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1. The gyromagnetic ratio

By definition, the gyromagnetic ratio g of a state of angular mo-

mentum J and magnetic moment µ is:

g =
µ

µ0
/ J
h̄
.

For a particle of charge e in a state of orbital angular momentum

L we have:

�µ = µ0L, µ0 =
e

2m
, g = 1.

For an electron µ0 = µB=5.788 . . .× 10−11 MeV T−1 (±7 ppb).

The importance of g in particle physics is many-fold. A gross

deviation from the expected value, 2 for charged spin 1/2 Dirac

particles, is clear evidence for structure.
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Thus the electron and the muon (g∼2.002) are elementary parti-

cles while the proton, with gp=5.6 is a composite object. For the

neutron g should be zero, measurements give gn = −3.8

Small deviations from 2, ∼0.1%, appear as consequence of the

self interaction of the particles with their own field. Experimental

verifications of the computed deviations are a triumph of QED.

We also define the anomaly, a = (g − 2)/2, a measure of the so

called anomalous magnetic moment, (g − 2)µ0.

QED is not all there is in the physical world. The EW interaction

contributes to a and new physics beyond the standard model

might manifest itself as a deviation from calculations.
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2. Magnetic moment

The classical physics picture of the

magnetic moment of a particle in a

plane orbit under a central force is

illustrated on the side. �µ is along

L, µ0 = q/2m and g=1. This re-

mains true in QM. For an electron

in an atom, µB = e/2me is the Bohr

magneton. L ‖ �µ is required by ro-

tational invariance.

L

vr

µ

When we get to intrinsic angular momentum or spin the classic

picture loses meanings and we retain only �µ ‖ L. We turn now to

relativistic QM and the Dirac equation.
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2.1 g for Dirac particles

In the non-relativistic limit, the Dirac equation of an electron

interacting with an electromagnetic field (pµ→ pµ+eAµ) acquires
the term

e

2m
�σ · B − eA0

which implies that the electron’s intrinsic

magnetic moment is

�µ =
e

2m
�σ ≡ g e

2m
S ≡ gµBS,

where S = �σ/2 is the spin operator and

g=2.

E B=��
�

�
B � �

�

�

The prediction g=2 for the intrinsic magnetic moment is one of

the many triumphs of the Dirac equation.
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3. Motion and precession in a B field

The motion of a particle of momentum p and charge e in a uniform

magnetic field B is circular with p = 300× B × r. For p	 m the

angular frequency of the circular motion, called the cyclotron

frequency, is:

ωc =
eB

m
.

The spin precession frequency at rest is given by:

ωs = g
eB

2m
which, for g=2, coincides with the cyclotron frequencies.

This suggests the possibility of directly measuring g − 2.
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`Cyclotron' orbit,

B

r

B
T

S

Spin precession, �S�C

p

For higher momenta the frequencies become

ωc =
eB

mγ

and

ωs =
eB

mγ
+ a
eB

m
or

ωa = ωs − ωc = aeB
m

= aγωc
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a=0 a=0.1

For a = 1 (γ=1), spin rotates wrt momentum by 1/10 turn per

turn.

Karlsruhe - Fall 2001 Paolo Franzini - g − 2 8



4. π → µ → e

e�
��

�-spin
��

Current

Detectors
Absorbers

Pion beam

��

��	 ��
 ��� ��� ��

x

d
/
d

�
x

��	

��


���

���



V A�

V A�

The rate of high energy decay electrons is time modulated with a

frequency corresponding to the precession of a magnetic moment

e/m(µ) or a muon with g=2. First measurement of g(µ)!!

Also a proof that P and C are violated in both πµν and µ→ eνν̄
decays.
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S-p correlation funda-

mental to all muon

anomaly experiments

�� (at rest)

e�

��
�

�e

spin

p

High energy positrons have momentum along the muon spin.

The opposite is true for electrons from µ−.

Detect high energy electrons. The time dependence of the signal

tracks muon precession.
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5. The first muon g − 2 experiment

A

Shaped B field

Incident
�

Performed in CERN, in the sixties. Need more turns, more γ.

Next step: a storage ring.
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6. The BNL g-2 experiment
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(g−2)    Experiment at BNLµ

µ

LP01 James Miller - (g-2)µ Status: Experiment and Theory 21
Karlsruhe - Fall 2001 Paolo Franzini - g − 2 12



Storage
Ring

ωa= eB

(exaggerated ~20x)

mcµa

spin

momentum

With homogeneous �B, all muons precess at same rate

LP01 James Miller - (g-2)µ Status: Experiment and Theory 22
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With homogeneous �B, use quadrupole �E to focus and
store beam

Spin Precession with �B and �E

�ωa =
e

mc
[aµ �B − (aµ − 1

γ2 − 1
)�β × �E]

Choose “Magic” γ =
√
1+a

a
∼= 29.3 → Minimizes the �β × �E

term

• γ ∼= 29.3 → pµ
∼= 3.094

• B ∼= 1.4T → Storage ring radius ∼= 7.112m

• Tc
∼= 149.2ns Ta

∼= 4.365µs

• γτ ∼= 64.38µs

(Range of stored momenta: ∼= ±0.5%)

LP01 James Miller - (g-2)µ Status: Experiment and Theory 23
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ωa Measurement

• µ+ → e+ν̄µνe, 0 < Ee < 3.1GeV

• Parity Violation → for given Ee, directions of �pe+ and
�sµ are correlated

For high values of Ee, �pe+ is preferentially parallel to �sµ

• number of positrons with E > Ethreshold

N(t) = N0(1 +A(E) cos(ωat+ φ))

LP01 James Miller - (g-2)µ Status: Experiment and Theory 24
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LP01 James Miller - (g-2)µ Status: Experiment and Theory 25
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LP01 James Miller - (g-2)µ Status: Experiment and Theory 26
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YOKE

inner coil

tube
beam

wedge

g-2 Magnet in Cross Section cable car
tube on 
through beam
probes moves
Array of NMR

bump
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current sheet
programmable 

pole piece

dipole correction coil

NMR
probes

thermal  
insulation

outer
coils

LP01 James Miller - (g-2)µ Status: Experiment and Theory 27
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Determination of Average B-field (ωp ) of Muon
Ensemble

Mapping of B-field

• Complete B-Field map of storage region every 3-4 days

Beam trolley with 17 NMR probes

• Continuous monitor of B-field with over 100 fixed probes

Determination of muon distribution

• Fit to bunch structure of stored beam vs. time

LP01 James Miller - (g-2)µ Status: Experiment and Theory 28
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Determination of Muon Distribution

LP01 James Miller - (g-2)µ Status: Experiment and Theory 30
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Log plot of 1999
data (109 e+)
149 ns bins
100 µs segments
Statistical error:
δωa
ωa

=
√
2

ωaγτµA
√

Ne

1,025 million e+ (E > 2 GeV, 1999 data)

time, µs
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N(t) = N0e−λt[1 +A cos(ωat+ φ)]

LP01 James Miller - (g-2)µ Status: Experiment and Theory 32
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7. Computing a = g/2 − 1

e

e
or

�

e

��������

� ��

+ e⇒ µ, τ ; u, d, c, s, t, b; W± . . .

ae =
α

2π
+ . . . c4(

α

π
)4 = (115965215.4± 2.4)× 10−11

Exp, e+ and e−: = ( . . .18.8± 0.4)× 10−11

Agreement to ∼30 ppb or 1.4 σ. What is α?
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7.1 aµ

Both experiment and calculation more difficult.

aµ is m2
µ/m

2
e∼44,000 times more sensitive to high mass states in

the diagrams above. Therefore:

1. aµ can reflect the existence of new particles - and interactions

not observed so far.

2. hadrons - pion, etc - become important in calculating its value.

Point 1 is a strong motivation for accurate measurements of aµ.

Point 2 is an obstacle to the interpretation of the measurement.
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1. – New Physics

For calibration we take the E-W interaction

γ

Zµ µ

γ

ν µµ

W W

γ

µ µH

+389  -194 < 1

〈φ〉 = 236 GeV

M∼90 GeV

δaµ(EW)=150× 10−11

SUSY:
ν

µµ

γ

χ χ− −

∼

µ∼µ∼
µµ

χ 0

γ

+ δaµ(SUSY) ∼150× 10−11×
(100 Gev/M̃)2×tanβ
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2. – Hadrons

Need
� �� �� �� �

� �� �� �� �µ
hγ

γ
i.e.

u d s, , ... g

�s

��

p-QCD

which is not

calculable at

low q2.

But. . .

Measure σ(e+e− → hadrons) and use dispersion relations:

δaµ, (hadr - 1)∼7000× 10−11

All these effects are irrelevant for ae
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aµ =
α

2π
+ . . . c4(

α

π
)4 = (116591596± 67)× 10−11

Exp, µ+ : = ( . . .2030± 150)× 10−11

Measured-Computed=430±160 or 2.6 σ, ∼3.7±1.4 ppm.

!!!!????
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Standard Model Value for aµ [1]

aµ(QED) = 116584706(3) × 10−11

aµ(HAD; 1) = 6924(62)× 10−11 (DH98)

aµ(HAD;> 1) = −100(6) × 10−11 (Except LL)

aµ(HAD;LL) = −85(25)× 10−11

aµ(EW ) = 151(4) × 10−11

TOTAL = 116591596(67)× 10−11

[1] Czarnecki, Marciano, Nucl. Phys. B(Proc. Suppl.)76(1999)245

Used by the BNL g-2 experiment for comparison. Addition of

above errors in quadrature is questionable.
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8. σ(e+e− → π+π−)

δaµ(hadr - 1)∼7000× 10−11

σ(e+e− → hadrons) is dominated below 1 GeV by e+e−→π+π−.
Low mass π+π− (ρ, ω) contributes δaµ∼5000±30.

σ(e+e−→π+π−) or (γ→π+π−) is measured:

1. at e+e− colliders, varying the energy

2. in τ-lepton decays

3. at fixed energy colliders using radiative return
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- 1. - Extensive measurements per-

formed at Novosibirsk. Corrections for ef-

ficiency and scale plus absolute normaliza-

tion (Bhabha, e+e−→e+e−) are required

for each energy setting. Data must also

be corrected for radiation and vacuum po-

larization.

e

e Vac pol

fsr

isr

�

�

- 2. - τ data come mostly from LEP.

To get σ(hadr) requires I-spin breaking,

M(ρ±)-M(ρ0), I=0 cntrib... corrections.

Radiative corrections are also required.

� �� �

��

W
�

��

I-spin rotate
unto � �� �

- 3. - The radiative return method is being used by the KLOE

collaboration, spear-headed by the Karlsruhe-Pisa groups.

Karlsruhe - Fall 2001 Paolo Franzini - g − 2 30



Can turn initial state radiation into an

advantage.

At fixed collider energy W , the π+π−γ
final state covers the di-pion mass range

280 < Mππ < W MeV.

Correction for radiation and vacuum po-

larization are necessary.

All other factors need be obtained only

once.

At low mass, di-muon production ex-

ceeds that of di-pion. ISR and vacuum

polarization cancel.

e e
� �

� �� �

hard �

e e
� �

�� ��

hard �
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20569 events
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Use small angle radiation, higher x-section but miss low Mπ+π−.

1200

1000

800

600

400

200

KLOE

MC (EVA)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

s (GeV ) 2

�� ����ee��� ���ee (nb)�

� �a( )=

660 10x
�

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

s (GeV )2

.

Small mass, small�� ��

�
� All lost in beam pipe.
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Unsatisfactory points:

1. 2.6 σ is not very compelling and is also author dependent.

2. M-C is ∼3×EW contribution. What about LEP, b→ sγ, MW ,
Mtop, (ε′/ε), sin2β. . .

3. Hadronic corrections difficult, e.g. light-by-light

4. SUSY as a theory is not very precise at the moment. It has too

many unknown, free parameters. There is no exp. evidence

for it nor a prediction follows from the possible effect in the

muon anomaly.

Soon better statistics and both signs muons.

Still very exciting at present.
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