
Introduction to

Chiral Perturbation Theory

Gino Isidori
INFN −Laboratori Nazionali di Frascati

Karlsruhe, 13 Feb. 2003

Motivations and basic principles
Lowest−order Lagrangians
Non−leptonic weak interactions
Beyond lowest order
A detailed example: Kl3 decays and the Cabibbo angle 

Other interesting issues in kaon physics
Conclusions 



At low energies (E « 1 GeV) QCD is in a highly non−perturbative regime

very difficult to describe the (low−energy) hadronic world                
in terms of partonic degrees of freedom.  

However... 
the hadronic spectrum is very simple at low energies:                           
only 8 (3) pseudoscalar fields separated by a mass gap                   
from the heavier states

the interactions among the pseudoscalar mesons become                
weak in the limit E → 0

Reasonable to expect that QCD can be treated in a perturbative way even at low 
energies with a suitable choice of degrees of freedom:

(q, G)    pQCD 

[ perturbative @ high E ]

(π, Κ, η)   CHPT

[ perturbative @ low E ]

Motivations and basic principles



CHPT  is a typical example of Effective Quantum Field Theory, or of a QFT 
which has an intrinsic limitation in the (energy) range of validity (E < Λ). 

All QFT we know (including the Standard Model) can be considered as EQFT, 
or as low energy approximations of "more fundamental" theories, valid up to 
higher energy scales. 

basic 
principle: 

Only few degrees of freedoms are relevant in a given 
energy range: the heavy (lighter) ones can be integrated out.

Do we need renormalizability (in the "classical" sense) within EQFT ?

    Renormalizable theories are a particular subset of EQFT with 

the virtue of being very predictive (only a finite set of couplings need  
independently of the energy range)

the disadvantage of non containing explicit indications about their 
validity range



General consistency conditions for EQFT:
[replacing the "classical" requirement of renormalizability]

for any n  ≥  0 there is only a finite set of operators 

contributing at  O(E n)  to the physical amplitudes

 the coefficients of these operators,  C    , scale according to  
   

(n)
i

(n+k)
iC       /C        ∼  O(1/Λk  ) 

 (n)
 j

Only a finite set of couplings is needed to describe the physics at E < Λ with 
arbitrary precision [the theory is "renormalizable order by order" in the energy 
expansion of the physical amplitudes]

The operators needed to regularize the theory must be organized
in a power series (defining the perturbative expansion) such that

Aphys E =∑i
an

E

Λ

n



L
QCD

0 =∑i=0

N
f

q̄i iDµqi B 1

4
GµνGµν + L

heavy quarks

Global invariance: SU N f L×SU N f R×U 1 V×U 1 A

     not manifest in the hadronic spectrum
(only an approximate                   is realized)

[chiral group G]

Chiral Symmetry: 

broken at the quantum level 
by the axial anomaly

realized
in nature
[CVC]SU N

f V

Basic assumptions of CHPT  (Nƒ = 2 or 3):

 G  is spontaneously broken into  H = SU(Nƒ) L+R

   (π) or (π,Κ, η)  → Goldstone bosons of G/H  [correct quantum numbers, 
                                     small masses, vanishing interactions for E → 0]

The O(mq) explicit breaking terms can be treated                                                     

as small perturbations around                                                                                
the chiral limit  

M π
2 ⁄M ρ

2 ∼ 0.03

M K
2 ⁄M ρ

2 ∼ 0.4

Nƒ  massless quarks ⇒ 

  ⇒consistency 
check



Chiral realization of the QCD functional:

e =∫Dq D q̄ DG e 3 ∫Dφ e
Z ∫ L

QCD
q, q̄ ,G; ∫ Lχ φ ;J                                                                J                                           J

φ = Goldstone boson fields, parameterizing G/H  
[transforming non linearly under G ]

J   = external sources 
[transforming linearly under G (or H)]

Lχ = Lχ  + Lχ   + Lχ   + ... 

      =

(2)          (4)           (6)

S. Weinberg, Phys. Rev. Lett. 18 (67) 188 

most general series of operators transforming linearly under G, 
(⇒ same symmetry properties of LQCD), written in terms of φ and J, 
organized in a power series according to the number of derivatives 
(⇒ powers of the external momenta in physical amplitudes) 

N.B: CHPT is not a model of QCD !



The general procedure to construct non−linear realizations of a spontaneously 
broken group, in terms of its Goldstone boson fields,  has been analyzed in the 
classical papers by Callan, Coleman and Zumino

The key element is the so−called connection of G/H:  

S. Coleman, J. Wess, B. Zumino, Phys. Rev. D177 (69) 2239
C.G. Callan, S. Coleman, J. Wess, B. Zumino, Phys. Rev. D177 (69) 2239 

u(φ)           gL u(φ) h−1  =  h u(φ) gR
−1                 [ gL,R  i G,   h i H ]G

There are several ways to express u in terms of φ, but they are all equivalent    
and leads to the same physical results. 

u(φ) =  e iφ/√2F F = free parameter
[dimension ~ E]    Fπ

starting from u and ext. sources we get all 
possible ops. transforming linearly under G: U = u I u = u2 →  gLUgR

−1 

U+ = u+ I u+  →  gR U
+ gL

−1 

x  

Simplest choice: 



φ =
π0 ⁄ 2+η⁄ 6 π+ K+

πB Bπ0 ⁄ 2+η⁄ 6 K 0

KB K̄ 0 Bη 2⁄3

If we do not include external fields (and symmetry breaking terms), the first non−
trivial operator invariant under G appears at O(p2) and has a unique structure:  

Lowest−order Lagrangians

Lχ
2 = F2

4
tr ∂µU+∂µU = 1

2
tr ∂µφ∂µφ + 1

6 F2
tr ∂µφ ,φ ∂µφ ,φ +…

Coupling fixed to get the 
standard kinetic term

Infinite series of interaction terms: 

all of O(p2) 

all ruled by a single coupling: F

U(φ) =  e i√2φ/F



To get in contact with the real (non−chiral...) world, we must introduce also the 
explicit symmetry−breaking terms  ⇒  this can be done very efficiently by means 
of suitable external fields:

L
QCD

lµ , rµ , s , p =L
QCD

0 +q̄
L
γ µ lµq

L
+q̄

R
γ µ rµq

R
Bq̄

R
s+ip q

L
Bq̄

L
sBip q

R

J. Gasser, H. Leutwyler, Ann. Phys, 158 (84) 142

We can preserve a (formal) invariance under G choosing appropriate            
transformation properties for the ext. fields

But we recover the breaking terms freezing the ext. fields to appropriate vevs

                                                                                       

sBip → g
L

sBip g
R

B1[E.g.:                                            ] 

[E.g.: 〈 s 〉 = diag (mu , md , ms) ]

 The other big advantage of this procedure is that, by means of vector and axial 
vector sources, we systematically describe also the interactions of the pseudo−
Goldstone boson fields with the external SM electroweak fields [ γ, W & Z ]:

rµ=Be Q Aµ + O Zµ

lµ=Be Q Aµ B e

2 sin ϑ
W

T+W µ
++h.c. + O Zµ T+ =

0
0 0 0
0 0 0

Q = diag (2/3, −1/3, −1/3)

Vud   Vus



Lχ
2 lµ , rµ , s , p = F2

4
tr DµU+ DµU+χ+U+U+χ

DµU=∂µU+i U lµBi rµU , χ=2 B s+ip ∼ O p2

The lowest−order chiral realization of                                  is simply given by:L
QCD

lµ , rµ , s , p

and it’s completely determined in terms of two couplings: F & B

Looking at the derivatives of the generating functional with respect to the 
external fields, it is easy to realize that F &  B can be determined by the two 
following (non−perturbative) expectation values: 

0 ū
L
γ µd

L
πB p = Bi

2
pµ =Bi

2
1+O m

q
pµFπ               F

def 

0 q̄ q 0 = −B F2   ⇒   (Mπ)2  = B (mu+md)  

                  (MK+)2 = B (mu+ms)

                  (MK0)2  = B (md+ms)

where 

  1 parameter−free prediction: 

3 M
η8

2 =4 M
K

2 BMπ
2

[Gell−Mann−Okubo mass formula]



Computing physical processes by means of                            we recover all known 
results of current algebra in a very simple way 

Lχ
2 lµ , rµ , s , p

Explicit example of a tree−level process:

W
νe

 e +

K

π

 +

0

K+→π0 e+ν
e

To a good approximation, within this process 
the W boson can be considered as an external 
source from the point of view of QCD (or CHPT)

lµ→ B e

2sinϑ
W

Wµ
Bδ

31
  Vus

*

L
1Blµ

2 = i F 2

2
tr lµ∂µU+U = B

i e F 2 V
us

∗

2 2sinϑ
W

W µ ∂µU+U
13

+ …

= B
i e V

us

∗

4sinϑ
W

W µ ∂µπ
0 K+B∂µ K+π0 + …

A K+→π0 e+ν
e

2 =
i G

F

2
p

K
+pπ µ ū pν γ µ 1Bγ 5 v p

e

  Vus
*



Non−leptonic weak interactions

K

ππ

π

W

Within these processes the W cannot be 
considered anymore as an external field 

two very different scales involved:  MK & MW 

"double" EQFT approach to simplify the problem

  1) Construction of the partonic effective |∆S|=1 Hamiltonian
Purpose: resummation of the large logs generated in pQCD

1

s              d

d             u

G. Altarelli, L. Maiani,  ’74
M.K. Gaillard, B.W. Lee, ’74
  x
A.J. Buras et al., ’93−’94
M. Ciuchini et al., ’93−’94

   large logs of the type                                       p ~ external momenta      α
S
log p2⁄M

W

2



H
eff

∆ S = 1 = ∑i
C

i
µ O

i
+ O µ2⁄M

W

2

µ = renormalization scale
ΛQCD  « µ « MW   

Wilson coefficients

resummed by means of RGE

α
S

n µ ⋅log µ⁄M
W

n ,

α
S

n+1 µ ⋅log µ⁄M
W

n ,…

4−quark operators

∼ s̄αΓd β ūβΓ uα

A K →ππ = ∑i
C

i
µ ππ Q

i
K µ

pQCD effects         non−perturbative dynamics

Original problem reduced to the evaluation of hadronic matrix elements 
of a finite set of four−quark operators  (11 for  mc < µ <  mb )



 2) Chiral realization of the  |∆S|=1 non−leptonic Lagrangian

H
eff

∆S = 1 = ∑i
C

i
µ Q

i transforms linearly under SU 3
L
×SU 3

R

8
L
,1

R
27

L
,1

R
8

L
,8

R

                

Z (γ)

W 

g 

W 

W W 

first non−vanishing
chiral realization 
at O(p2)  (unique) 

first non−vanishing 
chiral realization 
at O(p2)  (unique) 

non−vanishing chiral real. at O(p0)   
   ⇒  coeff. suppressed by O(e2)
         relevant to CPV only

N.B.: Chiral symmetry alone does not help  to evaluate hadronic matrix 
elements of 4−quark operators (new unknown couplings), it only helps to 
relate each other the matrix elements of a given operator in different processes



Lowest−order non−leptonic weak Lagrangian:

L
W

2 = G8 F 4 tr λ̂ Lµ Lµ

+G
27

F 4 Lµ 23
Lµ

11
+2

3
Lµ 21

Lµ
13

+G
8
F 6 tr λ̂U+ Q U + h.c.

Lµ= Lµ
+=iU+ DµU=u+uµu

λ̂ =
0 0 0
0 0 1
0 0 0

Gi  =  new unknown couplings to be determined by data (or Lattice−QCD)

Using the exp. results on  A(K → 2π):  
G8 Y 9.1×10B6

G27⁄G8 5.7×10B2

GeV−2

Most general structure of O(e0p2) & O(e2p0)

Parameter−free predictions for the leading CP−conserving amplitudes of 
K→3π,  K→2πγ & K→3πγ,  which typically differ by factors of 20−30% 
from experimental data



Beyond lowest order

The present accuracy of experimental data on K decays is certainly a good 
motivation to look for NLO terms in the chiral expansion

eZ J =∫D u φ e
∫ L

χ
2 +L

χ
4 +....

⇒    Ζ[J] = Ζ(2)[J] + Ζ(4)[J] + ... 

Z(2)[J] = tree−level amplitudes from  Lχ
(2)

Z(4)[J] = Lχ
(2)  ⊗ Lχ

(2) loops 

             + tree−level from  Lχ
(4)  [ ⊃ counterterms needed to regularize one−loop div.]     

            + chiral realization of the axial anomaly [Wess−Zumino−Witten term] 

 x

The loop expansion provides an independent indication  
for the effective scale controlling the chiral expansion: 

      Λχ = 4πFπ ∼ 1.2 GeV   [⇒ good convergence]

Unfortunately, the predictivity of the 
theory decreases (but does not vanish!) 
because of the increase of free parameters

p2

Fπ
2

p2

Fπ
2

1

16π2
×       ×



O(p4)
Gasser−Leutwyler 

’84−’85
[Li : 10 + 2]

   virtual photons O(e2p2)
Urech ’95

Neufeld−Rupertsberger ’96
[Ki : 11 + 3]

 internal W
’s 

O(G8 p4)
Kambor et al. ’91
Ecker et al. ’94

[Ni : 22 (11+11)+15]

 2 meson loops
O(p6)

Fearing−Scherer ’96
Bijnens et al. ’99

[Ci : 90 + 4]

 virtual leptons

 virtual photons 

O(e2p2)
Knecht et al. ’99

[Xi : 5 + 2]

O(G8 e2p2)
Cirigliano et al. ’99

Ecker et al. ’00
[Zi : 15 + 17]

Present status of NLO chiral  Lagrangians
in the mesonic sector:

⊕
O(G27 p4)  [Di : 23+5] 

Kambor et al. ’91, E.−Farese ’91

N = n. of relevant physical couplings

N = n. of independent combinations in allowed processes                 



Despite the large number of new parameters, the theory still have a significant 
predictive power, since:

K → 3π  amplitudes:

In several subsets of processes we can 
identify more observables that CT 
combinations [e.g.: K → 3π Dalitz plots]

In some cases symmetry arguments 
forbids any CT contribution                 
[e.g.: KS → γγ,  KL → π0γγ,  η → π0γγ, ...]

+                              + ...       ⇒ finite O(p4) amplitude

In some cases the (loop−induced) chiral logs dominate over local CT 
[e.g.: KL → e+e−    ⇒                         ]log m

K
2 ⁄m

e
2



Moreover, we can try to estimates the value of the CT using non−perturbative 
information about QCD  (i.e. going beyond the pure CHPT approach):

Resonance saturation (and large Nc)

π           π

    ρ

π           π

Matching between CHPT & dispersion relations

excellent tool in (strong) processes with large amount of data, e.g.: ππ→ππ

Matching between CHPT & Lattice−QCD

most promising tool in the case of non−leptonic weak interactions      
however, present simulations are still far from precision estimates

good agreement with exp.
determinations in the 
strong sector.



vector form factor at zero 
momentum transfer [ t=(p’−p)2=0]

The rates of the four Kl3 decays [ K=K+,KL    l=e,µ ] can be written as

Γ=GF
2 M K

5
×|Vus|

2
×|f+(0)|

2
 × I(df/dt)

kinematical integral:
mild sensitivity to df+/dt  

(and  f−/f+  for l=µ) 
and e.m. corrections

K p’ ū γ µ s π p = C p’+ p µ f + t + p’B p µ f B t

CVC  ⇒   f+(0) = 1  in the SU(3) limit  ms  = mu = md

Three main issues to address in order to extract |Vus|: 

estimates of the SU(3) breaking term f+(0)−1

e.m. corrections
kinematical dependence of the form factors [mainly an exp. issue]

A detailed example: Kl3 decays and the Cabibbo angle 



E.m. corrections:

 s        u I. short−distance corrections to the s → u l νl  eff. Hamiltonian

sizable [ ~ α log(µhad/MW)  ⇒  δΓ ~ 1% ] 

well known    Marciano & Sirlin, ’70− ’80

II. pure long−distance corrections  (IR div. & bremss.)

sizable [ ~ α log(MK/me)  ⇒  δΓ ~ 1% ] 

only partially known till last year   

Cirigliano et al. ’01

III. structure−dependent (intermediate−scale) terms

small [ no large logs  ⇒  δΓ ~ 0.1% ]

model dependent  

Ginsberg, ’66− ’69
(Coulomb corrections)

Coherent analysis of the 3 effects (particularly II. + III.) possible in 
the framework of CHPT [non−trivial results at O(e2p2)]  

Systematic estimate of the model−dependent terms obtained by 
varying the O(e2p2) counterterms within conservative ranges 

K       π

ν 
e

W



A crucial point in the analysis of e.m. corrections is the identification  of 
I.R. safe observables.

most convenient choice:      Γ(Kl3) incl.  = ∑Γ K →π lν
l
+n γ

The recent work by Cirigliano et al. provides a clear prescription to separate, in 
this observable,  model−independent non−local terms  [which modify the decay 
distrbution]  from the local counterterms of O(e2p2)  [which can be re−absorbed 
in f(0) ]

δQED = −1.27%
δCT = (+0.36 ± 0.16)%

N.B.: are we sure that the (old) PDG data on Γ(Kl3) are completely inclusive ? 

   ⇒  important exp. issue to extract  Vus (together with the kinem.                 
               dependence of the form factor)  in view of new precise measurements 

e.g.:    Γ(Ke3) incl.  ∝ |f+(0)|
2
 × I(df/dt)

+



Th. estimates of  f+(0) − 1

At O(p2) [LO in CHPT]:

At O(p4): finite (unambiguous) non−polynomial corr. induced by meson loops   

 No linear corrections in  (ms−mu )          [Ademollo−Gatto theorem, ’64]

[ ~ mP log mP  ⇒  ~ (ms−mu )
2/ms   ] numerically small:   δ(4) = −2.2%

K 0π+
 f+      (0)    1δ =                −     =  0

At O(p6): appearance of  B2 (ms−mu )
2/Λ4

χ  local terms

   reasonable estimate:  δ(6) = −1.6 ± 0.8 %

K 0π+              K
 +

π0

 f+      (0)/f+      (0)

 ⇒ precise determination of the isospin−      

      breaking ratio                                  

   [Leutwyler−Roos, ’84]

Is it really conservative? Can we improve the determination
of CT by means of other processes and/or Lattice−QCD ? 

K   

π

π
K

⇒ interesting  
     on−going activity



The extraction of |Vus|

Cirigliano, Colangelo,
Lopez−Castro & G.I.  ’02
[CERN CKM workshop]

 f (0)×Vus data after the 
inclusion of 
SU(2) corrections

th. error [on SU(2) corr.]

 (Vus)today  =  0.2196 ± 0.0026         (∆Vus )today  =  0.86%exp +  0.82%th.−f (0)

 (Vus)unit.   = [1−|Vud|2−|Vub|2]1/2 = 0.2269 ± 0.0021  2.2σ  (3%)  difference!  

A rather intriguing situation which KLOE could substantially help to clarify, 
already with the available data

= 2002 PDG values [old data] = prelim. BNL−E865



Other interesting issues in kaon physics

Kl4 and ππ phase shifts

K+→(π+π−)l+ν  form factors:  F
i

s = f
i
o s e

iδ
0
0 s

+...

possible to isolate the contribution of the δ’s 
by looking at the asymmetry in the distribution 
of the angle between ππ and lν planes 

strong ππ phases

ππ phase shifts near thresholds [⇔     scattering lengths] are among the most precise 
observables we can compute in CHPT,  and also among the most interesting ones  
[        strongly depends from the beahaviour of                  in the chiral limit]:  a0

0

a
J

I

0 qq 0

δ
0

0 s 3 a
0

0 =
0.16 O(p2) Weinberg ’79

0.20   ± 0.01 O(p4) Gasser & Leutwyler ’83 

0.220 ± 0.005 O(p6) Bijens, Colangelo, Ecker, Gasser & Leutw. ’99
Ananthanarayan et al. ’01

 



A recent measurement by BNL−E865 [hep−hp/0301040] as provided an important 
check of CHPT expectations: 

a
0

0 = 0.216±0.013 a
0

0 = 0.220±0.005

CHPT [+ disp. relations]BNL−E865  [ + th. contsr. on a2]

Probably we will learn
even more from future 

data by KLOE & NA48b



Linear fit

Fit including W
 ππ

 

K→πl
+
l
−
 decays & short−distance dynamics

The rare FCNC modes  K±→ π±l
+
l
−  

&  KS
 → π0 l

+
l
−
 are dominated by long−

distance amplitudes ⇒ calculable in CHPT up to local terms:

π
π-

π+

K γ

     2 independent CT for charged & 
neutral channels: we cannot predict 

⇒  weak K → πγ∗  form factor: F(z) = Wππ(z) + Wpol
 (z)

model−independent

B(KS→ π0e+e-) using the measured

Recent data on  K+→  π+e+e-
 
 show a 

significant evidence for Wππ(z)      
[good consistency of the theory] 

however, the value of the CT is larger 
than expected in naïve power counting 

Important clue of VMD in weak decays

  B(K+→ π+e+e-)=(2.94±0.14)×10
−7

 



To fully understand the VMD mechanism of these transition we would need to 
observe also the neutral mode: KS

 → π0e+e−   [VMD expectation: BR ~ 10−8 − 10−9]

Then we would have all the ingredients to extract the interesting FCNC 
short−distance amplitude from a (future) measurement of B(KL

 → π0e+e−)

2.  indirect CPV:  BCPV−ind =  3×10
−3
× Β(KS→ π0e+e−)                     

     if the VMD description works, we will be able to determine       
     also the sign of the interference

3.  CPC amplitude:  BCPC  < 10
−12

 
     strong constraints derived again from CHPT, be means of the     
     recent data on KL→ π0γγ   [NA48 ’00]

 B(KL→ π0e+e−)CPV−dir ~ 4×10
−12   

1.  direct CPV amplitude 
     short−distance dominated, proportional to Im(Vts

*Vtd)   

Components of the KL
 → π0e+e− amplitude [single γ exchange forbidden by CP]:



Conclusions

CHPT is a rather mature EQFT [NNLO analyses of several observables 
have already been performed] and there is no doubt that it provides a very 
powerful tool to for precise/systematic studies of low−energy physics.

The fact that CHPT is a mature subject does not mean is not anymore an 
interesting field: 

We don’t need anymore to  tests  CHPT [there is no doubt the the 
theory works...] but we still need to investigate it’s validity range

A lot of activity is presently focused on how to merge CHPT with 
other non−perturbative methods in oder to enhance the predictive 
power [two main directions: lattice QCD, large Nc]


