Particle Physics - VI

Juliet Lee-Franzini

Laboratori Nazionali Frascati Karlsruhe University

Karlsruhe - Fall 2001

url: www-ttp.physik.uni-karlsruhe.de/~juliet/

4.3 Formalism

We define, analogously to the $K^0 \overline{K^0}$ system,

$$B_{\mathsf{L}} = p | B^{\mathsf{0}} \rangle + q | \overline{B}^{\mathsf{0}} \rangle$$
$$B_{\mathsf{H}} = p | B^{\mathsf{0}} \rangle - q | \overline{B}^{\mathsf{0}} \rangle$$

with $p^2 + q^2 = 1$

Here L, H stand for light and heavy. The B_d 's also have different masses but very similar decay widths.

Mixing is calculated in the SM by evaluating the standard "box" diagrams with intermediate u, c, t and W states. We define:

 $\Delta M = M_H - M_L, \quad \Delta \Gamma = \Gamma_H - \Gamma_L$

note that ΔM is positive by definition.

The ratio q/p is given by:

$$q/p = (\Delta M - i/2\Delta\Gamma)/2(M_{12} - i/2\Gamma_{12}) = 2(M_{12}^* - i/2\Gamma_{12}^*)/(\Delta M - i/2\Delta\Gamma)$$

where

$$\Gamma_{12} \propto [V_{ub}V_{ud}^* + V_{cb}V_{cd}^*]^2 m_b^2 = (V_{tb}V_{td}^*)^2 m_b^2$$

and $M_{12} \propto (V_{tb}V_{td}^*)^2 m_t^2$, so they have almost the same phase.

x and y, for B_d and B_s mesons are:

$$x_{d,s} = \Delta M_{d,s} / \Gamma_{d,s}, \qquad y_{d,s} = \Delta \Gamma_{d,s} / \Gamma_{d,s}$$

 y_d is less than 10^{-2} , and x_d is about 0.7, and if we ignore the width difference between the two B_d states,

$$\frac{q}{p} \mid_{B_d} \approx \frac{(V_{tb}^* V_{td})}{(V_{tb} V_{td}^*)} = e^{-2i\beta}$$

6. CP Violation in the B system

Semileptonic decays of Bs allow, in principle, to observe QR by studying the dilepton and total lepton charge asymmetries.

This however has turned to be rather difficult because of the huge background and so far yielded no evidence for CR in B.

We can estimate the magnitude of the leptonic asymmetry from

$$4\Re\epsilon_B = \Im(\frac{\Gamma_{12}}{M_{12}}) \sim \frac{|\Gamma_{12}|}{|M_{12}|} \operatorname{Arg}(\frac{\Gamma_{12}}{M_{12}})$$

or approximately

$$\frac{m_b^2}{m_t^2} \times \frac{m_c^2}{m_b^2}$$

which is $\mathcal{O}(10^{-4})$.

6.1 α , β and γ

Sensitivity to CP violation in the B system is usually discussed in terms of the 3 interior angles of the U_{13} triangle.

$$\alpha = \operatorname{Arg}\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right) \quad \beta = \operatorname{Arg}\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) \quad \gamma = \operatorname{Arg}\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

The favorite measurements are asymmetries in decays of neutral B decays to CP eigenstates, f_{CP} , in particular $J/\psi(1S)K_S$ and possibly $\pi\pi$, which allow a clean connection to the CKM parameters. The asymmetry is due to interference of the amplitude A for $B^0 \rightarrow J/\psi K_S$ with the amplitude A' for $B^0 \rightarrow \overline{B}^0 \rightarrow J/\psi K_S$.

As is the case in the K system, direct $\[mathbb{CR}\]$ needs interference of two different amplitudes, more precisely amplitudes with different phases.

If A is the amplitude for decay of say a B^0 to a CP eigenstate, given by $A = \sum_i A_i e^{i(\delta_i + \phi_i)}$, the amplitude \overline{A} for the CP conjugate process is $\overline{A} = \sum_i A_i e^{i(\delta_i - \phi_i)}$. The strong phases δ do not change sign while the weak phases (CKM related) do.

Direct *CP* violation requires $|A| \neq |\overline{A}|$, while indirect *CP* violation only requires $|q/p| \neq 1$.

The time-dependent *CP* asymmetry is:

$$a_{f_{CP}}(t) \equiv \frac{I(B^{0}(t) \rightarrow J/\psi K_{S}) - I(\overline{B}^{0}(t) \rightarrow J/\psi K_{S})}{I(B^{0}(t) \rightarrow J/\psi K_{S}) + I(\overline{B}^{0}(t) \rightarrow J/\psi K_{S})}$$
$$= \frac{(1 - |\lambda_{f_{CP}}|^{2})\cos(\Delta M t) - 2\Im(\lambda_{f_{CP}})\sin(\Delta M t)}{1 + |\lambda_{f_{CP}}|^{2}}$$
$$= \Im\lambda_{f_{CP}}\sin(\Delta M t)$$

with

$$\lambda_{f_{CP}} \equiv (q/p)(\bar{A}_{f_{CP}}/A_{f_{CP}}), \quad |\lambda_{f_{CP}}| = 1.$$

In the above, $B^{0}(t)$ ($\overline{B}^{0}(t)$) is a state tagged as such at time t, for instance by the sign of the decay lepton of the other meson in the pair.

The time integrated asymmetry, for a $B^{0}(t)$ state is given by $a_{f_{CP}} = \frac{I(B^{0} \rightarrow J/\psi K_{S}) - I(\overline{B}^{0} \rightarrow J/\psi K_{S})}{I(B^{0} \rightarrow J/\psi K_{S}) + I(\overline{B}^{0} \rightarrow J/\psi K_{S})} = \frac{x}{1+x^{2}}\Im\lambda_{f_{CP}}$ At a *B*-factory $a_{f_{CP}}$ vanishes because we have a $B^{0}\overline{B}^{0}$ pair in a *C*-odd state. Staring at box diagrams, with a little poetic license one concludes

$$a_{f_{CP}} \propto \Im \lambda_{f_{CP}} = \sin 2\beta.$$

 $a_{f_{CP}} pprox 0.5 \sin 2\beta \sim 1$

The license involves ignoring penguins, which is probably OK for the decay to $J/\psi K_S$, presumably a few % correction.

For the $\pi\pi$ final state, the argument is essentially the same. However the branching ratio for $B \to \pi\pi$ is extraordinarily small and penguins *are* important.

The asymmetry is otherwise proportional to $sin(2\beta+2\gamma) = -sin 2\alpha$. Here we assume $\alpha + \beta + \gamma = \pi$, which is something that we would instead like to prove.

The angle γ can be obtained from asymmetries in B_s decays and from mixing, measurable with very fast strange Bs.

6.2 CDF and DØ

CDF at the Tevatron was the first to profit from the idea suggested first by Toni Sanda, to study asymmetries in the decay of tagged B^0 and of \overline{B}^0 to a final state which is a CP eigenstate. They find

 $\sin 2\beta = 0.79^{+0.41}_{-0.44}, \quad 0.0 \le \sin 2\beta < 1$ at 93% CL

Their very lucky central value agrees with the aforementioned SM fit, but there is a two fold ambiguity in the determination of β . Their error does not allow to chose one of the two values.

In the coming Tevatron runs, CDF and DØ expect to reach an accuracy of $\delta \sin 2\beta \approx 0.1$, and to measure $\sin(2\alpha)$ from the asymmetry in $B^0 \to \pi^+\pi^-$ and $\overline{B}^0 \to \pi^+\pi^-$, to a similar accuracy.

Being optimistic, they hope to get a first measurement of $sin(\gamma)$

CP Violation and CKM Matrix

LP01, Young-Kee Kim, The Tevatron's Run II

CP Violation & CKM Matrix (cont.) With data by next summer, > B_s mixing : SM predicted region ~fully covered. > δ(sin2β) ~ 0.14

LP01, Young-Kee Kim, The Tevatron's Run II

by using $B_s^0/\bar{B}_s^0 \to D_s^{\pm}K^{\mp}$ from about 700 signal events.

DØ will have the same sensitivity

6.3 *B*-factories

In order to overcome the short *B* lifetime problem, and still profit from the coherent state property of *B*'s produced on the $\Upsilon(4S)$, two asymmetric e^+e^- colliders have been built, PEP-II and KEKB.

The two colliders both use a high energy ≈ 9 GeV beam colliding against a low energy, ≈ 3.1 GeV, beam, so that the center of mass energy of the system is at the $\Upsilon(4S)$ energy, but the *B*'s are boosted in the laboratory, so they travel detectable distances

before their demise.

In order to produce the large number of $B^0\overline{B}^0$ pairs, the accelerators must have luminosities on the order of 3×10^{33} cm⁻²s⁻¹, about one orders of magnitude greater than that of CESR.

Both factories have achieved luminosities of 3×10^{33} cm⁻² s⁻¹. There is talk now to try for 1×10^{36} !!

One of the highlights at LP01 is that both experiments reported definitive measurements of β from about 30 pb^{-1} . We shall have a dedicated seminar on the subject, and just to whet your appetite I attach here a few transparencies shown at LP01.

Incidentally, *B*-factories will likely provide the best measurements of $|V_{cb}|$ and $|V_{cb}|$.

Mixing-induced CPV asymmetry

What do we measure?

- Lots of B mesons (Br ($B \rightarrow f_{CP}$) ~ 10⁻³)
 - very high Luminosity \Rightarrow KEKB
- Find CP eigenstate decays
 - high quality $\sim 4\pi$ detector \Rightarrow Belle
- Tag other B's flavor
 - good particle id
- Measure decay-time difference
 - Asymmetric energies
 - good vertexing (@KEKB: $\gamma \beta c\tau \approx 200 \mu m$)

July 23-28, 2001

LP01, Rome

The Belle Collaboration

KEKB asymmetric e⁺e⁻ collider

 Two separate rings e⁺ (LER) : 3.5 GeV e⁻ (HER) : 8.0 GeV •E_{CM} : 10.58 GeV at Y(4S) •Luminosity •target: 10³⁴ cm⁻²s⁻¹ •achieved:4x10³³cm⁻²s⁻¹ •±11 mrad crossing angle •Small beam sizes: $\sigma_v \approx 3 \mu m; \sigma_x \approx 100 \mu m$

July 23-28, 2001

LP01, Rome

The Belle Collaboration

PEP-II Asymmetric B Factory

07/23/2001

6.4 LHC

The success of CDF shows that LHCB, BTeV, ATLAS and CMS will attain, some day, accuracies ten times better than Belle and Babar.

In particular the possibility of studying very high energy strange B's or B_s at the LHC, will allow them to measure the mixing oscillation frequency, something which was not possible at LEP.

Some decay channels for measuring four angles of the CKM triangles

$$\begin{cases} B_{d} \rightarrow \rho^{\pm} \pi^{\mp}, \ \rho^{0} \pi^{0} \\ B_{d} \rightarrow \pi^{+} \pi^{-} \\ & & \\ B_{s} \rightarrow J/\psi \phi \\ & & \\ B_{s} \rightarrow J/\psi \phi \\ & & \\ B_{d} \rightarrow D^{*\pm} \pi^{\mp} \\ B_{d} \rightarrow J/\psi K_{S} \\ B_{s} \rightarrow D_{s}^{\mp} K^{\pm} \\ B_{d} \rightarrow \pi^{+} \pi^{-} + B_{s} \rightarrow K^{+} K^{-} \\ B_{u, d} \rightarrow K \pi \\ B_{d} \rightarrow D K^{*0} \end{cases}$$

Lepton Photon Conf. Roma, 28/07/2001

High $B_{u, d, s, c}$, b-hadrons statistics @ LHC ~10¹²bb/year Lepton, γ and Hadron P_T trigger + Vertex trigger Decay time resolution (B_s : 40 fs) Particle ID (π/K) Mass resolution ($\pi^+\pi^-$: 18 MeV)

The LHCb Experiment

