

- Weak interactions & the b-quark: CKM matrix
- B(eauty) mesons & CP
- B meson production: $e^+e^- \rightarrow \Upsilon(4S)$
- Belle/Babar experiment

K. Kinoshita University of Cincinnati

Symmetry of Physical Laws

In interaction-free universe (4-d, relativistic QM)

- massless particles
- symmetric in transformations
 - P(r<->-r), C(particle<-> antiparticle), T(t<->-t)
- Add interactions: emission/absorption of field quantum
- mass via self-interaction
- interaction strength/probability
 - α "charge" $g^2 \alpha$ "coupling constant"
- symmetry info in vertex

particle <u>particle</u>

Forces: Strong, Electromagnetic, Weak, Gravitational

coupling ~ 10^{-5} , guanta W[±], Z⁰

field

The only force known to

- allow particle to change identity
- violate P symmetry (maximally) right-handed particles, left-handed antiparticles. no coupling to LH particles, RH antiparticles.
- violate CP symmetry (a little)

Why is CP violation of interest?

 matter-antimatter asymmetry in universe requires CP violating interactions (Sakharov 1967)

What is source of observed CP asymmetry?

We have an interesting possibility ...

Standard Model = 12 fermion flavors (+antifermion) + strong, EM, weak forces, unification of EM+weak

distinguished ONLY by mass (?)

fermions: 3 generations x 2 types x 2 ea (doublets) all stable, if not for weak interaction

		Generation		
type	Q/ e	1	2	3
lepton	-1	e electron	µ muon	au tau
(no strong)	0	Ve neutrino	$ u_{\mu}$ neutrino	ν_τ neutrino
quark	+2/3	Ц р	Charm	t ruth
(strong)	-1/3	down	S trange	beauty

Large # of fundamental "charges" – can this be simplified?

Explains

- suppression of flavor-changing neutral currents
- multiplicity of charged current couplings
- for >2 generations, CP violation

Picture

 strong doublets, "degenerate" generations, perturbed by weak force: new doublets u, c, t, no generation x-ing, universal W^bcoupling (=g_F, seen in leptons) d', s', b' are linear combinations of d, s, b:

(Wolfenstein parametrization):

from decay rates,

0 000

Unitarity condition:

S

$$V_{ji} * V_{jk} = \delta_{ik} \{i=1,k=3\}: V_{ub} * V_{ud} + V_{cb} * V_{cd} + V_{tb} * V_{td} = 0$$

$$A = 0.81 \pm 0.08$$

$$P = 0.36 \pm 0.09$$

$$P = 0.$$

Complex couplings revealed via CP asymmetry

- t-integrated rates $\Gamma \propto |\langle f|H_{int}|i\rangle|^2 \Rightarrow$ not sensitive to phase: $CP\{\underbrace{V_{xy}}_{x}, \underbrace{V_{xy}}_{y}, \underbrace{V$
- need interference between processes:
 - e.g., decays to CP eigenstate paths w/wo mixing interfere

$$B \xrightarrow{f_{CP}} \{cc\} + \{K_s, K_L, \pi^0\}$$

-> CP-dependent oscillation in decay time distributions

\sim CP Asymmetry of B -> J/ ψ K_s

tree (real V_{ij})

 $\begin{array}{c} \text{mixing+free} \\ \underbrace{d \quad t \quad b \quad \overline{c} \quad c}_{W_{1}} \{\psi \quad \overline{c} \quad \varepsilon \\ \overline{b \quad t \quad d} \quad \overline{s} \} K_{S} \\ \xrightarrow{\sim V_{td}^{*2}} K_{S} \\ \xrightarrow{\sim V_{td}^{*2}} K_{S} \\ \end{array}$

 $\operatorname{arg}(\mathsf{V}_{\mathsf{td}}^{2}) = 2\phi_{1}$ $\xrightarrow{} \frac{dN}{dt}(B \to f_{CP}) = \frac{1}{2}\Gamma e^{-\Gamma\Delta t}(1 + \eta_{b}\eta_{CP}\sin 2\phi_{1}\sin(\Delta m\Delta t));$ $\eta_{b} = \begin{pmatrix} +1 \text{ if } B_{t=0} = B^{0} \\ -1 \text{ if } B_{t=0} = \bar{B}^{0} \end{pmatrix} \quad \eta_{CP} = \begin{pmatrix} -1 \text{ if } CP \text{ odd} \\ +1 \text{ if } CP \text{ even} \end{pmatrix}$

* No theoretical uncertainty

Measure time dependence - what's needed?

- •B pair production \Rightarrow e⁺e⁻ -> Υ (4S) -> BB
- Measure decay-time difference
 - Asymmetric energy $e^+e^- \Rightarrow (@KEKB: \gamma \beta c\tau \approx 200 \mu m)$
 - good vertexing \Rightarrow silicon strip vertex detector
- •Find CP eigenstate decays high quality $\sim 4\pi$ detector \Rightarrow Belle/Babar
- Tag other B's flavor good hadron id $\Rightarrow \frac{dE/dx}{Aerogel}$, TOF, DIRC good lepton id \Rightarrow CsI, multilayer μ • Lots of B mesons ~10⁸ (Br (B \rightarrow f_{CP}) ~ 10⁻³)
 - very high Luminosity \Rightarrow KEKB/PEP2

BB pair production: Upsilon

 $\frac{dN}{dt} = \overset{C}{\sigma} \times \overset{L}{\leftarrow} \overset{L}{\leftarrow$

Currently@Belle: 3x107 BB events (published), 4.8x107 on tape

Designed to measure CP asymmetry

Belle Collaboration

VOLUME 86, NUMBER 12 PHYSICAL REVIEW LETTERS

19 MARCH 2001

VOLUME 86, NUMBER 12

PHYSICAL REVIEW LETTERS

19 March 2001

Measurement of the *CP* Violation Parameter $\sin 2\phi_1$ in B_d^0 Meson Decays

A. Abashian,⁴⁴ K. Abe,⁸ K. Abe,³⁶ I. Adachi,⁸ Byoung Sup Ahn,¹⁴ H. Aihara,³⁷ M. Akatsu,¹⁹ G. Alimonti,⁷ K. Aoki,⁸ K. Asai,²⁰ M. Asai,⁹ Y. Asano,⁴² T. Aso,⁴¹ V. Aulchenko,² T. Aushev,¹² A. M. Bakich,³³ E. Banas,¹⁵ S. Behari,⁸ P.K. Behera,⁴³ D. Beiline,² A. Bondar,² A. Bozek,¹⁵ T.E. Browder,⁷ B.C.K. Casey,⁷ P. Chang,²³ Y. Chao,²³ B. G. Cheon, ³² S.-K. Choi, ⁶ Y. Choi, ³² Y. Doi, ⁸ J. Dragic, ¹⁷ A. Drutskoy, ¹² S. Eidelman, ² Y. Enari, ¹⁹ R. Enomoto, ^{8,10} C. W. Everton,¹⁷ F. Fang,⁷ H. Fujii,⁸ K. Fujimoto,¹⁹ Y. Fujita,⁸ C. Fukunaga,³⁹ M. Fukushima,¹⁰ A. Garmash,²⁸ A. Gordon,¹⁷ K. Gotow,⁴⁴ H. Guler,⁷ R. Guo,²¹ J. Haba,⁸ T. Haji,³⁷ H. Hamasaki,⁸ K. Hanagaki,²⁹ F. Handa,³⁶ K. Hara,²⁷ T. Hara,²⁷ T. Haruyama,⁸ N. C. Hastings,¹⁷ K. Hayashi,⁸ H. Hayashii,²⁰ M. Hazumi,²⁷ E. M. Heenan,¹⁷ Y. Higashi,⁸ Y. Higashino,¹⁹ I. Higuchi,³⁶ T. Higuchi,³⁷ T. Hirai,³⁸ H. Hirano,⁴⁰ M. Hirose,¹⁹ T. Hojo,²⁷ Y. Hoshi,³⁵ K. Hoshina,⁴⁰ W.-S. Hou,²³ S.-C. Hsu,²³ H.-C. Huang,²³ Y.-C. Huang,²¹ S. Ichizawa,³⁸ Y. Igarashi,⁸ T. Iijima,⁸ H. Ikeda,⁸ K. Ikeda,²⁰ K. Inami,¹⁹ Y. Inoue,²⁶ A. Ishikawa,¹⁹ H. Ishino,³⁸ R. Itoh,⁸ G. Iwai,²⁵ M. Iwai,⁸ M. Iwamoto,³ H. Iwasaki,⁸ Y. Iwasaki,⁸ D.J. Jackson,²⁷ P. Jalocha,¹⁵ H.K. Jang,³¹ M. Jones,⁷ R. Kagan,¹² H. Kakuno,³⁸ J. Kaneko,³⁸ J. H. Kang,⁴⁵ J. S. Kang,¹⁴ P. Kapusta,¹⁵ K. Kasami,⁸ N. Katayama,⁸ H. Kawai,³ H. Kawai,³⁷ M. Kawai,⁸ N. Kawamura,¹ T. Kawasaki,²⁵ H. Kichimi,⁸ D. W. Kim,³² Heejong Kim,⁴⁵ H. J. Kim,⁴⁵ Hyunwoo Kim,14 S. K. Kim,31 K. Kinoshita,5 S. Kobayashi,30 S. Koike,8 S. Koishi,38 Y. Kondo,8 II. Konishi,40 K. Korotushenko.²⁹ P. Krokovny,² R. Kulasiri,⁵ S. Kumar,²⁸ T. Kuniya,³⁰ E. Kurihara,³ A. Kuzmin,² Y.-J. Kwon,⁴⁵ M. H. Lee,⁸ S. H. Lee,³¹ C. Leonidopoulos,²⁹ H.-B. Li,¹¹ R.-S. Lu,²³ Y. Makida,⁸ A. Manabe,⁸ D. Marlow,²⁹ T. Matsubara,³⁷ T. Matsuda,⁸ S. Matsui,¹⁹ S. Matsumoto,⁴ T. Matsumoto,¹⁹ Y. Mikami,³⁶ K. Misono,¹⁹ K. Miyabayashi, 20 H. Miyake, 27 H. Miyata, 25 L. C. Moffitt, 17 A. Mohapatra, 43 G. R. Moloney, 17 G. F. Moorhead, 17 N. Morgan,⁴⁴ S. Mori,⁴² T. Mori,⁴ A. Murakami,³⁰ T. Nagamine,³⁶ Y. Nagasaka,¹⁸ Y. Nagashima,²⁷ T. Nakadaira,³⁷ T. Nakamura,³⁸ E. Nakano,²⁶ M. Nakao,⁸ H. Nakazawa,⁴ J. W. Nam,³² S. Narita,³⁶ Z. Natkaniec,¹⁵ K. Neichi,³⁵ S. Nishida,¹⁶ O. Nitoh,⁴⁰ S. Noguchi,²⁰ T. Nozaki,⁸ S. Ogawa,³⁴ T. Ohshima,¹⁹ Y. Ohshima,³⁸ T. Okabe,¹⁹ T. Okazaki,²⁰ S. Okuno,¹³ S. L. Olsen,⁷ W. Östrowicz,¹⁵ H. Ozaki,⁸ P. Pakhlov,¹² H. Palka,¹⁵ C. S. Park,³¹ C. W. Park,¹⁴ H. Park,¹⁴ L. S. Peak,³³ M. Peters,⁷ L. E. Piilonen,⁴⁴ E. Prebys,²⁹ J. L. Rodriguez,⁷ N. Root,² M. Rozanska,¹⁵ K. Rybicki,¹⁵ J. Ryuko,²⁷ H. Sagawa,⁸ S. Saitoh,³ Y. Sakai,⁸ H. Sakamoto,¹⁶ H. Sakaue,²⁶ M. Satapathy,⁴³ N. Sato,⁸ A. Satpathy,^{8,5} S. Schrenk,⁵ S. Semenov,¹² Y. Settai,⁴ M. E. Sevior,¹⁷ H. Shibuya,³⁴ B. Shwartz,² A. Sidorov,² V. Sidorov,² J. B. Singh,²⁸ S. Stanič,⁴² A. Sugi,¹⁹ A. Sugiyama,¹⁹ K. Sumisawa,²⁷ T. Sumiyoshi,⁸ J. Suzuki,⁸ J.-I. Suzuki,⁸ K. Suzuki,³ S. Suzuki,¹⁹ S. Y. Suzuki,⁸ S. K. Swain,⁷ H. Tajima,³⁷ T. Takahashi,²⁶ F. Takasaki,⁸ M. Takita,²⁷ K. Tamai,⁸ N. Tamura,²⁵ J. Tanaka,³⁷ M. Tanaka,⁸ Y. Tanaka,¹⁸ G. N. Taylor,¹⁷ Y. Teramoto,²⁶ M. Tomoto,¹⁹ T. Tomura,³⁷ S. N. Tovey,¹⁷ K. Trabelsi,⁷ T. Tsuboyama,⁸ Y. Tsujita,⁴² T. Tsukamoto,⁸ T. Tsukamoto,³⁰ S. Uehara,⁸ K. Ueno,²³ N. Ujiie,⁸ Y. Unno,³ S. Uno,⁸ Y. Ushiroda,¹⁶ Y. Usov,² S. E. Vahsen,²⁹ G. Varner,⁷ K. E. Varvell,³³ C. C. Wang,²³ C. H. Wang,²² M.-Z. Wang,²³ T. J. Wang,¹¹ Y. Watanabe,³⁸ E. Won,³¹ B. D. Yabsley,⁸ Y. Yamada,⁸ M. Yamaga,³⁶ A. Yamaguchi,³⁶ H. Yamaguchi,⁸ H. Yamamoto,⁷ T. Yamanaka,²⁷ H. Yamaoka,⁸ Y. Yamaoka,⁸ Y. Yamashita,²⁴ M. Yamauchi,⁸ S. Yanaka,³⁸ M. Yokoyama,³⁷ K. Yoshida,¹⁹ Y. Yusa,³⁶ H. Yuta,¹ C. C. Zhang,¹¹ H. W. Zhao,⁸ J. Zhang,42 Y. Zheng,7 V. Zhilich,2 and D. Zontar42 ¹Aomori University, Aomori

²Budker Institute of Nuclear Physics, Novosibirsk ³Chiba University, Chiba ⁴Chuo University. Tokyo 5 University of Cincinnati, Cincinnati, Ohio 6 Gyeongsang National University, Chinju ⁷University of Hawaii, Honolulu, Hawaii ⁸High Energy Accelerator Research Organization (KEK), Tsukuba ⁹Hiroshima Institute of Technology, Hiroshima 10 Institute for Cosmic Ray Research, University of Tokyo, Tokyo 11 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing ¹²Institute for Theoretical and Experimental Physics, Moscow 13 Kanagawa University, Yokohama ¹⁴Korea University, Seoul ¹⁵H. Niewodniczanski Institute of Nuclear Physics, Krakow ¹⁰Kyota University, Kyota ¹⁷University of Melbourne, Victoria

⁴⁴Virginia Polytechnic Institute and State University, Blacksburg, Virginia ⁴⁵Yonsei University, Seoul (Received 9 February 2001)

We present a measurement of the standard model CP violation parameter $\sin 2\phi_1$ (also known as $\sin 2\beta$) based on a 10.5 fb 1 data sample collected at the Y(45) resonance with the Belle detector at the RKB asymmetric e^+e^- collider. One neutral B meson is reconstructed in the $1/\psi x_5$, $\psi(25)x_5$, $\chi_c k_5$, $\eta_c k_5$, $1/\psi k_5$, or $1/\psi x_5^0$ (C25)x_5, $\chi_c k_5$, $\eta_c k_5$, $1/\psi k_5$, or $1/\psi x_5^0$ (C25)x_5, $\chi_c k_5$, massless the detection of the structure of the destination of the time interval between the two B-meson decay points, we determine $\sin 2\phi_1 = 0.58^{+0.24}_{-0.24}(\sin 10^{-0.06}_{-0.06})(sys)$.

0031-9007/01/86(12)/2509(6)\$15.00 © 2001 The American Physical Society

2509

DOI: 10.1103/PhysRevLett.86.2509

CP mode reconstruction

$\begin{array}{c} & B^0 \rightarrow J/\psi \ K_s \ (\mbox{continued}) \end{array}$

Other charmonium+K

 $B^{0} \rightarrow J/\psi K_{s}(\rightarrow \pi^{0}\pi^{0})$

17

Other charmonium

 $\mathbf{M}(l^+l^-\gamma) - \mathbf{M}(l^+l^-)$

$\frac{2}{3}$ J/ ψ K_L

- J/ψ: {tight mass cut}
 1.42<p_ψ*<2.00 GeV/c
- K_L: {KLM/ECL cluster w/o track,
 >1 KLM superlayers (resolution~ 3° (1.5° if ECL)} within 45° of expected lab direction
- Require cand to have B mass, calculate momentum in CMS (p_B*) (~0.3 GeV for signal)
- backgrounds: random (from data), "feeddown," known modes - estimate via MC

CP candidates

20

Flavor tagging

- high-p lepton (p*>1.1 GeV): b->1⁻
- net K charge b->K-
- medium-p lepton, b->c-> 1+
- soft π b->c{D*+->D $^{0}\pi^{+}$ }
- * multidimensional likelihood, E>99% Significance of CP asymmetry depends on
- tagging efficiency $\boldsymbol{\epsilon}$
- wrong-tag fraction w (measured w data)
- effective efficiency = $\varepsilon(1-2w)$

272 Farm

8.00 Eler 3.50 Tue Nov 16 23z12z08 1999

ther 0 MogID 0 BField 1.50 Dack

BELLE

5 Event

D.2 SVD-M D CDC-M D KLM-

Δz : vertex reconstruction

2 cm

distribution in $\Delta t \sim \Delta z / \beta \gamma c$, unbinned max. likelihood fit

•seen in raw data large effect

Prepare to fit for sin2 ϕ_1

• B⁰ lifetime = 1.548 ± 0.032 ps, $c\tau=464\pm10$ µm multiply by $\beta\gamma=0.425$ mixing $\Delta m = 0.47\pm0.02$ ps⁻¹; cT~4.0 mm (decay in flight) only ~ 1 cycle of oscillation measurable True CP asymmetry is diluted: background to CP reconstruction incorrect flavor tag rate vertex resolution - not exactly as modeled all need checks in data -> Use same methods to make other (better known) physics measurements: B^o mixing, B lifetime, D lifetime, null CP

Wrong tag fraction via mixing

Same fit method, but asymmetry 0.5 asymmetrian 0<r≤0.25 0.25<r≤0.5 CP->flavor-specific • $B \rightarrow \{D^* \exists v, D^{(*)} \pi^+, D^* \rho^+\}$ +flavor tag -0.5 -0.5 ω:0.359+0.030 $\infty:0.444+0.019$ 10 Proper decay time(ps) 10 Proper decay time(ps) 5 5 separate same-, opp-flavor events 1 asymmetry 0.5 asymmetry 0.5 0.5<r≤0.625 0.625<r≤0.75 • fit to Δz : mixing asymmetry, w: 0 -0.5 -0.5 $\omega: 0.283 + 0.037$ $\omega:0.210^{+0.033}_{-0.032}$ $A_{mix} = rac{N_{opp}(\Delta t) - N_{same}(\Delta t)}{N_{opp}(\Delta t) + N_{same}(\Delta t)} = (1 - 2w) \mathrm{cos} (\Delta m_d \Delta t)^{-1}$ 10 Proper decay time(ps) asymmetry 0.875<r≤1.0 0.75<r≤0.875 $\epsilon_{eff} = \Sigma (1 - 2w_1)^2 \epsilon_{tag, 1} = (27.0 \pm 2.2)\%$ asymmet 0.5 0.5 99.4% of candidates tagged 0 0 -0.5 -0.5 $\omega:0.025^{+0.020}_{-0.019}$ $\omega:0.103^{+0.02'}_{-0.026}$ (good agreement w MC) 10 Proper decay time(ps) 5 10 Proper decay time(ps) Flavor tags classified by (MC) Purity - 6 bins

\frown Δ t resolution function

- Double Gaussian, parameters calculated eventby-event, includes effects of
 - detector resolution
 - poorly measured tracks
 - bias from e.g. charm
 - approximation of $\Delta t = \Delta z / \beta \gamma c$
- form, parameters from
 - Monte Carlo

tail fraction: 1.8%

- fits for $D^0 \rightarrow K^-\pi^+$, $B \rightarrow D^* lv$ lifetimes
- validate: B lifetime, same fitting

 τ_0 =1.55±0.02 ps (PDG2000: 1.548±0.032 ps)

τ₊=1.64±0.03 ps (PDG2000: 1.653±0.028 ps)

\sim Fitting Δt distribution

- distribution in $\Delta t \sim \Delta z / \beta \gamma c$
- unbinned max. likelihood fit, includes
 - signal root distribution (analytic)
 - wrong tag fraction (const)
 - background: right & wrong tag (MC, parametrized)
 - detector & tagging Δz resolution

(parametrized, evt-by-evt)

All modes combined: $sin2\phi_1=0.99\pm0.14(stat)+0.06(sys)$

use:
$$B^0 \rightarrow D^{(*)} \pi^+$$
, $D^* \rho^+$, $D^* I^+ \nu$, $J/\psi K^*(K^+ \pi^-)$

fit CP -1 and CP+1 separately:

Vertex algorithm	±0.04	
Flavor tagging	±0.03	
Resolution function	±0.02	
K_L background fraction	±0.02	
Background shapes	±0.01	
Δm_d and τ_{B0} errors	±0.01	
Total	±0.06	

Compare with other experiments

Successful run of Belle in 2000-1 • sin $2\phi_1$: 30.5 fb⁻¹ on $\Upsilon(4S)$, 1137 tagged events

19 papers published or submitted

Next

- higher precision on sin2 ϕ_1 data as of 1/23/02 48 fb^-1; anticipate 100 fb^-1 by summer
- Lum: peak 5.5x10³³cm⁻²s⁻¹; 24 hrs 311 pb⁻¹; month 6120 pb⁻¹
- other angles need >300 fb⁻¹ within sight!