Particle Physics - VI

Juliet Lee-Franzini

Laboratori Nazionali Frascati Karlsruhe University

Karlsruhe - Fall 2001

url: www-ttp.physik.uni-karlsruhe.de/~juliet/

4.3 Formalism

We define, analogously to the $K^{0} \bar{K}^{0}$ system,

$$
\begin{aligned}
B_{\mathrm{L}} & =p\left|B^{0}\right\rangle+q\left|\bar{B}^{0}\right\rangle \\
B_{\mathrm{H}} & =p\left|B^{0}\right\rangle-q\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

with $p^{2}+q^{2}=1$

Here L, H stand for light and heavy. The B_{d} 's also have different masses but very similar decay widths.

Mixing is calculated in the SM by evaluating the standard "box" diagrams with intermediate u, c, t and W states. We define:

$$
\Delta M=M_{H}-M_{L}, \quad \Delta \Gamma=\Gamma_{H}-\Gamma_{L}
$$

note that ΔM is positive by definition.

The ratio q / p is given by:

$$
\begin{array}{r}
q / p=(\Delta M-i / 2 \Delta \Gamma) / 2\left(M_{12}-i / 2 \Gamma_{12}\right)= \\
2\left(M_{12}^{*}-i / 2 \Gamma_{12}^{*}\right) /(\Delta M-i / 2 \Delta \Gamma)
\end{array}
$$

where

$$
\Gamma_{12} \propto\left[V_{u b} V_{u d}^{*}+V_{c b} V_{c d}^{*}\right]^{2} m_{b}^{2}=\left(V_{t b} V_{t d}^{*}\right)^{2} m_{b}^{2}
$$

and $M_{12} \propto\left(V_{t b} V_{t d}^{*}\right)^{2} m_{t}^{2}$, so they have almost the same phase.
x and y, for B_{d} and B_{s} mesons are:

$$
x_{d, s}=\Delta M_{d, s} / \Gamma_{d, s}, \quad y_{d, s}=\Delta \Gamma_{d, s} / \Gamma_{d, s}
$$

y_{d} is less than 10^{-2}, and x_{d} is about 0.7 , and if we ignore the width difference between the two B_{d} states,

$$
\left.\frac{q}{p}\right|_{B_{d}} \approx \frac{\left(V_{t b}^{*} V_{t d}\right)}{\left(V_{t b} V_{t d}^{*}\right)}=e^{-2 i \beta}
$$

6. $C P$ Violation in the B system

Semileptonic decays of $B \mathrm{~s}$ allow, in principle, to observe $\mathbb{Q} \not \subset$ studying the dilepton and total lepton charge asymmetries.

This however has turned to be rather difficult because of the huge background and so far yielded no evidence for $\mathbb{Q} \mathbb{R}$ in B.

We can estimate the magnitude of the leptonic asymmetry from

$$
4 \Re \epsilon_{B}=\Im\left(\frac{\Gamma_{12}}{M_{12}}\right) \sim \frac{\left|\Gamma_{12}\right|}{\left|M_{12}\right|} \operatorname{Arg}\left(\frac{\Gamma_{12}}{M_{12}}\right)
$$

or approximately

$$
\frac{m_{b}^{2}}{m_{t}^{2}} \times \frac{m_{c}^{2}}{m_{b}^{2}}
$$

which is $\mathcal{O}\left(10^{-4}\right)$.

```
6.1 \alpha, \beta and }
```

Sensitivity to $C P$ violation in the B system is usually discussed in terms of the 3 interior angles of the U_{13} triangle.

$$
\alpha=\operatorname{Arg}\left(-\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right) \quad \beta=\operatorname{Arg}\left(-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right) \quad \gamma=\operatorname{Arg}\left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right)
$$

The favorite measurements are asymmetries in decays of neutral B decays to $C P$ eigenstates, $f_{C P}$, in particular $J / \psi(1 S) K_{S}$ and possibly $\pi \pi$, which allow a clean connection to the CKM parameters. The asymmetry is due to interference of the amplitude A for $B^{0} \rightarrow J / \psi K_{S}$ with the amplitude A^{\prime} for $B^{0} \rightarrow \bar{B}^{0} \rightarrow J / \psi K_{S}$.

As is the case in the K system, direct $Q \subset$ needs interference of two different amplitudes, more precisely amplitudes with different phases.

If A is the amplitude for decay of say a B^{0} to a $C P$ eigenstate, given by $A=\sum_{i} A_{i} e^{i\left(\delta_{i}+\phi_{i}\right)}$, the amplitude \bar{A} for the $C P$ conjugate process is $\bar{A}=\sum_{i} A_{i} e^{i\left(\delta_{i}-\phi_{i}\right)}$. The strong phases δ do not change sign while the weak phases ($C K M$ related) do.

Direct $C P$ violation requires $|A| \neq|\bar{A}|$, while indirect $C P$ violation only requires $|q / p| \neq 1$.

The time-dependent $C P$ asymmetry is:

$$
\begin{aligned}
a_{f_{C P}}(t) & \equiv \frac{I\left(B^{0}(t) \rightarrow J / \psi K_{S}\right)-I\left(\bar{B}^{0}(t) \rightarrow J / \psi K_{S}\right)}{I\left(B^{0}(t) \rightarrow J / \psi K_{S}\right)+I\left(\bar{B}^{0}(t) \rightarrow J / \psi K_{S}\right)} \\
& =\frac{\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right) \cos (\Delta M t)-2 \Im\left(\lambda_{f_{C P}}\right) \sin (\Delta M t)}{1+\left|\lambda_{f_{C P}}\right|^{2}} \\
& =\Im \lambda_{f_{C P}} \sin (\Delta M t)
\end{aligned}
$$

with

$$
\lambda_{f_{C P}} \equiv(q / p)\left(\bar{A}_{f_{C P}} / A_{f_{C P}}\right), \quad\left|\lambda_{f_{C P}}\right|=1
$$

In the above, $B^{0}(t)\left(\bar{B}^{0}(t)\right)$ is a state tagged as such at time t, for instance by the sign of the decay lepton of the other meson in the pair.

The time integrated asymmetry, for a $B^{0}(t)$ state is given by

$$
a_{f_{C P}}=\frac{I\left(B^{0} \rightarrow J / \psi K_{S}\right)-I\left(\bar{B}^{0} \rightarrow J / \psi K_{S}\right)}{I\left(B^{0} \rightarrow J / \psi K_{S}\right)+I\left(\bar{B}^{0} \rightarrow J / \psi K_{S}\right)}=\frac{x}{1+x^{2}} \Im \lambda_{f_{C P}}
$$

At a B-factory $a_{f_{C P}}$ vanishes because we have a $B^{0} \bar{B}^{0}$ pair in a C-odd state. Staring at box diagrams, with a little poetic license one concludes

$$
a_{f_{C P}} \propto \Im \lambda_{f_{C P}}=\sin 2 \beta
$$

or

$$
a_{f_{C P}} \approx 0.5 \sin 2 \beta \sim 1
$$

The license involves ignoring penguins, which is probably OK for the decay to $J / \psi K_{S}$, presumably a few \% correction.

For the $\pi \pi$ final state, the argument is essentially the same. However the branching ratio for $B \rightarrow \pi \pi$ is extraordinarily small and penguins are important.

The asymmetry is otherwise proportional to $\sin (2 \beta+2 \gamma)=-\sin 2 \alpha$. Here we assume $\alpha+\beta+\gamma=\pi$, which is something that we would instead like to prove.

The angle γ can be obtained from asymmetries in B_{s} decays and from mixing, measurable with very fast strange B s.

6.2 CDF and $D \varnothing$

CDF at the Tevatron was the first to profit from the idea suggested first by Toni Sanda, to study asymmetries in the decay of tagged B^{0} and of \bar{B}^{0} to a final state which is a $C P$ eigenstate. They find

$$
\sin 2 \beta=0.79_{-0.44}^{+0.41}, \quad 0.0 \leq \sin 2 \beta<1 \quad \text { at } 93 \% \mathrm{CL}
$$

Their very lucky central value agrees with the aforementioned SM fit, but there is a two fold ambiguity in the determination of β. Their error does not allow to chose one of the two values.

In the coming Tevatron runs, CDF and $D \varnothing$ expect to reach an accuracy of $\delta \sin 2 \beta \approx 0.1$, and to measure $\sin (2 \alpha)$ from the asymmetry in $B^{0} \rightarrow \pi^{+} \pi^{-}$and $\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}$, to a similar accuracy.

Being optimistic, they hope to get a first measurement of $\sin (\gamma)$

CP Violation and CKM Matrix

CDF Run $I B_{s^{\prime}} \rightarrow D_{\mathrm{s}} \mathrm{I}^{+} \mathbf{v}$

B_{s} mixing measurement is important

 for complete picture of thenitarity triangle.
CP Violation \& CKM Matrix (cont.)

With data by next summer.
$>B_{s}$ mixing: SM predicted region ~fully covered.
$>\delta(\sin 2 \beta) \sim 0.14$

LP01, Young-Kee Kim, The Tevatron's Run II
by using $B_{s}^{0} / \bar{B}_{s}^{0} \rightarrow D_{s}^{ \pm} K^{\mp}$ from about 700 signal events.
$D \varnothing$ will have the same sensitivity
6.3 B-factories

In order to overcome the short B lifetime problem, and still profit from the coherent state property of B 's produced on the $\gamma(4 S)$, two asymmetric $e^{+} e^{-}$colliders have been built, PEP-II and KEKB.

The two colliders both use a high energy $\approx 9 \mathrm{GeV}$ beam colliding against a low energy, $\approx 3.1 \mathrm{GeV}$, beam, so that the center of mass energy of the system is at the $\Upsilon(4 S)$ energy, but the B 's are boosted in the laboratory, so they travel detectable distances
before their demise.
In order to produce the large number of $B^{0} \bar{B}^{0}$ pairs, the accelerators must have luminosities on the order of $3 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, about one orders of magnitude greater than that of CESR.

Both factories have achieved luminosities of $3 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. There is talk now to try for 1×10^{36} !!

One of the highlights at LP01 is that both experiments reported definitive measurements of β from about $30 p b^{-1}$. We shall have a dedicated seminar on the subject, and just to whet your appetite I attach here a few transparencies shown at LP01.

Incidentally, B-factories will likely provide the best measurements of $\left|V_{c b}\right|$ and $\left|V_{c b}\right|$.

\mathcal{B} CPV àla Kobayashi-Maskawa
 BELLE

CPV due to complex phases in the Quark generation mixing matrix:

The Belle Collaboration
$\sin 2 \phi_{1}$ from $B \rightarrow f_{C P}+B \leftrightarrow \bar{B} \rightarrow f_{C P}$ interf.
Sanda, Bigi \& Carter:

July 23-28, 2001
LP01, Rome
The Belle Collaboration

Mixing-induced CPV asymmetry

Previous result (using $10.5 \mathrm{fb}^{-1}$)

What's needed?

- Lots of B mesons $\quad\left(\mathrm{Br}\left(\mathrm{B} \rightarrow f_{C P}\right) \sim 10^{-3}\right)$
- very high Luminosity \Rightarrow KEKB
- Find CP eigenstate decays
- high quality $\sim 4 \pi$ detector \Rightarrow Belle
- Tag other B's flavor
- good particle id
- Measure decay-time difference
- Asymmetric energies
- good vertexing (@KEKB: $\gamma \beta \subset \tau \approx 200 \mu m)$

KEKB asymmetric $\mathrm{e}^{+} \mathrm{e}^{-}$collider

July 23-28, 2001
LP01, Rome
The Belle Collaboration

PEP-II Asymmetric B Factory

$9 \mathrm{GeV} \mathrm{e}^{-}$on $3.1 \mathrm{GeV} \mathrm{e}^{+}$:

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}(4 \mathrm{~S}) \rightarrow \mathrm{B}^{0} \mathrm{~B}^{0}
$$

- coherent neutral B pair production and decay (p-wave)

- boost of $Y(4 S)$ in lab frame : $\beta \gamma=0.56$
6.4 LHC

The success of CDF shows that LHCB, BTeV, ATLAS and CMS will attain, some day, accuracies ten times better than Belle and Babar.

In particular the possibility of studying very high energy strange B 's or B_{s} at the LHC, will allow them to measure the mixing oscillation frequency, something which was not possible at LEP.

The allowed regions for ρ and η (contours at $68 \%, 95 \%$) are compared with the uncertainty bands (at 68\% and 95\% probabilities) for | Vub| / Vcb |, | $\varepsilon_{\mathrm{k}} \mid, \Delta \mathrm{m}_{\mathrm{d}}$ and the limit on $\Delta \mathrm{m}_{\mathrm{s}} / \Delta \mathrm{m}_{\mathrm{d}}$ (dotted curve).

BaBar:
$\sin 2 \beta=0.590 \pm 0.14$ (stat) ± 0.05 (syst) Belle:

$$
\sin 2 \beta=0.99 \pm 0.14 \text { (stat) } \pm 0.06 \text { (syst) }
$$

[^0]Some ${ }^{\circ}$ decay channels for measuring four angles of the CKM triangles

The LHCb Experiment

High $\mathrm{B}_{\mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c}}$, b-hadrons statistics @ LHC $\sim 10^{12} \mathrm{bb} /$ year
Lepton, γ and Hadron P_{T} trigger

+ Vertex trigger
Decay time resolution ($\mathrm{B}_{\mathrm{s}}: 40 \mathrm{fs}$) Particle ID (π / K)
Mass resolution ($\pi^{+} \pi^{-}: 18 \mathrm{MeV}$)

L. Maiani. LHC status

[^0]: Karlsruhe - Fall 2001 Juliet Lee-Franzini - Particle Physics - VI

