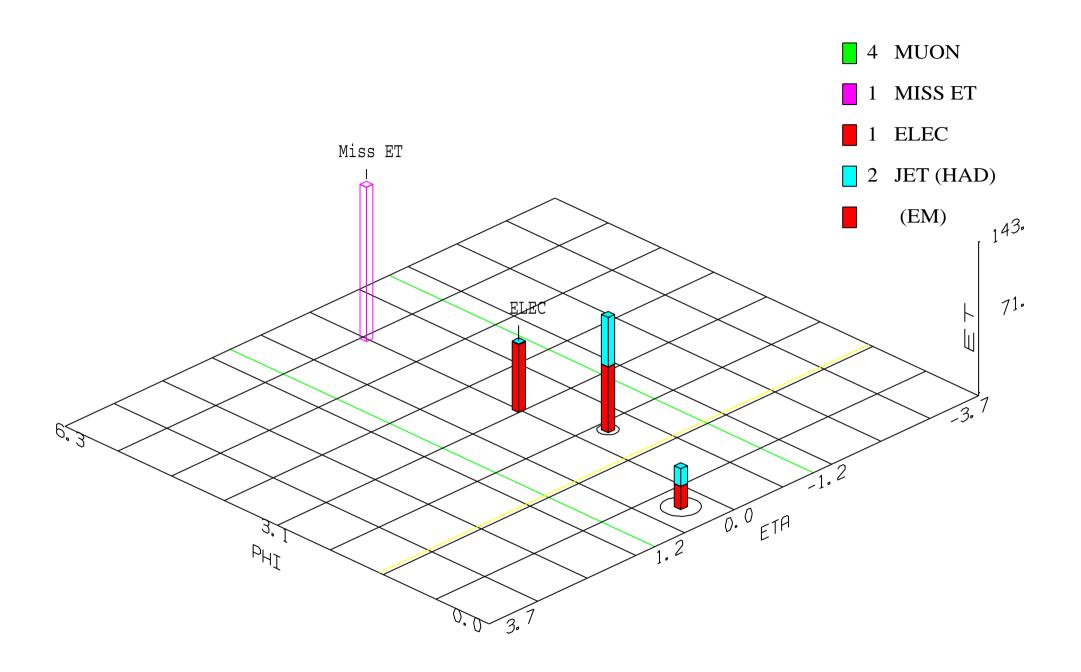
(This made finding the W "easy".)







Note jet cone, $\Delta R \approx 0.3$



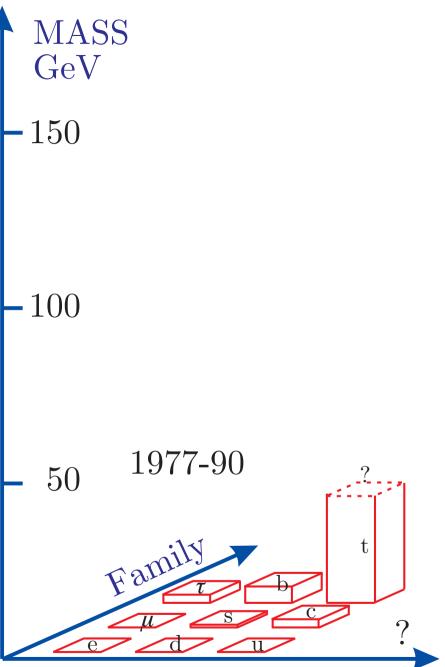
M(W) results

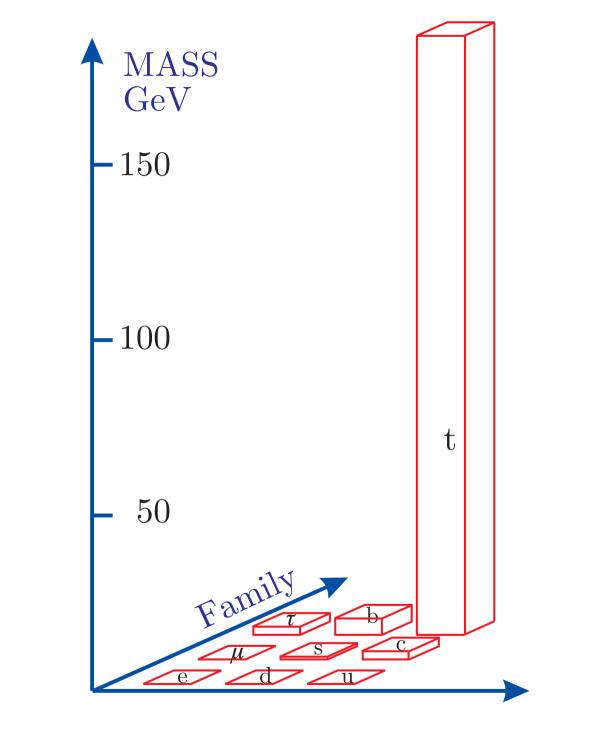
$$\begin{split} M_W &= 80.482 \pm 0.091 \text{ GeV, D} \emptyset \\ \sigma(W) * BR(e\nu) &= 2.7 \text{ nb, D} \emptyset \\ M_W &= 80.423 \pm 0.039 \text{ GeV, D} \emptyset + \text{CDF} + 4 \times \text{LEP} \end{split}$$

A measurement of the W mass to this accuracy, requires a knowledge of the em calorimeter response to an accuracy of 0.1%, over a long time. The absolute scale comes from the M_{Z^0} values from CERN based on the calibration of LEP with the g-2 depolarizing resonances.

There is no B in DØ. The exceptional qualities and stability of sampling in liquid argon are demonstrated by this result.

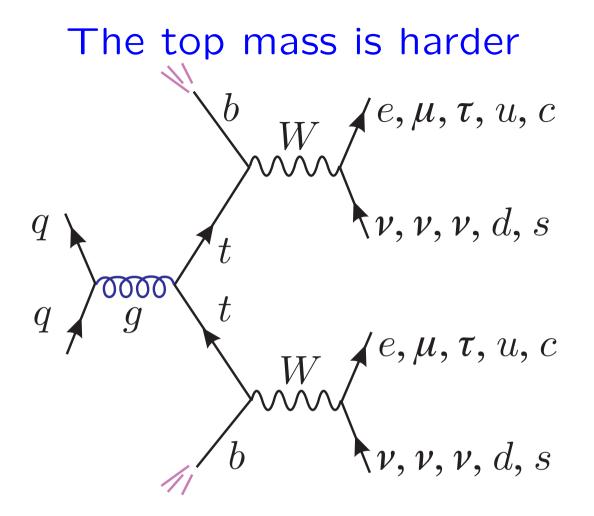




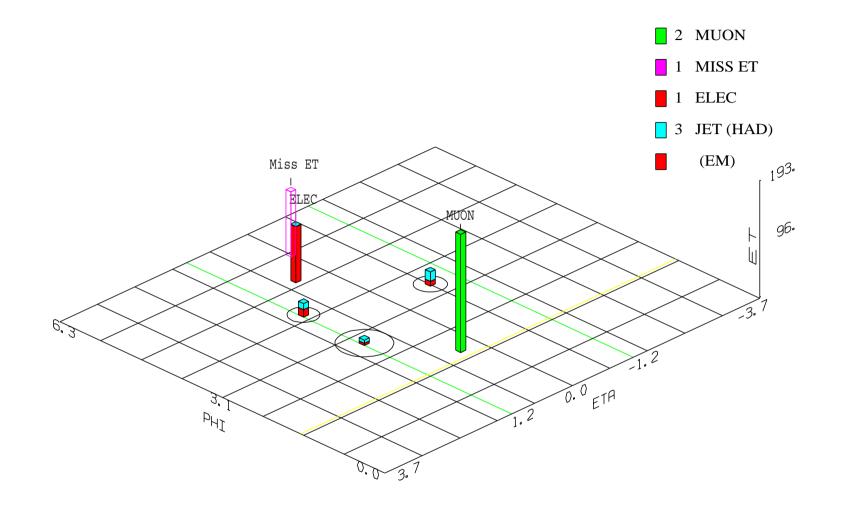


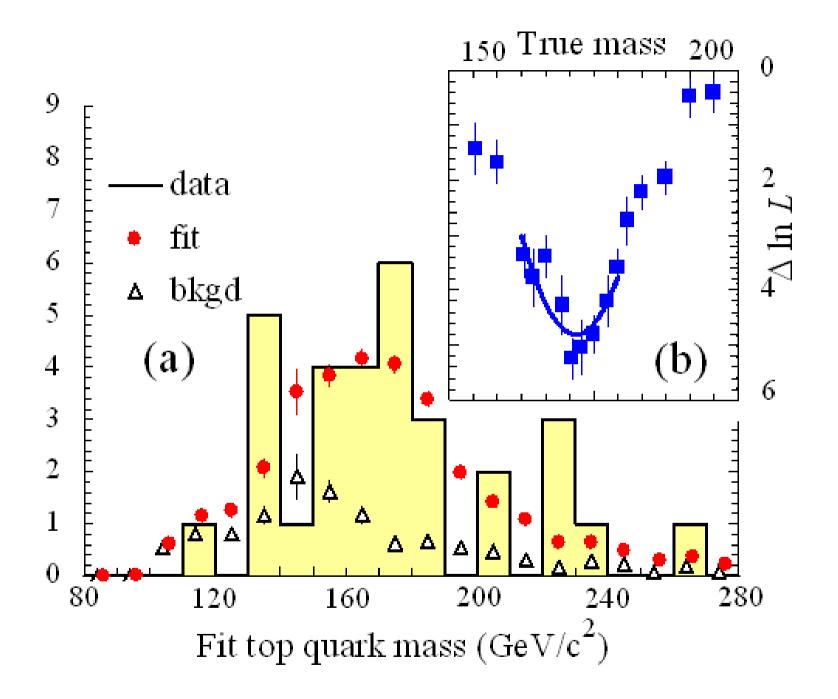
Karlsruhe, Winter 2003 Paolo Franzini - Calorimetry... 33

1995



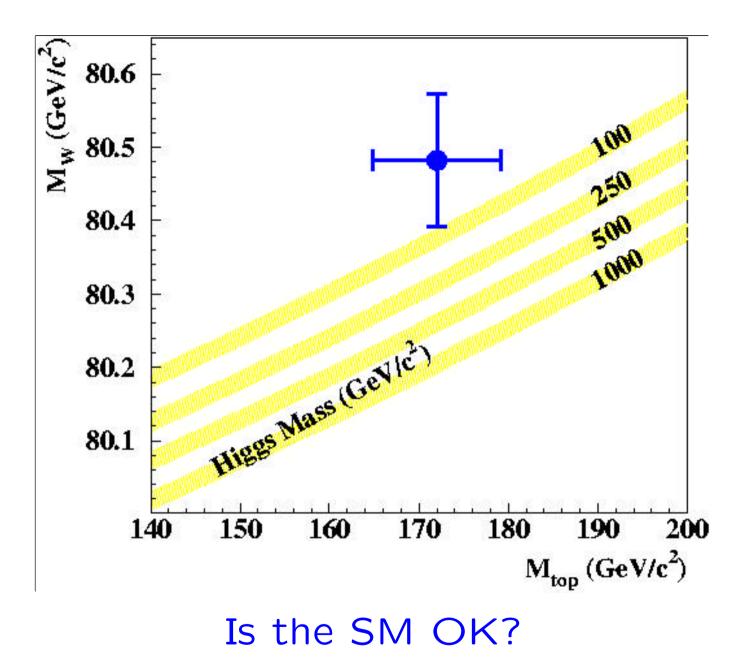
 $t\bar{t} \rightarrow e^+e^- \ \nu\bar{\nu} \ b\bar{b} \ \sim 1.2\%$ $s(q\bar{q}) > (350 \text{ GeV})^2$. 1 lepton + jets + missing $E_{\perp} \sim 30\%...$ up to 8 jets, only kinematically over-constrained channel Not constrained events: compute $P(\text{configuration} \mid M)$

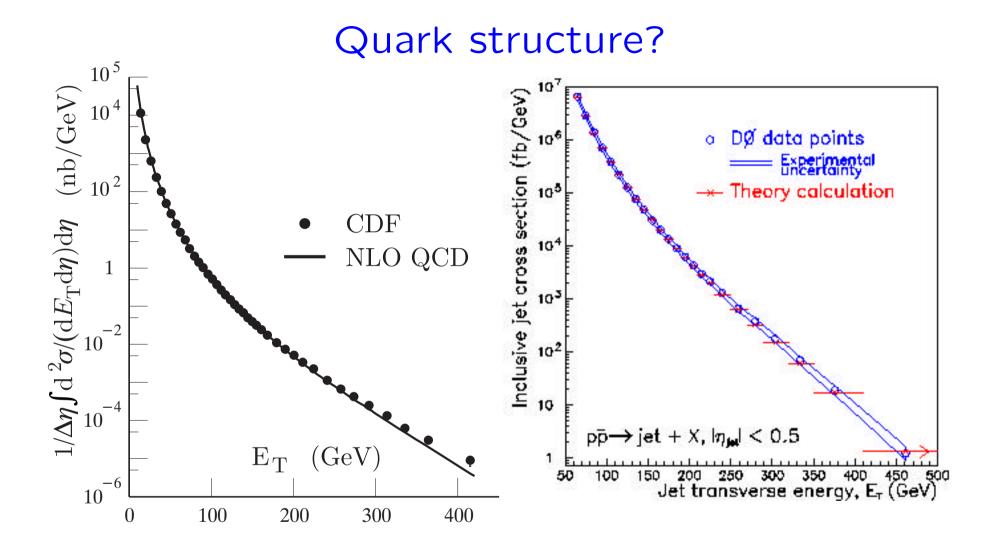


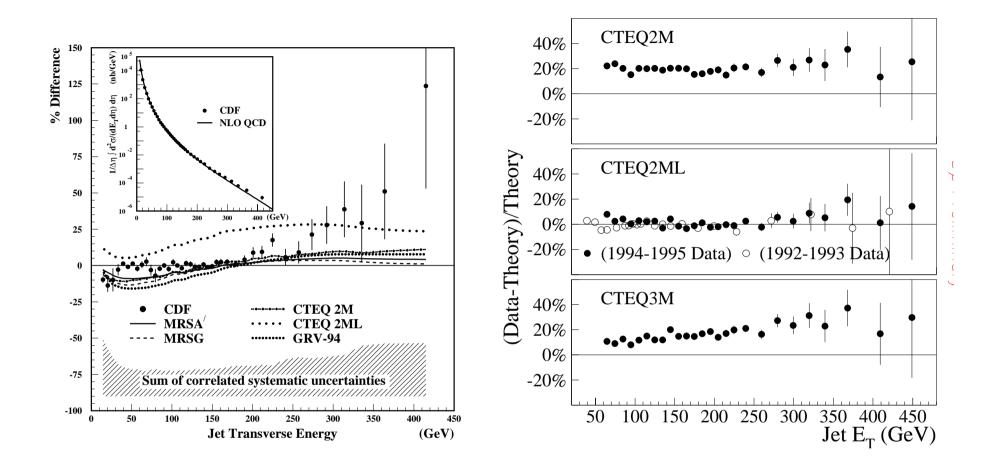


Top results

Tot $\mathcal{L}=128 \text{ pb}^{-1} - \text{DØ}$ $\sigma(t\bar{t}) = 5.7 \pm 1.6 \text{ pb} - \text{DØ}$ $\sigma(t\bar{t}) = 6.5^{+1.7}_{-1.4} \text{ pb}, \text{CDF}$ $M_{\text{top}} = 172.1 \pm 5.2 \pm 4.9 \text{ DØ}$ $M_{\text{top}} = 174.3 \pm 3.2 \pm 4.0 \text{ DØ} + \text{CDF}$







Checked with jet angular distribution. No deviation from "Rutherford scattering", $1/\sin^4 \theta/2$. There are no:

Composite quarks

W', Z', b'

Anomalous couplings

Sparticles

Leptoquarks

Higgs

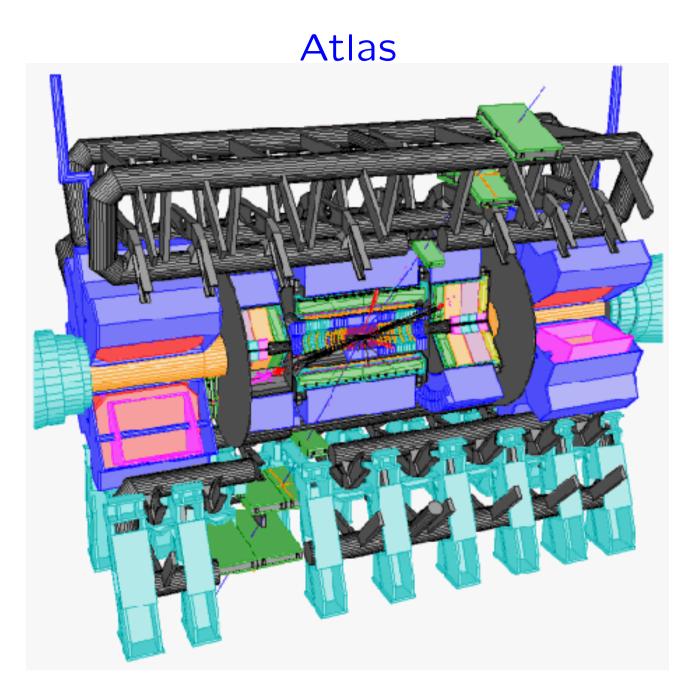
. . .

TeV-I, DØ and CDF

Will continue the Higgs search for the next few years, their calorimeters will be their best assets.

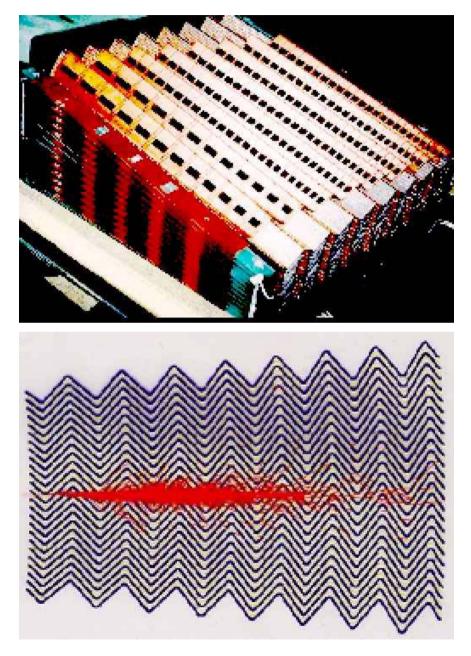
Will they get the necessary luminosity?

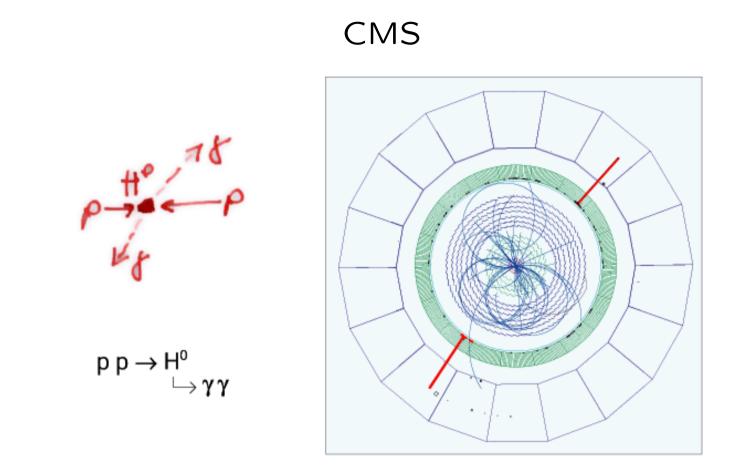
In 200n, n <?, LHC will begin. ATLAS and CMS will be equipped with bigger and better calorimeters. And more...



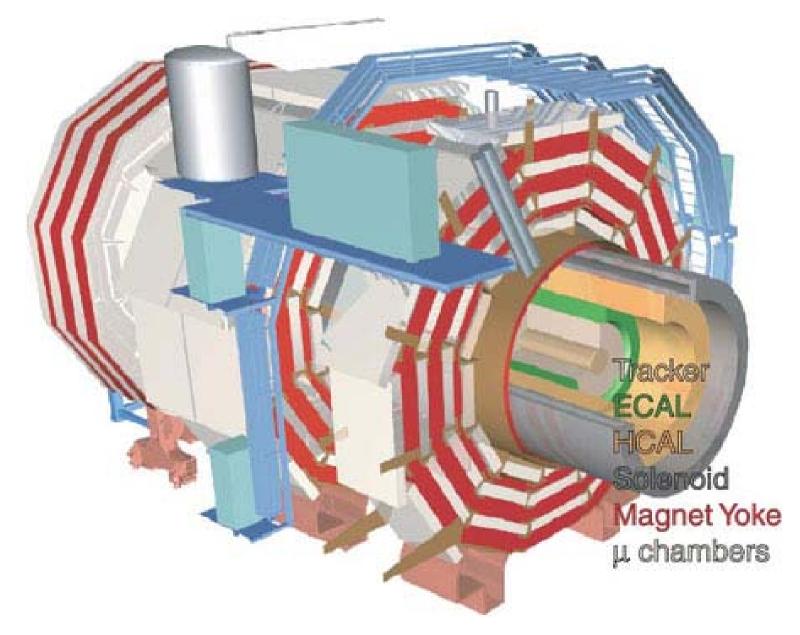
Atlas central em-cal

1.5 mm Pb, 4 mm Ar $\delta E/E \simeq 1.1\%$ at 100 GeV $\delta E/E \simeq 0.4\%$ at ∞





80,000 PbWO₄ crystals em-calorimeter, $\sigma(E)/E \simeq 0.8\%$ at 50 GeV A luxury?



at a future Linear Collider

A W-Si calorimeter?

Very expensive

Fast, space resolution...

Heat removal, how thick Si...