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5. CKM

5.1 The Mixing Matrix

The Standard Model has a natural place for CP violation (Cabibbo,

Kobayashi and Maskawa).

In fact, it is the discovery of CP violation which inspired KM(1) to

expand the original Cabbibo(2) -GIM(3) 2×2 quark mixing matrix,

to a 3×3 one, which allows for a phase and therefore for CP

violation. This also implied an additional generation of quarks,

now known as the b and t, matching the τ in the SM.
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According to KM the six quarks charged current is:

J+µ = (ū c̄ t̄)γµ(1− γ5)M




d

s

b




where M is a 3×3 unitary matrix: M†M=1.

Since the relative phases of the 6 quarks are arbitrary, M contains

3 real parameter, the Euler angles, plus a phase factor, allowing

for C\P\.
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VC/GIM=


Vud Vus

Vcd Vcs


=


 cos θC sin θc

− sin θC cos θC




J+µ (udcs) = ū(cos θC d+ sin θC s) + c̄(− sin θC d+ cos θC s)

J0µ = d̄d+ s̄s − No FCNC: K0 → µµ suppression.
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Three down like quarks require one more mixing angle:
u

d scos sin� � �CC

s

b

bd
�1

and the u, dsb current is now given by

J+µ (u, dsb) = ū[. . .]µ(cos θC cos θ1d+ sin θC cos θ1s+ sin θ1b)

If the c quarks and the t quarks are included, one more angle is

necessary to account for c → b transitions.
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These geometric illustrations are justified by counting parameters

in an n × n unitary matrix. 2n2 real numbers define a complex

matrix, of which n2 are removed requiring unitarity. 2n−1 phases

are unobservable and can be reassorbed in the definition of 2n−1

quark fields. In total we are left with (n − 1)2 parameters. In n

dimensions there are n(n− 1)/2 orthogonal rotation angles since

there are

n− 1+ n− 2+ . . .+1 = n(n− 1)/2

planes.

Thus the n× n unitary matrix contains n(n− 1)/2 rotations and

(n− 1)(n− 2)/2 phases. For n = 3 we have three angles and one

phase.
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V =
CKM

The complete form of the matrix, in the Maiani notation, is:




c12c13 s12c13 c13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13
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with c12 = cos θ12 = cos θC, etc.

While a phase can be introduced in the unitary matrix V which

mixes the quarks



d ′

s ′

b ′


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b


 ,

the theory does not predict the magnitude of the effect.

The constraint that the mixing matrix be unitary corresponds to

the desire of having a universal weak interaction.

Our present knowledge of the magnitude of the Vij elements is
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given below.



0.9745 - 0.9757 0.219 - 0.224 0.002 - 0.005

0.218 - 0.224 0.9736 - 0.9750 0.036 - 0.047

0.004 - 0.014 0.034 - 0.046 0.9989 - .9993




The diagonal elements are close to, but definitely are not equal

to unity. If such were the case there could be no CP violation.

However, if the violation of CP which results in ε �= 0 is explained

in this way then, in general, we expect ε′ �= 0.

For technical reasons, it is difficult to compute the value of ε′.
Predictions are ε′/ε ≤ 10−3, but cancellations can occur, depend-

ing on the value of the top mass and the values of appropriate

matrix elements, mostly connected with understanding the light
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hadron structure. I quote from LP01 on lattice QCD’s progress.
Prospects for Lattice Calculations K → ππ Decays

are exciting!

• A number of different mechanisms contribute to
K → ππ decay amplitudes, e.g.

K
π

π

s u

Disconnected Emission

K

π

π

s

u

Disconnected Penguin

• Lattice calculations have shown that it is not pos-
sible to explain the ∆I=1/2 rule with emission di-
agrams only.

• In order to obtain the physical contribution from
the penguin diagrams in general we have to subtract
large unphysical terms (power divergences). This is
the reason for the absence up to now, of sufficiently
precise results for ∆I = 1/2 decays.

• There is a signal for ∆I = 1/2 matrix elements
⇒ data which we can analyse
⇒ studies of ∆I = 1/2 rule and evaluation of ε′/ε.

fig
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K → ππ Decays - Cont:

• Calculations of amplitudes for ∆I = 3/2 transitions
are relatively straightforward compared to ∆I =
1/2 ones and the signals are very strong. We are
currently undertaking a detailed study, up to NLO
in the chiral expansion, for these matrix elements
(Q4, EW-penguins Q7,8).

0 8 16 24 32
−0.25

−0.15

−0.05

O7, mom=0, k1=0.1314, k2=0.13376

0 8 16 24 32
−0.8

−0.6

−0.4

−0.2

0

O8, mom=1, k1=0.13376, k2=0.13376

∆I=3/2 matrix elements of the electroweak penguin
operators O7 (left) and O8 (right).
PRELIMINARY! SPQCDR Collaboration

29
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K → ππ Decays - Cont:

• The matrix element of Q8 is important in the eval-
uation of ε′/ε. Lattice results (from K → π matrix
elements + soft-pion theorems and χPT at leading
order) are significantly smaller than other determi-
nations, e.g. a lattice simulation gives

|I=2〈ππ |Q8 |K0 〉| = (0.5± 0.01)GeV3

in the NDR renormalization scheme at µ = 2GeV.
A.Donini, V.Giménez, L.Giusti and G.Martinelli 1999

This can be compared to:
1.3± 0.3GeV3 (Donoghue and Golowich) and
3.5± 1.1GeV3 (Knecht, Peris and de Rafael).
Large matrix element of O8 ⇒ very large matrix
element of Q6 in order to explain the measured value
of ε′/ε.

• Interesting studies using Domain Wall Fermions also
underway (RBC, CP-PACS). K → ππ amplitudes can
be determined from K → π matrix elements if the
chiral symmetry is sufficiently precise.

• Preliminary results indicate that it is possible to
obtain a ∆I = 3/2 K → ππ decay amplitude which
is consistent with experiment and yet with a large
BK (as indicated above).

Much exciting work do be done during the coming
year or two!!!

30
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. A fundamental task of experimental physics today is the de-

termination of the four parameters of the CKM mixing matrix,

including the phase which results in C\P\. A knowledge of all

parameters is required to confront experiments. Rather, many

experiments are necessary to complete our knowledge of the pa-

rameters and prove the uniqueness of the model or maybe finally

break beyond it.
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5.2 Cabibbo’s Angle

Γ(K → π�ν) ∝ |Vus|2
From PDG

m ∆ Γ BR(e3) Γ(e3)
MeV Mev 107 s−1 106 s−1

K± 493.677 358.190 8.07 0.0482 3.89

error - - 0.19% 1.24% 1.26%

KL 497.672 357.592 1.93 0.3878 7.50

error - - 0.77% 0.72% 1.06%

The above rates for Ke3 determine, in principle, |Vus|2 to 0.8%

and |Vus| to 0.4%. Yet in PDG

|Vus| = 0.2196± 1.05%.
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The problem is estimating-guessing matrix element corrections

due to isospin and SU(3)flavor symmetry breaking.

Decay rates for | i 〉→| f 〉 are obtained from the transition proba-

bility density wfi = |Tfi|2 (S = 1+ iT ):

wfi = (2π)4δ4(pi − pf)(2π)
4δ4(0)|M|2

where

M = 〈 f |H| i 〉
from which

dΓ =
1

8M(2π)3
|M|2dE1dE2.

Γ(�3) ∝ G2
F × |Vus|2 but we must deal with a few details.

1. Numerical factors equivalent to an overlap integral between

final and initial state. Symmetry breaking corrections, both

isospin and SU(3)F .
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2. An integral over phase space of |M|2.
3. Experiment dependent radiative corrections. Or, bad practice,

correct the data.

〈π0 |JH
α |K+ 〉 = 〈 (uū− dd̄)/

√
2 |uū〉 = 1/

√
2

〈π− |JH
α |K0 〉 = 〈 dū |dū〉 = 1

〈π+ |JH
α |K0 〉 = 〈 d̄u |d̄u〉 = 1

〈π+ |JH
α |KL 〉 = −〈 d̄u |d̄u〉/

√
2 = −1/

√
2

〈π− |JH
α |KL 〉 = 〈 d̄u |d̄u〉/

√
2 = 1/

√
2

〈π+ |JH
α |KS 〉 = 〈 d̄u |d̄u〉/

√
2 = 1/

√
2

〈π− |JH
α |KS 〉 = 〈 d̄u |d̄u〉/

√
2 = 1/

√
2 (×f+(q

2)qα〈JL〉α . . .)
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Ignoring phase space and form factor differences:

Γ(KL → π±e∓ν̄(ν)) = Γ(KS → π±e∓ν̄(ν))
= 2Γ(K± → π0e±ν(ν̄))

An approximate integration gives

Γ =
G2|Vus|2
768π3

|f+(0)|2M5
K(0.57+ 0.004+ 0.14δλ+)

with δλ = λ−0.0288. Integration over phase space gives a leading

term ∝ ∆5, where ∆ = MK − ∑
f(m).

(∆5
+ −∆5

0)/∆
5=0.008.

From data, Γ0 = (7.5±0.08)×106, 2Γ+ = (7.78±0.1)×106 and

(2Γ+ − Γ0)/Σ = (3.7± 1.5)%.

This is quite a big difference, though only 2σ, but typical of vio-

lation of I-spin invariance.

The slope difference is ∼0.001, quite irrelevant. The big prob-

lem remains the s − u, d mass difference. For K0 the symmetry
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breaking is ∝ (ms − 〈mu,d〉)2 in accordance with A-G. But then

(ms−〈mu,d〉)2 acquires dangerous divergences, from a small mass

in the denominator. It is argued that it is not a real problem.

Leutwyler and Roos (1985) deal with all these points and radiative

corrections. They are quoted by PDG (Gilman et al., 2000), for

the value of |Vus|. After isospin violation corrections, K0 and K+

values agree to 1%, experimental errors being 0.5%, 0.6%.

Reducing the errors on Γ+ and Γ0, coming soon, will help under-

stand whether we can properly compute the corrections.
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5.3 Wolfenstein parametrization

Nature seems to have chosen a special set of values for the

elements of the mixing matrix: |Vud|∼1, |Vus|=λ, |Vcb|∼λ2 and

|Vub|∼λ3.

On this basis Wolfenstein found it convenient to parameterize

the mixing matrix in a way which reflects more immediately our

present knowledge of the value of some of the elements and has

the CP violating phase appearing in only two off-diagonal ele-

ments, to lowest order in λ=sin θCabibb a real number describing

mixing of s and d quarks.
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The Wolfenstein(4)approximate parameterization up λ3 terms is:

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 =




1− 1
2λ

2 λ Aλ3(ρ− iη)

−λ 1− 1
2λ

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 .

A, also real, is close to one, A∼0.84±0.06 and |ρ− iη|∼0.3.

CP violation requires η �= 0. η and ρ are not very well known.

Likewise there is no C\P\ if the diagonal elements are unity.

The Wolfenstein matrix is not exactly unitary: V †V = 1+O(λ4).

The phases of the elements of V to O(λ2) are:



1 1 e−iγ

1 1 1

e−iβ 1 1




which defines the angles β and γ.
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Several constraints on η and ρ can be obtained from measure-

ments. ε can be calculated from the ∆S=2 amplitude of fig. 19,

the so called box diagram.

At the quark level the calculations is straightforward, but com-

plications arise in estimating the matrix element between K0 and

K0.

Apart from this uncertainties ε depends on η and ρ as |ε| = aη+bηρ

a hyperbola in the η, ρ plane as shown later in figure 23.

The calculation of ε′ is more complicated. There are three ∆S=1

amplitudes that contribute to K→ππ decays, given below to low-

est order in λ for both the real and imaginary parts.

They correpondig to a u, c and t quark in the loop and are illus-
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trated in fig. 19, just look above the dashed line.

u c t, ,
d

W

s

d

W
u c t, ,

s

Fig. 19. Box diagram for K0→K0

A(s → uūd) ∝ VusV
∗
ud ∼ λ (1)

A(s → cc̄d) ∝ VcsV
∗
cd ∼ −λ+ iηA2λ5 (2)

A(s → tt̄d) ∝ VtsV
∗
td ∼ −A2λ5(1− ρ+ iη) (3)

where the amplitude (1) correspond to the simplest way for com-

puting K→ππ→K0 (it diverges by itself but cancels with(2)) in
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the standard model and the amplitudes (2), (3) account for direct

C\P\.

If the latter amplitudes were zero there would be no direct CP

violation in the standard model. The flavor changing neutral

current (FCNC) diagram of fig. 20 called the penguin diagram,

contributes to the amplitudes (2), (3).

Estimates of �(ε′/ε) range from few×10−3 to 10−4.

u c t, ,
d

u c t, ,

W

�� �g Z

q

s

q

Fig. 20. Penguin diagram, a flavor changing neutral current effective operator
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5.4 Unitary triangles

We have been practically inundated lately by very graphical pre-

sentations of the fact that the CKM matrix is unitary, ensuring

the renormalizability of the SU(2)⊗ U(1) electroweak theory.

The unitarity condition

V †V = 1

contains the relations
∑

i
V ∗
ijVik =

∑

i
V ∗
jiVki = δjk

which means that if we take the products, term by term of any

one column (row) element with the complex conjugate of another

(different) column (row) element their sum is equal to 0.
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Geometrically it means the three terms are sides of a triangle.

Two examples are shown below.

1, 3 triangle

1, 2 triangle

V V
td ts

*

V V
cd cs

*

V V
ud us

*

V V
ud ub

*

V V
cd cb

*

V V
cd cb

*

V V
cd cb

*

	1

V V
td tb

*

V V
cd cb

* 	
��� i�� 	i �

��

Fig. 21. The (1,2) and (1,3) Unitarity triangles
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The second one has the term VcdV
∗
cb pulled out, and many of

you will recognize it as a common figure used when discussing

measuring CP violation in the B system.

Cecilia Jarlskog in 1984 observed that any direct CP violation is

proportional to twice the area which she named J (for Jarlskog

?) of these unitary triangles, whose areas are of course are equal,

independently of which rows/columns one used to form them.

In terms of the Wolfenstein parameters,

J � A2λ6η

which according to present knowledge is (2.7± 1.1)× 10−5, very
small indeed! This number has been called the price of C\P\. Its

smallness explains why the ε′ experiments are so hard to do, and

also why B factories have to be built in order to study CP violation
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in the B system, despite the large value of the angles in the B

unitary triangle.

An illustration of why CP effects are so small in kaon decays is

given in fig. 22. The smallness of the height of the kaon triangle

wrt two of its sides is the reason for CP there being a 10−6

effect. The B triangle has all its sides small and the CP effects

are relatively large.

Measuring the various J’s to high precision, to check for devi-

ations amongst them, is a very sensitive way to probe for new

physics! Small perturbations due to phenomena beyond presently

understood physics stand a better chance to disturb strongly sup-

pressed effects in the standard model.

Karlsruhe - Fall 2001 Juliet Lee-Franzini - Particle Physics - V 149



�

A ��

h A	 � �

h A	 � �� 
��� �
�

J
13

J
12

Fig. 22. The B and K Unitarity triangles

5.5 Rare K Decays

Rare K decays offer several interesting possibilities, which could

ultimately open a window beyond the standard model.
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The connection with ρ and η is shown in fig. 23.

1.5

1.0

0.5

-0.5 0 0.5 1.0 1.5 2.0�



Unitarity triangle

�

KL �� � �e e�
�KL � ��

� ��

�

'

B B
0 0, etc.�

�

V

V
ub

cb

K� ���SD�

K� �� ���

Fig. 23. Constraints on η and ρ from measurements of ε, ε′, rare decays and B meson

properties.

Rare decays also permit the verification of conservation laws

which are not strictly required in the standard model, for instance

by searching for K0→µe decays.

Karlsruhe - Fall 2001 Juliet Lee-Franzini - Particle Physics - V 151



The connection between ε′ and η is particularly unsatisfactory

because of the uncertainties in the calculation of the hadronic

matrix elements. This is not the case for some rare decays.

A classifications of measurable quantities according to increasing

uncertainties in the calculation of the hadronic matrix elements

has been given by Buras.(5)

1. BR(KL→π0νν̄),

2. BR(K+ → π+νν̄),

3. BR(KL→π0e+e−), εK,

4. ε′K, BR(KL→µµ̄]SD), where SD=short distance contributions.

The observation ε′ �= 0 remains a unique proof of direct C\P\. Mea-

surements of 1 through 3, plus present knowledge, over determine
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the CKM matrix.

Rare K decay experiments are not easy. Typical expectations for

some BR’s are:

BR(KL → π0e+e−, C\P\]dir) ∼ (5± 2)× 10−12

BR(KL → π0νν̄) ∼ (3± 1.2)× 10−11

BR(K+ → π+νν̄) ∼ (1± .4)× 10−10
Note that the uncertainties above reflect our ignorance of the

mixing matrix parameters, not uncertainties on the hadronic ma-

trix element which essentially can be “taken” from K�3 decays.

The most extensive program in this field has been ongoing for a

long time at BNL and large statistics have been collected recently

and are under analysis.

Sensitivities of ∼10−10 are attainable now, however 10−(12 or 13) is
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really necessary. Experiments with high energy kaon beams have

been making excellent progress toward observing rare decays.

5.6 Search for K+→π+νν̄

This decay, CP allowed, is best for determining Vtd. At present

after analyzing half of their data, E781-BNL obtains BR is about

2.4 × 10−10. This estimate is based on ONE event which sur-

faced in 1995 from about 2.55 × 1012 stopped kaons. The SM

expectation is about half that value. Some 100 such decays are

enough for a first Vtd measurements. Another event was found!

5.7 KL→π0νν̄

This process is a “pure”, direct C\P\ signal. The νν̄ pair is an

eigenstate of CP with eigenvalue +1. Thus CP is manifestly
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violated.
s d sd

u, c, t

u, c, t

u, c, t

s d

W
W

W

Z

� � � �� �

Z

Fig. 24. Feyman Diagrams for KL→π0νν̄

It is theoretically particularly “pristine”, with only about 1-2%

uncertainty, since the hadronic matrix element need not be cal-

culated, but is directly obtained from the measured K�3 decays.

Geometrically we see it as being the altitude of the J12 triangle.

J12 = λ(1− λ2/2)�(VtdV ∗
ts) ≈ 5.6[B(KL → π0νν̄)]1/2
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The experimental signature is just a single unbalanced π0 in a

hermetic detector. The difficulty of the experiment is seen in the

present experimental limit from E799-I, BR<pt5.8,-5,.

The sensitivities claimed for E799-II and at KEK are around 10−9,
thus another factor of 100 improvement is necessary.

The new FNAL and BNL proposals at the main injector are very

ambitious. There is “hope” to make this measurement a reality

early in the third millenium.
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CP violation (as of 2001)

LCP = L∆F=0 + L∆F=1 + L∆F=2

∆F = 0 de < 1.5 · 10−27 e cm, dN < 6.3 · 10−26 e cm
Cummings, Regan; Rutherford-Sussex-ILL

∆F = 1 YES, ε′
ε

∆F = 2 YES, ε, aψKS

(E.g.: δ(CKM) = 0 rather strongly disfavoured )

LP01 Riccardo Barbieri - Quark masses and weak couplings in the SM and beyond 7
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Concentrate on ∆F = 2

In the SM

L∆F=2 =
∑

i,j=d,s,b(Vtdi
V ∗

tdj
)2C(d̄iγµ(1 − γ5)dj)

2

In general

L∆F=2 =
∑

α
∑

i,j=d,s,b(Vtdi
V ∗

tdj
)2Cα

ijO
α
ij

where
α = different Lorentz structures for 4F-operators
Cα

ij = complex num. coeff.s (properly normalized)

from which 〈K|L∆F |K̄〉, 〈Bd|L∆F |B̄d〉, 〈Bs|L∆F |B̄s〉 (6 par.s)

LP01 Riccardo Barbieri - Quark masses and weak couplings in the SM and beyond 8
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