Υ Spectroscopy and lattice QCD

Christine Davies
Glasgow University

HPQCD (Glasgow, Cornell, OSU, SFU, FNAL) + MILC collaborations.

QCD describes strong interactions of quarks and gluons.

Proton

Glueball

QCD is confining

Quarks and gluons are bound into hadrons. Need numerical methods to solve QCD in this regime.

Pion

The Meson Spectrum

Spectrum of hadronic states made from u, d, s, c, b quarks is very rich.

Spectrum is predicted by QCD and we would like to calculate it from the theory.

Hadrons made from the heavy c, b quarks turn out to be particularly good ones to look at, both heavy-heavy and heavy-light.

Onia

FOR	CES	System	$(\mathrm{v} / \mathrm{c})^{2}$	Ground triplet state $1^{3} \mathrm{~S}_{1}$		Number of states below dissociation energy	
binding	decay			Name	$\Gamma(\mathrm{MeV})$	$\mathrm{n}^{3} \mathrm{~S}_{1}$	all
POSITRONIUM							
EM	EM	$\mathrm{e}^{+} \mathrm{e}^{-}$	~ 0.0	Ortho-	510^{-15}	2	8
QUARKONIUM							
	S	uū,d ${ }^{\text {d }}$	~ 1.0	ρ	150.00	0	0
S	T	SS	~ 0.8	ϕ	4.40	"1"	"2"
T	R	CC̄	~ 0.25	ψ	0.09	2	8
R O	O N	b \bar{b}	~ 0.08	\bigcirc	0.05	3	30
N	G ${ }^{\text {M }}$						
G	weak	$t \bar{t}$	<0.01		3000.00	0	0

- Heavy quarkonia hold a promise of playing a similar role for QCD as positronium did for QED
Upsilons are the most non-relativistic (i.e. simplest) states among all long-lived quarkonia states The Upsilon system also has the largest number of stable states
\mapsto Upsilons play a special role in probing the strong interactions (tests of lattice QCD, potential models)
- Only 9 out of 30 narrow states observed so far
- No spin-singlet states observed
- No new states observed in 19 years

(Extra Slide)
ryryee 1D candidate

Heavy-light spectrum is not so well mapped out.

Can make mesons from b quarks and u, d or s quarks. Think of these as 'hydrogen atom' type states with heavy quark at centre and light quark cloud around.

CP violation

B mesons are being studied extensively at B-factories to extract parameters of the Standard Model (CKM matrix elements) relevant to CP violation.

Need theory for this - lattice QCD.

Need to test the theory on other systems.

_attice QCD calculations =

 Euclidean space-time lattice + QCD Lagrangian (discretised)$$
\begin{aligned}
\mathcal{L}_{Q C D} & =\mathcal{L}_{g}+\mathcal{L}_{q} \\
& =\frac{1}{2 g^{2}} \operatorname{Tr} F_{\mu \nu}^{2}+\bar{\psi}(\gamma \cdot D+m a) \psi
\end{aligned}
$$ _attice spacing (a) is implicit u.v. cutoff

 Darameters are : Gauge coupling g^{2}, Quark nasses, $m_{i} a$
Calculation done by Monte Carlo integration of the Feynman Path ntegral. Generate gluonic 'vacuum snapshots' called configurations on which subsequent calcs are done.

Calculate quark propagators on gluon fields. Put together into hadron correlators of appropriate $J^{P C}$.

0

0
T

2 pt function for decay constant
=it to $A_{0} e^{-E_{0} T}+A_{1} e^{-E_{1} T} \ldots E_{0}, E_{1}$ given in units of a.
Set one mass equal expt to fix a, all others then in GeV .
n principle must then take $a \rightarrow 0$ and $V \rightarrow \infty$. Discretisation errors rise from mismatch of lattice and continuum actions. Remove with mproved actions.
-landling b quarks on the lattice
Problem: at $a \approx 0.1 \mathrm{fm} M_{b} a \approx 2.5\left(M_{c} a \approx 0.75\right)$
\rightarrow huge discretisation errors for methods based on the Dirac action. Errors come from $\vec{p} \approx M$, i.e. relativistic momenta, distorted on the attice.

3UT, b and c quarks are non-relativistic in both HH and HL bound tates. (radial excitation energy \ll mass)
$\rightarrow M$ is not an important dynamical scale.
nstead focus on simulating scales like $M v$ and $\frac{1}{2} M v^{2}$ accurately.

VRQCD is non-relativistic version of QCD

$$
\mathcal{L}_{Q}=\bar{\psi}\left(D_{t}-\frac{\vec{D}^{2}}{2 M_{Q} a}-c_{4} \frac{\vec{\sigma} \cdot \vec{B}}{2 M_{Q} a}+\ldots\right) \psi
$$

ψ a 2-component spinor.
$M_{Q} a$ determined by getting heavy hadron mass correct.
VRQCD correct for important low-momentum physics ($p<M, \pi / a$). ncorrect for irrelevant high-momentum physics.
Effect of missing high-momentum modes is short distance - correct by adjusting coeffs c_{i} in action to match QCD e.g perturbatively.
Cannot take a to 0 but improve until a-dependence small enough.
L. HH spectrum

Action is expansion in powers of $v^{2} / c^{2}(\approx 0.1$ for $b \bar{b}, 0.3$ for $c \bar{c})$ Current action inc. $v^{2}, v^{4}, a^{2} v^{4}$. \rightarrow radial, orbital splittings in $b \bar{b}$ spectrum accurate to $\approx 1 \%$. Spin splittings to $\approx 10 \%$.
2. HL spectrum

Action is expansion in $\Lambda / M .(\approx 0.1$ for $b \bar{l}, 0.3$ for $c \bar{l})$. Current action nc. $1 / M, 1 / M^{2}, a^{2} / M$, but errors from light quark action.

Calculations provide good test of QCD.

Vajor problem for lattice calculations: DYNAMICAL QUARKS

Quarks are fermions so computers cannot handle them explicitly.
ntegrate out of the Feynman P.I. \Rightarrow dynamical quarks give contrib. to $S_{Q C D}$ of $\ln (\operatorname{det}(M))$ where M is a huge $\left(2 \times 10^{6}\right.$ on a side) sparse marix.

Cost of inc. dynamical quarks is enormous. Most important and tardest are light u, d ones. Cost
 grows as $m_{q} \rightarrow 0$.

Jolution until recently was to miss out dynamical quarks.
Quenched Approximation'.

\equiv cutting out feedback between quark and gluon sectors.
How wrong is this?

One effect is no 'screening' of charge, only anti-screening by gluons \Rightarrow charge doesn't vary correctly with distance. If results sensitive to different distance/energy scales are compared, answer will be wrong.

Errors from quenching obscured for many years by discretisation errors. mproved actions now control these.

Quenched results

The light hadron spectrum is about 10\% wrong, and is mpossible to consisently match to heavy tadron spectrum. Quark masses cannot pe fixed consistently ither.

(CP-PACS collaboration)
ncluding dynamical quarks
Fermion doubling' problem is additional headache.

Vaive discretisation of the Dirac equation gives 2^{d} quarks instead of i.e. 16 in 4-d. Comes from disretisation of simple deriv.
$D \psi \rightarrow i p \tilde{\psi}(p)$ in continuum
$D \psi \equiv 0.5 *(\psi(x+1)-\psi(x-1)) \rightarrow$
$\sin (p a) \tilde{\psi}(p)$ on lattice

Different formulations address this in different ways at different costs. Traditional method used by SESAM is Wilson quarks; UKQCD/JLQCD use improved 'clover' quarks. Configs made with 2 flavours of dynamical quarks, $m \geq m_{s}$, small vols.

New'improved staggered' formalism much faster. Keeps 4 doublers and divides effects by $4(\sqrt[4]{d e t})$.

MILC have used improved staggered action to generate ensembles of zonfigurations including the effect of $2+1$ flavours of dynamical quarks or the first time. Sustained computing power $=0.25 \mathrm{Tflops}$.
$=u, d$ with masses down to $m_{s} / 5$
$=s$
sets, $a \approx 0.12 \mathrm{fm}$ and $a \approx 0.08 \mathrm{fm}$. Coarse set light hadron results, lep-lat/0104002.

--- : Experiment

- : Quenched MILC
- : $2+1$ flavors MILC with $m_{u, d}=m_{s} / 5$.
r spectrum from lattice QCD, Alan Gray, CD et al

Study $b \bar{b}$ mesons on these configurations to see if quenching errors have been removed. Good thing to study since no valence light quarks. Focus on radial and orbital excitations since these are most precise. Things look good.

--- : Experiment

- : Quenched
- $\quad 2+1$ flavours MILC with $m_{u, d}=m_{s} / 5$.
spectrum from lattice QCD, Alan Gray, CD, Matt Ningate, Junko Shigemitsu et al, HPQCD

Calculation of the fine structure in the spectrum currently has systematic errors from relativistic corrections not included of order 10%.
Comparison to $B^{*}-B$ splitting shows these are not severe.
Aim to predict η_{b} mass for experiment.

--- : Experiment

- : Quenched
- : $2+1$ flavours MILC with $m_{u, d}=m_{s} / 5$.

The P fine structure likewise has systematic errors from relativistic corrections not included of order 10%.
Also need improved statistical precision.
Aim to predict mass of ${ }^{3} D_{1}$ inc. mixing with Υ^{\prime}.

Determination of α_{s}

χ_{s} determination from lattice QCD, Howard Trottier,
Quentin Mason, Peter Lepage, CD et al

The strong coupling constant, α_{s}, can be determined precisely. Use a gluonic matrix element measured on lattice + lattice perturbation theory to get α_{s}. Fix scale from $1 P-1 S$ splitting of Υ. Convert to $\overline{M S}$, run : $\alpha \frac{(5)}{M S}\left(M_{Z}\right)=0.121(3)$

_ight hadron results

_ight hadron decay constants, Peter Lepage et al + MILC

Now ($n_{f}=3$)
Before $2000\left(n_{f}=0\right)$

nconsistencies of quenched approximation disappear! with $2\left(m<m_{s} / 4\right)+1\left(m_{s}\right)$ dynamical quarks and $a \leq 0.1 \mathrm{fm}$ using mproved staggered formulation. Others (APENEXT 2003) will explore nore expensive Ginsparg-Wilson formalism.

Focus on staggered configurations will move to more complicated matrix elements and hadron masses (glueballs, hybrids), determination of quark nasses.

Vatrix elements to focus on are:

- Υ radiative decays and leptonic widths
- B, D, leptonic and semi-leptonic decays and mixing
- Nucleon structure function moments
- $K \rightarrow \pi \pi$ decays

