Particle Physics - IV

Juliet Lee-Franzini

Laboratori Nazionali Frascati Karlsruhe University

Karlsruhe - Fall 2001

url: www-ttp.physik.uni-karlsruhe.de/~juliet/

4. The Beauty Quark

The discovery at Fermilab, in 1977 , of the Υ, with mass of ~ 10 GeV , was immediately taken as proof of the existence of the b quark. Actually another set of quarks had been proposed by Kobayashi and Maskawa in 1973 to enlarge the quark sector to six quarks. This allows the introduction of a phase in the quark mixing matrix which could explain $C P$ violation, as we'll see later. The new quark had already been christened: b for beauty or bottom. The b quark has B flavor $B=-1$.

The Upsilons are bound states of a $\bar{b} b$ pair, and have a complex level diagram. There are $9(+3)$ states below the $\bar{B} B$ threshold. A B meson is a bound state of a b quark and a light u, d, s, c quark. We usually denote by a subscript the light quark content.

The vector bound states decay by annihilation into three gluons, $2 g+\gamma$, a photon and by dipole transitions. Just like the J / ψ they have very narrow widths. The visible width of the first three Υ peaks, which are below threshold (the first and third are shown in an antique picture of CUSB), are in fact due to experimental resolution, and, in the original Lederman experiment which discovered them, they were merged into one peak.

The fourth Υ, however, is just above threshold for it to decay into a $B \bar{B}$ pair, where the B mesons are $b \bar{u}, b \bar{d}$ and their charge conjugate states.

In complete analogy to charged and neutral kaons, B^{0} and \bar{B}^{0} are not self conjugate states.

That the $\Upsilon(4 S)$ decays only to $B^{0} \bar{B}^{0}$ pairs was demonstrated by CUSB searching (and not finding) low energy photons from B^{*} decays.

The photons from $B^{*} \rightarrow B+\gamma$ where observed at the next resonance, $\Upsilon(5 S)$. The signal is shown in the next figure.

By disentangling the complex structure above the $\bar{B} B$ threshold, using coupled channel formalism, CUSB also determined the thresholds for $B^{*} B, B^{*} B^{*}, B_{s} \bar{B}_{s}$ etc. production. ${ }^{(1)}$ This suggests that one can chose $B^{0} \bar{B}^{0}$ or B^{*} mesons by just changing the energy of a B factory.
$B^{0} \bar{B}^{0}$'s at the $\Upsilon(4 s)$ are produced in a C-odd state while at the $\Upsilon(5 S)$ the $B^{0} \bar{B}^{0}$ pair is in an even state. At slightly higher energies, only about 1 GeV higher, B_{S} are produced. However, because the $\bar{B}_{S} \leftrightarrow B_{S}$ oscillations (see later) for B_{S} 's are much faster than that of B_{d} 's, one needs to go to the TeVatron and LHC to measure it.
Strictly speaking, one does not have to go to TeV-1 and LHC energies to study $C P$ violation in the B_{s} system. But you better do it for reasons of statistics!

4.1 B semileptonic decays

Because of their massiveness, B 's can decay - weakly - into many more channels than the K 's. We might recall that we owe the long lifetime of the K_{L} to the smallness of the phase space for 3 body decays. The average particle multiplicity in the decay of B and \bar{B} is about six. This also implies that we cannot have two vastly different lifetimes for neutral B 's.

The leptonic modes have a branching ratio of about 25%, with a unique signature, namely a lepton with energy up to half that of the parent Υ.

The sudden appearance of high energy electrons in $e^{+} e^{-}$collisions at $\sim 10.6 \mathrm{GeV}$ gave unambiguous prove of the existence of the b quark in 1980. γ 's have $B=0$ and beauty is hidden in them.

At quark level beauty decays are: $b \rightarrow c \ell^{-} \bar{\nu}$ and $b \rightarrow u \ell^{-} \bar{\nu}$ via a W exchange. With the selection rule $\Delta B=\Delta Q$ operating in a similar way as for $\Delta S=\Delta Q, \bar{b}$ decays to positive leptons, b decays to negative leptons.

The endpoint of the lepton spectrum and its shape depend on the flavor of the hadronic system appearing in the final state. We define as X_{c} a hadronic system with charm $C= \pm 1$ and $U=0$ where U is the uppityness. Likewise X_{u} has $U= \pm 1$ and $C=0$.

The leptonic decays are:

$$
\begin{aligned}
& B \rightarrow \ell^{ \pm}+\nu(\bar{\nu})+X_{c} \\
& B \rightarrow \ell^{ \pm}+\nu(\bar{\nu})+X_{u}
\end{aligned}
$$

where $X_{c}=D, D^{*} \ldots$ with $\bar{M}\left(X_{c}\right) \sim 2 \mathrm{GeV}$ and $X_{u}=\pi, \rho .$. with $\bar{M}\left(X_{u}\right) \sim 0.7 \mathrm{GeV}$.

The expected lepton spectra are shown in fig.

End point kinematics

In B frame

Total decay rates, i.e the inverse of the lifetimes, and branching ratios of B mesons provide the determination of $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$. The correct way is to measure the semileptonic branching ratio by integrating over the whole spectrum.

Definition of the b quark couplings. $\left|V_{t b}\right|^{2}+\left|V_{c b}\right|^{2}+\left|V_{u b}\right|^{2}=1$. $V_{t b} \sim 1$ but $b \rightarrow t \ell \nu$ is energetically forbidden.

An early determination by CUSB already indicated that $\left|V_{u b} / V_{c b}\right|$ is less than $1 / 10$.

Uncertainties in the calculation of the hadronic matrix elements and the shape of the spectrum near the end point introduce errors in the extraction of $\left|V_{u b} / V_{c b}\right|$. The most recent attempts to circumvent the first problem is to use the $b \rightarrow s \gamma$ decay, as reported by Cassel at LP01.

Measuring $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$

$\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ can be determined from semileptonic decays

$$
\begin{gathered}
\Gamma_{S L}^{c} \equiv \Gamma\left(\bar{B} \rightarrow X_{c} \ell \bar{\nu}\right)=\frac{\mathcal{B}\left(\bar{B} \rightarrow X_{c} \ell \bar{\nu}\right)}{\tau_{B}}=\gamma_{c}\left|V_{c b}\right|^{2} \\
\Gamma_{S L}^{u} \equiv \Gamma\left(\bar{B} \rightarrow X_{u} \ell \bar{\nu}\right)=\frac{\mathcal{B}\left(\bar{B} \rightarrow X_{u} \ell \bar{\nu}\right)}{\tau_{B}}=\gamma_{u}\left|V_{u b}\right|^{2}
\end{gathered}
$$

The theoretical parameters γ_{c} and γ_{u} are a serious problem

- $b \rightarrow s \gamma$ decays can substantially reduce γ_{c} model dependence
$\left|V_{c b}\right|$ from Hadronic Mass Moments and $b \rightarrow s \gamma$
$\Gamma\left(\bar{B} \rightarrow X_{c} \bar{\nu}\right)$ can be written in the form

$$
\begin{aligned}
\Gamma_{S L}^{c} & =\frac{G_{F}^{2}\left|V_{c b}\right|^{2} M_{B}^{5}}{192 \pi^{3}}\left[\mathcal{G}_{0}+\frac{1}{M_{B}} \mathcal{G}_{1}(\bar{\Lambda})+\frac{1}{M_{B}^{2}} \mathcal{G}_{2}\left(\bar{\Lambda}, \lambda_{1}, \lambda_{2}\right)\right. \\
& \left.+\frac{1}{M_{B}^{3}} \mathcal{G}_{3}\left(\bar{\Lambda}, \lambda_{1}, \lambda_{2} \mid \rho_{1}, \rho_{2}, \mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{3}, \mathcal{T}_{4}\right)+\mathcal{O}\left(\frac{1}{M_{B}^{4}}\right)\right]
\end{aligned}
$$

- $\bar{\Lambda}, \lambda_{1}, \lambda_{2}, \rho_{1}, \rho_{2}, \mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{3}, \mathcal{T}_{4}$ are nonperturbative parameters,
- We use theoretical estimates of $\rho_{1}, \rho_{2}, \mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{3}, \mathcal{T}_{4}$.

There are similar expressions for the moments

- $\left\langle\left(M_{X}^{2}-\bar{M}_{D}^{2}\right)\right\rangle$ of the $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$ mass spectrum $\left(\mathcal{M}_{n}\right)$ and
- $\left\langle E_{\gamma}\right\rangle$ of the $b \rightarrow s \gamma$ energy spectrum $\left(\mathcal{E}_{n}\right)$.
$\left|V_{c b}\right|$ from Hadronic Mass Moments and $b \rightarrow s \gamma$
To extract $\left|V_{c b}\right|$ we
- determine λ_{2} from $M_{B^{*}}-M_{B}$, and
- determine $\bar{\Lambda}$ and λ_{1} from $\left\langle\left(M_{X}^{2}-\bar{M}_{D}^{2}\right)\right\rangle$ and $\left\langle E_{\gamma}\right\rangle$.

Other experimental parameters:

- $\mathcal{B}\left(\bar{B} \rightarrow X_{c} \ell \bar{\nu}\right)=(10.39 \pm 0.4) \%$ from CLEO,
- $\tau_{B^{-}}$and $\tau_{B^{0}}$ from PDG 2000, and
- $\left(f_{+-} \tau_{B^{-}}\right) /\left(f_{00} \tau_{B^{0}}\right)=1.11 \pm 0.08$ from CLEO.
- $f_{+-} \equiv \mathcal{B}\left(\Upsilon(4 S) \rightarrow B^{+} B^{-}\right)$
- $f_{00} \equiv \mathcal{B}\left(\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}\right)$

Theoretical functions:

- $\left\langle\left(M_{X}^{2}-\bar{M}_{D}^{2}\right)\right\rangle$ are measured for $E_{\ell}>1.5 \mathrm{GeV}$,
- $\quad\left\langle E_{\gamma}\right\rangle \quad$ are measured for $E_{\gamma}>2.0 \mathrm{GeV}$, and
- $\mathcal{G}_{n}, \mathcal{M}_{n}$, and \mathcal{E}_{n} calculated with same cuts using

Falk-Luke, Phys. Rev. D 57, 1 (1998)

$$
\begin{aligned}
& \left|V_{c b}\right|=(40.4 \pm 0.8 \pm 0.5 \pm 0.8) \times 10^{-3} \\
& \left|V_{u b}\right|=(4.09 \pm 0.14 \pm 0.66) \times 10^{-3}
\end{aligned}
$$

Methods (HQET) have been developed to make use of exclusive channels. A good twenty years have been spent in refining:

1. the theory
2. the exclusive channel measurements
3. performing additional measurements to provide parameters necessary for the application of the method.

As shown in five talks at LP01, both theory and experiments still have room for improvements.
$\left|V_{c b}\right|$ from $\bar{B} \rightarrow D^{*} \ell^{-} \bar{\nu}_{\ell}$ Decay

The differential decay width for $\bar{B} \rightarrow D^{*} \ell^{-} \bar{\nu}_{\ell}$ decay is

$$
\frac{d \Gamma(w)}{d w}=\frac{G_{F}^{2}}{48 \pi^{3}} \mathcal{G}(w)\left|V_{c b}\right|^{2} \mathcal{F}_{D^{*}}^{2}(w)
$$

with $w \equiv v_{B} \cdot v_{D^{*}}=\frac{\mathcal{E}_{D^{*}}}{M_{D^{*}}}=\frac{M_{B}^{2}+M_{D^{*}}^{2}-q^{2}}{2 M_{B} M_{D^{*}}} \quad$ (Isgur - Wise)

- v_{B} and $v_{D^{*}}$ are the 4 -velocities of the B and D^{*},
- $\mathcal{E}_{D^{*}}$ is the energy of the D^{*} in the B rest frame. w range is $(1.00<w<1.51)$ for $\bar{B} \rightarrow D^{*} \ell^{-} \bar{\nu}_{\ell}$ decay.

$\left|V_{c b}\right|$ from $\bar{B} \rightarrow D^{*} \ell^{-} \bar{\nu}_{\ell}$ Decay

The form factor $\mathcal{F}_{D^{*}}(w)$

- parameterizes the w dependence of the hadronic current and
- is constrained by Heavy Quark Effective Theory (HQET)
- $\quad \mathcal{F}_{D^{*}}(1) \approx \eta_{A}\left[1+\mathcal{O}\left(1 / m_{Q}^{2}\right)\right]$ for large heavy quark masses

However $\mathcal{G}(1)=0$ (phase space) so

- measure $d \Gamma(w) / d w$ over the full w range,
- extract $\left|V_{c b}\right| \mathcal{F}_{D^{*}}(w)$ and fit it over the full w range,
- extrapolate $\left|V_{c b}\right| \mathcal{F}_{D^{*}}(w)$ to $w=1$ to get $\left|V_{c b}\right| \mathcal{F}_{D^{*}}(1)$.

Reduce w dependence to form factor ratios $R_{1}(1)$ and $R_{2}(1)$, previously measured by CLEO, and a slope parameter ρ^{2} in the fit (Caprini-Lellouch-Neubert)

$\left|V_{c b}\right|$ from $\bar{B} \rightarrow D^{*} \ell^{-} \bar{\nu}_{\ell}$ Decay

After reconstructing the D^{*} and the ℓ, separate the signal from background using the angle $\theta_{B-D^{*} \ell}$ between the momenta of the B and the $D^{*} \ell$ combination

$$
\cos \theta_{B-D^{*} \ell}=\frac{2 E_{B} E_{D^{*} \ell}-M_{B}^{2}-M_{D^{*} \ell}^{2}}{2 P_{B} P_{D^{*} \ell}}
$$

We now have results for $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ and $B^{-} \rightarrow D^{* 0} \ell^{-} \bar{\nu}_{\ell}$ (previously, e.g., ICHEP 2000 Osaka, $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$ only)

$$
\left|V_{c b}\right| \text { from } \bar{B} \rightarrow D^{*} \ell^{-} \bar{\nu}_{\ell} \text { Decay }
$$

$\left|V_{c b}\right|$ from $\bar{B} \rightarrow D^{*} \ell^{-} \bar{\nu}_{\ell}$ Decay

The fit uses:
$\mathcal{F}_{D^{*}}(w)$ from
Caprini-Lellouch-Neubert
$\mathcal{F}_{D^{*+}}(w)=\mathcal{F}_{D^{* 0}}(w)$
$\Gamma\left(D^{*+} \ell \bar{\nu}\right)=\Gamma\left(D^{* 0} \ell \bar{\nu}\right)$
CLEO measurement of
$\left(f_{+-} \tau_{B^{-}}\right) /\left(f_{00} \tau_{B^{0}}\right)$

$$
\left|V_{c b}\right| \text { from } \bar{B} \rightarrow D^{*} \ell^{-} \bar{\nu}_{\ell} \text { Decay }
$$

From the $\bar{B} \rightarrow D^{*} \ell^{-} \bar{\nu}_{\ell}$ fit and systematic error estimates:

$$
\begin{aligned}
\left|V_{c b}\right| \mathcal{F}_{D^{*}}(1) & =(42.2 \pm 1.3 \pm 1.8) \times 10^{-3} \\
\rho^{2} & =1.61 \pm 0.09 \pm 0.21 \\
\Gamma\left(\bar{B} \rightarrow D^{*} \ell^{-} \bar{\nu}_{\ell}\right) & =(0.0376 \pm 0.0012 \pm 0.0024) \mathrm{ps}^{-1}
\end{aligned}
$$

Using PDG 2000 lifetimes and branching fractions

$$
\begin{aligned}
\mathcal{B}\left(B^{-} \rightarrow D^{* 0} \ell^{-} \bar{\nu}_{\ell}\right) & =(6.21 \pm 0.20 \pm 0.040) \% \\
\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}\right) & =(5.82 \pm 0.19 \pm 0.037) \%
\end{aligned}
$$

Using $\mathcal{F}_{D^{*}}(1)=0.913 \pm 0.042$ (BABAR Physics Book)

$$
\left|V_{c b}\right|=\left(46.2 \pm 1.4_{\text {stat }} \pm 2.0_{\text {syst }} \pm 2.1_{\text {thry }}\right) \times 10^{-3}
$$

$\left|V_{c b}\right|$ from $\bar{B} \rightarrow D^{*} \ell^{-} \bar{\nu}_{\ell}$ Decay

Possible sources of apparent difference between CLEO and the LEP experiments

- $D^{*} X \ell \bar{\nu}$ component - CLEO fits - LEP uses model
- Large $\rho^{2}-\mathcal{F}_{D^{*}}\left|V_{c b}\right|$ correlation at LEP
4.2 Mixing and its discovery

Just as with neutral K-mesons, neutral B mesons are not C eigenstates and can mix, i.e, transitions $B^{0} \leftrightarrow \bar{B}^{0}$ are possible.

The first observation of mixing was reported by Argus at the DESY DORIS collider running on the $\Upsilon(4 S)$.

Mixing results in $B \bar{B} \rightarrow B B$ or $\bar{B} \bar{B}$ resulting in decays to same sign lepton pairs $\ell^{+} \ell^{+}$and $\ell^{-} \ell^{-}$. Defining the ratio

$$
r=\frac{\ell^{+} \ell^{+}+\ell^{-} \ell^{-}}{\ell^{+} \ell^{-}+\ell^{-} \ell^{+}+\ell^{+} \ell^{+}+\ell^{-} \ell^{-}}
$$

$r \neq 0$ is proof of mixing, not however of $\& \subset$.
Today, instead of r, the χ_{d} parameter, which is a measure of the
time-integrated $B^{0}-\bar{B}^{0}$ mixing probability that a produced $B^{0}\left(\bar{B}^{0}\right)$ decays as $\bar{B}^{0}\left(B^{0}\right)$, is used.

They are related simply by $r=\chi_{d} /\left(1-\chi_{d}\right)$. The present value of χ_{d} is 0.172 ± 0.01.

4.3 Formalism

We define, analogously to the $K^{0} \bar{K}^{0}$ system,

$$
\begin{aligned}
B_{\mathrm{L}} & =p\left|B^{0}\right\rangle+q\left|\bar{B}^{0}\right\rangle \\
B_{\mathrm{H}} & =p\left|B^{0}\right\rangle-q\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

with $p^{2}+q^{2}=1$

Here L, H stand for light and heavy. The B_{d} 's also have different masses but very similar decay widths.

Mixing is calculated in the SM by evaluating the standard "box" diagrams with intermediate u, c, t and W states. We define:

$$
\Delta M=M_{H}-M_{L}, \quad \Delta \Gamma=\Gamma_{H}-\Gamma_{L}
$$

note that ΔM is positive by definition.

The ratio q / p is given by:

$$
\begin{array}{r}
q / p=(\Delta M-i / 2 \Delta \Gamma) / 2\left(M_{12}-i / 2 \Gamma_{12}\right)= \\
2\left(M_{12}^{*}-i / 2 \Gamma_{12}^{*}\right) /(\Delta M-i / 2 \Delta \Gamma)
\end{array}
$$

where

$$
\Gamma_{12} \propto\left[V_{u b} V_{u d}^{*}+V_{c b} V_{c d}^{*}\right]^{2} m_{b}^{2}=\left(V_{t b} V_{t d}^{*}\right)^{2} m_{b}^{2}
$$

and $M_{12} \propto\left(V_{t b} V_{t d}^{*}\right)^{2} m_{t}^{2}$, so they have almost the same phase.
x and y, for B_{d} and B_{s} mesons are:

$$
x_{d, s}=\Delta M_{d, s} / \Gamma_{d, s}, \quad y_{d, s}=\Delta \Gamma_{d, s} / \Gamma_{d, s}
$$

y_{d} is less than 10^{-2}, and x_{d} is about 0.7 , and if we ignore the width difference between the two B_{d} states,

$$
\left.\frac{q}{p}\right|_{B_{d}} \approx \frac{\left(V_{t b}^{*} V_{t d}\right)}{\left(V_{t b} V_{t d}^{*}\right)}=e^{-2 i \beta}
$$

Therefore $|q / p|_{d}$ is very close to 1 and since $2 \Re \epsilon_{B_{d}} \approx 1-|q / p|_{d}$, $\epsilon_{B_{d}}$ is imaginary. y_{s} is about 0.2 , and x_{s} theoretically could be as large as 20, so far only lower bounds are quoted.
χ_{d} as defined before, in terms of q, p, x, y is

$$
\chi_{d}=\frac{1}{2}\left|\frac{q}{p}\right|^{2} \frac{x_{d}^{2}-y_{d}^{2} / 4}{\left(1+x_{d}^{2}\right)\left(1-y_{d}^{2} / 4\right)}
$$

which reduces to a good approximation:

$$
\chi_{d}=\frac{x_{d}^{2}}{2\left(1+x_{d}^{2}\right)},
$$

from which one obtains that $x_{d}=0.723 \pm 0.032$.

In summary, from evaluating the box diagrams, one finds:

$$
x_{l} \propto m_{t}^{2} \tau_{B_{l}} m_{B_{l}}\left|V_{t l} V_{t b}^{*}\right|^{2}
$$

where the subscript l refers to the light meson partner which makes up the B meson, i.e. $l=s$ or $d^{(2)}$

An amusing historical note. The surprisingly large amount of mixing seen required that the top mass be larger than the then acceptable value of about 20 GeV . Stretching beyond reason the limits for $\left|V_{u b}\right|$ and the value of r than known, a lower limit $M_{\text {top }} \geq$ 40 GeV was obtained.

The first CUSB limit on $\left|V_{u b}\right|$ already implied $M_{\text {top }}>120 \mathrm{GeV}$. Theorist were at that time still misled by prejudice and intimidated by very wrong experimental findings and only had the courage to claim a top mass of $\sim 40 \mathrm{GeV}$.

Using the top mass today known, and ΔM measured from the $B^{0} \bar{B}^{0}$ oscillation frequency from experiments at FNAL and LEP, one obtains the estimates $\left|V_{t d}\right|=(8.4 \pm 1.4) \times 10^{-3}$ and $\Im\left(V_{t d} V_{t b}^{*}\right)=$ $(1.33 \pm 0.30) \times 10^{-4}$.

Fig. 26. Fit to data in the $\eta-\rho$ plane.

From a fit, shown in fig. 26, Parodi et al., (3) obtain

$$
\sin 2 \beta=0.71 \pm 0.13, \quad \sin 2 \gamma=0.85 \pm 0.15
$$

Of course the whole point of the exercise is to measure directly η and ρ and then verify the uniqueness of the mixing matrix.

Especially one should not use, implicitly or otherwise the unitarity of the mixing matrix in order to verify whether the matrix is indeed unitary.

