g-2

Paolo Franzini

Rome and Karlsruhe

Karlsruhe - Fall 2001

1. The gyromagnetic ratio

By definition, the gyromagnetic ratio g of a state of angular momentum J and magnetic moment μ is:

$$g = \frac{\mu}{\mu_0} / \frac{J}{\hbar}.$$

For a particle of charge e in a state of orbital angular momentum **L** we have:

$$\vec{\mu} = \mu_0 L, \quad \mu_0 = \frac{e}{2m}, \quad g = 1.$$

For an electron $\mu_0 = \mu_B = 5.788 \dots \times 10^{-11} \text{ MeV T}^{-1} (\pm 7 \text{ ppb}).$

The importance of g in particle physics is many-fold. A gross deviation from the expected value, 2 for charged spin 1/2 *Dirac* particles, is clear evidence for structure.

Thus the electron and the muon ($g \sim 2.002$) are elementary particles while the proton, with $g_p=5.6$ is a composite object. For the neutron g should be zero, measurements give $g_n = -3.8$

Small deviations from 2, $\sim 0.1\%$, appear as consequence of the self interaction of the particles with their own field. Experimental verifications of the computed deviations are a triumph of QED.

We also define the anomaly, a = (g - 2)/2, a measure of the so called anomalous magnetic moment, $(g - 2)\mu_0$.

QED is not all there is in the physical world. The EW interaction contributes to a and new physics beyond the standard model might manifest itself as a deviation from calculations.

2. Magnetic moment

The classical physics picture of the magnetic moment of a particle in a plane orbit under a central force is illustrated on the side. $\vec{\mu}$ is along L, $\mu_0 = q/2m$ and g=1. This remains true in QM. For an electron in an atom, $\mu_{\rm B} = e/2m_e$ is the Bohr magneton. L $\parallel \vec{\mu}$ is required by rotational invariance.

When we get to intrinsic angular momentum or spin the classic picture loses meanings and we retain only $\vec{\mu} \parallel \mathbf{L}$. We turn now to relativistic QM and the Dirac equation.

2.1 g for Dirac particles

In the non-relativistic limit, the Dirac equation of an electron interacting with an electromagnetic field $(p_{\mu} \rightarrow p_{\mu} + eA_{\mu})$ acquires the term

$$\frac{e}{2m}\vec{\sigma}\cdot\mathbf{B}-eA^{\mathbf{0}}$$

which implies that the electron's intrinsic magnetic moment is

$$\vec{\mu} = \frac{e}{2m} \vec{\sigma} \equiv \frac{e}{2m} \mathbf{S} \equiv g\mu_B \mathbf{S},$$

where $S = \vec{\sigma}/2$ is the spin operator and g=2.

The prediction g=2 for the intrinsic magnetic moment is one of the many triumphs of the Dirac equation.

3. Motion and precession in a B field

The motion of a particle of momentum p and charge e in a uniform magnetic field B is circular with $p = 300 \times B \times r$. For $p \ll m$ the angular frequency of the circular motion, called the cyclotron frequency, is:

$$\omega_{\rm C} = \frac{eB}{m}.$$

The spin precession frequency at rest is given by:

$$\omega_s = g \frac{eB}{2m}$$

which, for g=2, coincides with the cyclotron frequencies.

This suggests the possibility of directly measuring g - 2.

For higher momenta the frequencies become

$$\omega_{\rm C} = \frac{eB}{m\gamma}$$

and

$$\omega_s = \frac{eB}{m\gamma} + a\frac{eB}{m}$$

or

$$\omega_a = \omega_s - \omega_{\rm C} = a \frac{eB}{m} = a \gamma \omega_{\rm C}$$

For a = 1 ($\gamma = 1$), spin rotates wrt momentum by 1/10 turn per turn.

4. $\pi \rightarrow \mu \rightarrow e$

The rate of high energy decay electrons is time modulated with a frequency corresponding to the precession of a magnetic moment $e/m(\mu)$ or a muon with g=2. First measurement of $g(\mu)!!$

Also a proof that P and C are violated in both $\pi\mu\nu$ and $\mu \rightarrow e\nu\overline{\nu}$ decays.

High energy positrons have momentum along the muon spin. The opposite is true for electrons from μ^- .

Detect high energy electrons. The time dependence of the signal tracks muon precession.

5. The first muon g - 2 experiment Shaped B field

Performed in CERN, in the sixties. Need more turns, more γ .

Next step: a storage ring.

6. The BNL g-2 experiment (g-2)_u Experiment at BNL

LP01 James Miller - $(g-2)_{\mu}$ Status: Experiment and Theory **21** Karlsruhe - Fall 2001 Paolo Franzini - g-2 12

(exaggerated ~20x) With homogeneous \vec{B} , all muons precess at same rate

LP01 James Miller - $(g-2)_{\mu}$ Status: Experiment and Theory 22

With homogeneous \vec{B} , use quadrupole \vec{E} to focus and store beam

Spin Precession with \vec{B} and \vec{E}

$$\vec{\omega}_a = \frac{e}{mc} [a_\mu \vec{B} - (a_\mu - \frac{1}{\gamma^2 - 1})\vec{\beta} \times \vec{E}]$$

Choose "Magic" $\gamma = \sqrt{\frac{1+a}{a}} \cong 29.3 \rightarrow \text{Minimizes the } \vec{\beta} \times \vec{E}$ term

- $\gamma \cong 29.3 \rightarrow p_{\mu} \cong 3.094$
- $B \cong 1.4T \rightarrow \text{Storage ring radius} \cong 7.112m$
- $T_c \cong 149.2ns$ $T_a \cong 4.365 \mu s$
- $\gamma \tau \cong 64.38 \mu s$

(Range of stored momenta: $\cong \pm 0.5\%$)

LP01 James Miller - $(g-2)_{\mu}$ Status: Experiment and Theory 23

ω_a Measurement

- $\mu^+ \to e^+ \bar{\nu}_{\mu} \nu_e$, $0 < E_e < 3.1 GeV$
- Parity Violation \rightarrow for given E_e , directions of \vec{p}_{e^+} and \vec{s}_{μ} are correlated For high values of E_e , \vec{p}_{e^+} is preferentially parallel to \vec{s}_{μ}
- number of positrons with $E > E_{threshold}$ $N(t) = N_0(1 + A(E) \cos(\omega_a t + \phi))$

LP01 James Miller - $(g-2)_{\mu}$ Status: Experiment and Theory 24

LP01 James Miller - $(g-2)_{\mu}$ Status: Experiment and Theory 25

Array of NMR probes moves through beam tube on

James Miller - $(g-2)_{\mu}$ Status: Experiment and Theory 27 LP01

Determination of Average B-field (ω_p) of Muon Ensemble

Mapping of B-field

- Complete B-Field map of storage region every 3-4 days Beam trolley with 17 NMR probes
- Continuous monitor of B-field with over 100 fixed probes

Determination of muon distribution

• Fit to bunch structure of stored beam vs. time

LP01 James Miller - $(g-2)_{\mu}$ Status: Experiment and Theory 28

Determination of Muon Distribution

LP01 James Miller - $(g-2)_{\mu}$ Status: Experiment and Theory **30** Karlsruhe - Fall 2001 Paolo Franzini - g-2 20

5-parameter function (used to fit to 1998 data) $N(t) = N_0 e^{-\lambda t} [1 + A \cos(\omega_a t + \phi)]$

LP01 James Miller - (g-2) $_{\mu}$ Status: Experiment and Theory 32

+
$$e \Rightarrow \mu, \tau; \ u, d, c, s, t, b; \ W^{\pm} \dots$$

 $a_e = \frac{\alpha}{2\pi} + \dots c_4 (\frac{\alpha}{\pi})^4 = (115965215.4 \pm 2.4) \times 10^{-11}$
Exp, e^+ and e^- : = (....18.8 ± 0.4) × 10^{-11}

Agreement to \sim 30 ppb or 1.4 σ . What is α ?

7.1 a_{μ}

Both experiment and calculation more difficult.

 a_{μ} is $m_{\mu}^2/m_e^2 \sim 44,000$ times more sensitive to high mass states in the diagrams above. Therefore:

- 1. a_{μ} can reflect the existence of new particles and interactions not observed so far.
- 2. hadrons pion, etc become important in calculating its value.

Point 1 is a strong motivation for accurate measurements of a_{μ} .

Point 2 is an obstacle to the interpretation of the measurement.

1. – New Physics

For calibration we take the E-W interaction

 $\langle \phi \rangle = 236 \text{ GeV}$ M~90 GeV $\delta a_{\mu}(\text{EW})=150 \times 10^{-11}$

SUSY:

 $\delta a_{\mu}(\text{SUSY}) \sim 150 \times 10^{-11} \times$ (100 Gev/ \tilde{M})²×tan β

 δa_{μ} , (hadr - 1)~7000 × 10⁻¹¹ All these effects are irrelevant for a_e

$$a_{\mu} = \frac{\alpha}{2\pi} + \dots c_4 (\frac{\alpha}{\pi})^4 = (116591596 \pm 67) \times 10^{-11}$$

Exp, μ^+ : = (... 2030 ± 150) × 10^{-11}

Measured-Computed=430 \pm 160 or 2.6 σ , \sim 3.7 \pm 1.4 ppm.

!!!!?????

Standard Model Value for a_{μ} [1]

- $a_{\mu}(QED) = 116584706(3) \times 10^{-11}$
- $a_{\mu}(HAD; 1) = 6924(62) \times 10^{-11} (DH98)$
- $a_{\mu}(HAD; > 1) = -100(6) \times 10^{-11}$ (Except LL)
- $a_{\mu}(HAD; LL) = -85(25) \times 10^{-11}$
- $a_{\mu}(EW) = 151(4) \times 10^{-11}$
- TOTAL = $116591596(67) \times 10^{-11}$

[1] Czarnecki, Marciano, Nucl. Phys. B(Proc. Suppl.)76(1999)245

Used by the BNL g-2 experiment for comparison. Addition of above errors in quadrature is questionable.

8.
$$\sigma(e^+e^- \rightarrow \pi^+\pi^-)$$

 δa_{μ} (hadr - 1) \sim 7000 imes 10⁻¹¹

 $\sigma(e^+e^- \rightarrow \text{hadrons})$ is dominated below 1 GeV by $e^+e^- \rightarrow \pi^+\pi^-$. Low mass $\pi^+\pi^-$ (ρ, ω) contributes $\delta a_\mu \sim 5000 \pm 30$.

$$\sigma(e^+e^- \rightarrow \pi^+\pi^-)$$
 or $(\gamma \rightarrow \pi^+\pi^-)$ is measured:

- 1. at e^+e^- colliders, varying the energy
- 2. in τ -lepton decays
- 3. at fixed energy colliders using radiative return

- 1. - Extensive measurements performed at Novosibirsk. Corrections for efficiency and scale plus absolute normalization (Bhabha, $e^+e^- \rightarrow e^+e^-$) are required for each energy setting. Data must also be corrected for radiation and vacuum polarization.

- 2. - τ data come mostly from LEP. To get σ (hadr) requires *I*-spin breaking, $M(\rho^{\pm})-M(\rho^{0})$, *I*=0 cntrib... corrections. Radiative corrections are also required.

- 3. - The radiative return method is being used by the KLOE collaboration, spear-headed by the Karlsruhe-Pisa groups.

Can turn initial state radiation into an advantage.

At fixed collider energy W, the $\pi^+\pi^-\gamma$

final state covers the di-pion mass range

 $280 < M_{\pi\pi} < W$ MeV.

Correction for radiation and vacuum po-

larization are necessary.

All other factors need be obtained only

once.

At low mass, di-muon production exceeds that of di-pion. ISR and vacuum polarization cancel.

 $\sum(\ldots)=5000$

Unsatisfactory points:

- 1. 2.6 σ is not very compelling and is also author dependent.
- 2. M-C is $\sim 3 \times \text{EW}$ contribution. What about LEP, $b \rightarrow s\gamma$, M_W , M_{top} , $\Re(\epsilon'/\epsilon)$, $\sin 2\beta$...
- 3. Hadronic corrections difficult, e.g. light-by-light
- 4. SUSY as a theory is not very precise at the moment. It has too many unknown, free parameters. There is no exp. evidence for it nor a prediction follows from the possible effect in the muon anomaly.

Soon better statistics and both signs muons. Still very exciting at present.