# CP and CPT Studies with Kaons or Kaons Are Still Interesting

Juliet Lee-Franzini

Laboratori Nazionali di Frascati

Blois, 16 June 2002

### OUTLINE

1. In the beginning there were

kaons

- 2. CP violation
- 3. Still to be done
- 4. Fixed Target and  $\phi$ -factory
- 5. *CPT* tests



#### What did we learn from kaons

- 1. Flavor
- 2. *R*
- 3.  $\Delta S = \Delta Q$
- 4. Dominance of  $\Delta I = 1/2$ 
  - still embarassing
- 5. Mixing  $(\sin \theta_{\rm C})$
- 6. Quarks
- 7. ČŔ



### Some history



### What's missing

- 1. Origin of  $\ensuremath{\ensuremath{\mathcal{R}}}\xspace \ensuremath{\mathcal{R}}\xspace$  still unknown
- 2.  $\Re(\epsilon'/\epsilon) \neq 0$  rules out Superweak theory, but
- 3. CKM $\Leftrightarrow$  $\Re(\epsilon'/\epsilon)$  evades us



### Other CR Kaon Physics

- 1.  $K_S \rightarrow \pi^0 \pi^0 \pi^0$ , BR $\sim 2 \times 10^{-9}$ 2. Odd pion slopes from  $K^+$  -  $K^-$ 3.  $K^{\pm} \rightarrow \pi^{\pm} \pi^0 \gamma$
- 4.  $\Gamma(++-) \Leftrightarrow \Gamma(--+)$  etc.
- 5.  $K_S \rightarrow \pi^0 e^+ e^-$
- 6.  $K_L \rightarrow \pi^0 \nu \bar{\nu}$ , BR $\sim 3 \times 10^{-11}$

In order of difficulty, BR!

Expected signals are quite predictable for 1. and 6.

5. Needed for understanding  $K_L \rightarrow \pi^0 e^+ e^-$ 

The situation is different for 2., 3. and 4.



NA48/1, KLOE 2004 NA48/2, KLOE 2004 NA48/2, KLOE 2004 KLOE 2004 NA48/1, KLOE 2004 KOPIO?

1. 
$$K_S \rightarrow \pi^0 \pi^0 \pi^0$$

From  $K_S$  impurity:

BR=1.89  $\times$  10<sup>-9</sup>, uncertainty  $\sim$ 1.3%, a must!!

It has been said that finding a different answer would be proof that QM is no good (JE).

2.  $K^{\pm} \rightarrow 3\pi$ Let  $\Gamma(K^+ \rightarrow \pi^+ \pi^+ \pi^-) \equiv \Gamma^+_{++-}$ then  $\Gamma^+_{++-} - \Gamma^-_{--+} \neq 0 \Rightarrow \& \mathbb{R},$  etc.

3. Odd pion slope

 $A = (g_+ - g_-)/(g_+ + g_-) \neq 0 \Rightarrow CR$ 



#### $\eta_i$ , BR and all that

Let: 
$$K_S = K_1 + \epsilon K_2$$
;  $K_L = K_2 + \epsilon K_1$ ;  $\eta_i = \langle i | K_L \rangle / \langle i | K_S \rangle$   
 $\epsilon = (2\eta_{+-} + \eta_{00})/3$ ;  $\arg \epsilon = 4\phi_{+-}/3 - \phi_{00}/3$ .  
 $\eta_{000} = \frac{\langle 3\pi^0 | K_L \rangle}{\langle 3\pi^0 | K_S \rangle} = \epsilon + \epsilon'_{000}$ ;  $|\epsilon'_{000}/\epsilon| \ll 1$   
 $\mathsf{BR}_S(3\pi^0) = |\eta_{000}|^2 \times \mathsf{BR}_L(3\pi^0) \times \frac{\Gamma_L}{\Gamma_S}$   
 $= |\epsilon|^2 \times \mathsf{BR}_L(3\pi^0) \times \frac{\tau_S}{\tau_L} = 1.9 \times 10^{-9}$ 

From  $\delta \Re \eta_{000} \sim 2.2 \times 10^{-2}$  and  $\delta \Im \eta_{000} \sim 2.8 \times 10^{-2}$  it follows  $\delta BR_S(3\pi^0) \sim 4.6 \times 10^{-7}$  or  $BR < 0.8 \times 10^{-6}$  at 90% cl.



$$K_S \rightarrow \pi \ell \nu$$

Learn about 1.  $\Delta S = \Delta Q$ 2. TCPby measuring 3.  $\Gamma(K_S \rightarrow \pi \ell \nu)$ 4.  $\mathcal{A}_{\ell}^S$ 



#### $\Delta S = \Delta Q$

There is no  $\Delta S = -\Delta Q$  in the SM:  $s \to W^- u$ ,  $\bar{s} \to W^+ \bar{u}$ 



 $x = \frac{A(K \to \ell^+ \pi^- \nu)}{A(\bar{K} \to \ell^- \pi^+ \bar{\nu})} \sim Gm^2 \sim 10^{-6} \qquad \text{Exp: } x < 10^{-2} \text{ @90\% CL}$ 

NOT 
$$x = \frac{A(\Delta S = -\Delta Q)}{A(\Delta S = \Delta Q)}$$



#### TCP and $\Delta S = \Delta Q$

Decay Rates  $\Gamma(K_S \rightarrow \pi \ell \nu) = \Gamma(K_L \rightarrow \pi \ell \nu)$ 

Leptonic Asymmetry  $\mathcal{A}^S_\ell = \mathcal{A}^L_\ell$ 

It is not possible to disentangle both within the  $K_S$ - $K_L$  system.

It is necessary to combine with  $K^0$  (or  $\overline{K^0}$ ) states tagged by SI.



Need eg,  $e^+e^- \rightarrow \phi \rightarrow K^+K^-$ . One K tags the other. Charge exchange in any material gives  $K^0$  (or  $\overline{K^0}$ ).

If c = d = 0, then

$$\mathcal{A}_{\ell}^{S} - \mathcal{A}_{\ell}^{L} = 4\Re\delta$$

A limit from the above improves the determination of  $\left(M(K^0) - M(\overline{K^0})\right)/M$ 

Need  $n \times 10^{10}$  K's, tens of fb<sup>-1</sup>



TCP can be violated in mass-matrix and/or decay amplitudes: 5 complex parameters for  $K \rightarrow \pi \ell \nu$ .

$$2\delta = \epsilon_S - \epsilon_L$$
  

$$a = A(TCP\text{-even}, \ \Delta S = \Delta Q)$$
  

$$b = A(TCP\text{-odd}, \ \Delta S = \Delta Q)$$
  

$$c = A(TCP\text{-even}, \ \Delta S = -\Delta Q)$$
  

$$d = A(TCP\text{-odd}, \ \Delta S = -\Delta Q)$$



### $K^{\pm} \rightarrow 3\pi$ Decays

There are four CR asymmetries:

$$\mathcal{A}_{\Gamma} = \frac{\Delta\Gamma}{2\Gamma} = \frac{\Gamma(K^{+} \to 3\pi) - \Gamma(K^{-} \to 3\pi)}{\Gamma(K^{+} \to 3\pi) + \Gamma(K^{-} \to 3\pi)}$$
$$\mathcal{A}_{g} = \frac{\Delta g}{2g} = \frac{g(K^{+} \to 3\pi) - g(K^{-} \to 3\pi)}{g(K^{+} \to 3\pi) + g(K^{-} \to 3\pi)}$$
for both  $\tau$  i.e.  $\pi^{\pm}\pi^{\pm}\pi^{\mp}$  and  $\tau'$  or  $\pi^{\pm}\pi^{0}\pi^{0}$ .

Asymmetry due to interference of two  $\Delta I = 1/2$  amplitudes a, bNo  $\Delta I = 3/2$  suppression.  $aa/\Re a \sim \Im b/\Re b \sim 10^{-4}$ . But to lowest order in chiral perturbation arg  $a = \arg b$ . Asymmetries in SM are therefore very small.



Example:

$$\mathcal{A}_g = \left(\frac{\Im b}{\Re b} - \frac{\Im a}{\Re a}\right) \sin(\alpha_0 - \beta_0) = \mathcal{O}(10^{-6})$$

 $\alpha_0 - \beta_0$  small rescattering phases, sin(..)~0.1.

From Maiani and Paver:

$$egin{aligned} \mathcal{A}_g, & au = (-2.3 \pm 0.6) imes 10^{-6} \ \mathcal{A}_g, & au' = (1.3 \pm 0.4) imes 10^{-6} \ \mathcal{A}_\Gamma, & au = (-6 \pm 2) imes 10^{-8} \ \mathcal{A}_\Gamma, & au' = (2.4 \pm 0.8) imes 10^{-8} \end{aligned}$$

But where things are small big surprises might hide.



#### D'Ambrosio, Isidori, Martinelli:

Large  $\[mathbb{CR}\]$  effects,  $A_g$  of  $\mathcal{O}(10^{-4})$ , could be triggered by a misallignment of quark and squark mass matrices through the chromomagnetic operator - CMO:

possible only if several conditions...conspire in the same direction.

Fine tuning becomes then necessary for explaining  $\Re(\epsilon'/\epsilon)$ .



#### *CP*, Unitarity and Triangles

The price of  $\[CR]$ :  $J = A^2 \lambda^6 \eta = (2.7 \pm 1.1) \times 10^{-5}$ , *i.e.* poorly known.

J is also  $(2\times)$  area of all unitary triangles.

Check closing of all triangles and compare their areas.

Still many measurements needed for B's, one for K's



#### Notation

#### Wolfenstein

$$\mathbf{V} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

 $\lambda = 0.22$  to ~1%,  $A \sim 0.84 \pm 0.09$ ,  $|\rho - i\eta| \sim 0.3 \pm 50\%$ .



Blois, 16 June 2002 Juliet Lee-Franzini - CP and CPT Studies.. 18

٠

### The K Triangle

**J**<sub>12</sub>

 $h = A^2 \lambda^5 \eta \; (\times 10) \; \_$ 



 $J_{12} = \lambda (1 - \lambda^2/2) \Im (V_{td} V_{ts}^*) \approx 5.6 [B(K_L \to \pi^0 \nu \bar{\nu})]^{1/2}$ 100 events determine  $\delta \eta / \eta$  to 5% and  $J_{12}$  to ~8%.



 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ : 2 events, BR $\sim 1.5 \times 10^{-10}$ 



#### Unitarity

The most stringent proof so far is the extended GIM cancellation in  $M(K_L) - M(K_S)$  and  $K^0 \rightarrow \mu\mu$ 

Additional testing should not be limited to the closing of a triangle, but of all triangles.

AND must verify the equality of the areas of all triangles.



### NA48/1

### NA48/1: Unique Opportunity for $K_S \rightarrow \pi^0 e^+ e^- (\mu^+ \mu^-)$

- Use NA48 Detectors and beam-line
  - Exploits the NA48 collimator technique and 400 GeV SPS p beam
  - Intensity can be increased several hundred times wrt to double beam
- $K_{s} \rightarrow \pi^{0} I^{+} I^{-}$ ,  $I=e, \mu$
- Search for CPV in K<sub>S</sub> decays K<sub>S</sub> $\rightarrow 3\pi^0$ , K<sub>S</sub> $\rightarrow \pi^+\pi^-\pi^0$
- 1999: 40h test run
  - BR(K<sub>S</sub> $\rightarrow \gamma\gamma$ ) = (2.6 ± 0.4 ± 0.2) 10<sup>-6</sup> PL B493 (2000) 29
  - BR(K<sub>s</sub> $\rightarrow \pi^0 e^+ e^-) \le 1.4 \times 10^{-7} 90\%$  CL PL B514 (2001) 253

 $\Rightarrow$  BR(K<sub>L</sub> $\rightarrow \pi^0 e^+ e^-)_{mixing}$  < 4.2  $\times$  10<sup>-10</sup> 90% CL

- 2002:
  - − Scheduled to run for about 80 days: it aims to reach SES ~3 10<sup>-10</sup> for K<sub>s</sub>→π<sup>0</sup>ee (Cut of beam time by 25% due to CERN budget crisis)

21-26 January, 2002

WIN02 Christchurch, NZ



### $K_L \rightarrow \pi^0 e^+e^-$ and $K_L \rightarrow \pi^0 \mu^+ \mu^-$

•SM prediction: BR(Direct CPV)~(ImV<sub>td</sub>)<sup>2</sup>×3 10<sup>-4</sup>

•Mixing contamination:

• BR(CP-Violation mixing)~1/300 BR(K<sub>S</sub> $\rightarrow \pi^0 e^+e^-)$ 

•CP-Conserving Component

- To be bound by studying  $K_L \rightarrow \pi^0 \gamma \gamma$
- Background from  $K_L \rightarrow ee \gamma \gamma$  (Greenle, 1990) starts to be seen

| Mode                            | Upper Limit<br>(90% CL) | Exp. | Ref.         |
|---------------------------------|-------------------------|------|--------------|
| $BR(K_L \to \pi^0 e^+ e^-)$     | <5.1 10 <sup>-10</sup>  | KTeV | PRL86 (2001) |
| $BR(K_L \to \pi^0 \mu^+ \mu^-)$ | <3.8 10 <sup>-10</sup>  | KTeV | PRL84 (2000) |

New approach: measure muon polarization in  $K_L \rightarrow \pi^0 \mu^+ \mu^-$ (Diwan, Ma, Trueman, hep-ex/0112350). Very large asymmetries are expected 21-26 January, 2002 WIN02 Christchurch, NZ



36

## NA48/1: Unique Opportunity

- Use NA48 Detectors and beam-line
- Sensitivity better than a factor of 10 or more over the competition
  - Exploits the NA48 collimator technique
  - Intensity can be increased hundred times wrt to double beam





Blois, 16 June 2002 Juliet Lee-Franzini - CP and CPT Studies.. 24

## $K_{S,L} \rightarrow 3\pi^{0}$ (45 days, 2000 Preliminary)

- Search for interference at small proper time
- The analysis of 10% of the data is quite advanced:
  - Statistical error:  $Im(\eta_{000}) = 2.8\%$  Re( $\eta_{000}$ ) = 2.2%
  - Systematic errors under evaluation





### Preparations for 2002

- Modification of the KS target station
  - Installation of sweeping magnet
  - Provision for a photon converter
- Improvement to Drift Chamber front end
  - Better noise immunity →lower Drift Chamber High Voltage
- Upgrade of the Drift Chamber read-out
  - Remove loss due to overflows (30% in 1999 test run)
- New readout procedure for LKr and Upgrade of the online PC farm
  - Increase Level II bandwidth (currently limited by LKr)
  - Up to 1 Gbyte/burst



#### NA48/2

New technique: Simultaneous, unseparated K<sup>+</sup>/K<sup>-</sup> beams 60 GeV; narrow band ( $\Delta$ P/P ~ 10% R.M.S.) 5.5 (3.1) 10<sup>10</sup> K<sup>+</sup>(K<sup>-</sup>) decays/year (foreseen 2003)  $\Rightarrow$ Push the measurement of A<sub>g</sub> to 10<sup>-4</sup>



21-26 January, 2002

WIN02 Christchurch, NZ



### Direct CP Violation in $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$

•Important to gather other  $|\Delta S|=1$  CP violating effects

•Effects are predicted to be small: SM (O~10<sup>-5</sup>),SUSY (O~10<sup>-4</sup>) D'Ambrosio,Isidori, Martinelli, PLB480(2000)

 $|M(u,v)|^{2} \propto 1 + gu + hu^{2} + kv^{2} + ... \qquad u = (s_{3} - s_{0})/m\pi^{2} \qquad v = (s_{1} - s_{2})/m\pi^{2}$   $S_{0} = \frac{1}{3}(s_{1} + s_{2} + s_{3}) \qquad S_{i} = (P_{K} - P_{i})^{2} \qquad P_{K}, P_{i} = \text{momenta of kaon and pions (i=3 odd pion )}$  $A_{g} = \frac{(g_{+} - g_{-})}{(g_{+} + g_{-})}$ 

•PDG:  $A_q = (-7.0\pm5.3) \times 10^{-3}$  W.T. Ford et. al. 1970

•New data FNAL-HyperCP, 5% -preliminary!-→No CP-Violation seen at a few per mill level FERMILAB-CONF-01-321-E

21-26 January, 2002

WIN02 Christchurch, NZ

33







# KAon BEam Spectrometer

### To resolve:

- twofold ambiguity in K<sub>e4</sub> reconstruction
- reconstruction of  $2\pi$  events in  $K^{\pm} \rightarrow (3\pi)^{\pm}$

(one  $\pi$  escaped detection)

### Requirements:

 $\delta P/P \approx 1\%$ ;  $\theta_{X,Y} \leq 2 \text{ mrad}$ ; beam flux ~40 MHz

## Solution:

beam **measurement** in achromat II & downstream  $\delta_{X,Y} \approx 0.25 \text{ mm}; \delta t \approx 1 \text{ ns}; \Delta X / X_0 \approx 10^{-3}$ 







# **KABES** proposal

 3 double stations of projection chambers with *MicroMegas* type amplification stage

Two prototypes:

50 & 100 μm gaps; strips < 1mm; 60mm drift

### Are tested now at SPS:

high intensity beam (< 2.10<sup>7</sup>p/p)

### Ongoing optimisation:

gas mixtures, electronics, position, ...





# Asymmetry

Obtained in few hours test run (preliminary):

$$A_{g} = (-2 \pm 7) \cdot 10^{-3}$$

in accordance with  $\approx 3.7 \cdot (1/N^+ + 1/N^-)^{1/2}$ 

### • The best direct measurement (BNL):



### $\phi$ -factory Yields

| Parameter                                                   | Design           | 2001             | 2004              |  |
|-------------------------------------------------------------|------------------|------------------|-------------------|--|
| Bunches                                                     | 120              | 45               |                   |  |
| Current (A)                                                 | 5                | 1.2              |                   |  |
| $\mathcal{L}~(\mu { m b}^{-1}~{ m s}^{-1})$                 | $5	imes 10^{32}$ | $5	imes 10^{31}$ | $5 	imes 10^{33}$ |  |
| Beam $	au$ (m)                                              | ≫100             | <20              |                   |  |
| $\int_{1\mathrm{y}}\mathcal{L}\mathrm{d}t~\mathrm{pb}^{-1}$ | 5000             | $\sim \! 190$    | 50,000            |  |



The uniqueness of  $e^+e^- \rightarrow \phi \rightarrow K_S K_L$ 

$$|i\rangle = \frac{|K^{0}, \mathbf{p}\rangle |\overline{K^{0}}, -\mathbf{p}\rangle - |\overline{K^{0}}, \mathbf{p}\rangle |K^{0}, -\mathbf{p}\rangle}{\sqrt{2}}$$

$$K_S \rangle \equiv p' | K^0 \rangle + q' | \overline{K^0} \rangle$$
  $|p'|^2 + |q'|^2 = 1$   
 $K_L \rangle \equiv p | K^0 \rangle - q | \overline{K^0} \rangle$   $|p|^2 + |q|^2 = 1$ 

$$|i\rangle = \frac{|K_S, \mathbf{p}\rangle |K_L, -\mathbf{p}\rangle - |K_L, \mathbf{p}\rangle |K_S, -\mathbf{p}\rangle}{\sqrt{2(qp' + q'p)}}$$
  
CPT invariance requires  $p' = p$  and  $q' = q$ 



1. Pure,  $K_L$ ,  $K_S$ ,  $K^0$ ,  $\overline{K^0}$  beams

2. Kaon interferometry

From unitarity and 
$$\sigma(\gamma\gamma \to K^0 \overline{K^0}, J^P = 0^+)$$
  
$$\frac{e^+e^- \to K_S K_S \text{ or } K_L K_L}{e^+e^- \to \phi \to K_S K_L} \sim \text{few} \times 10^{-10}$$

Unique opportunity to study:

 $K_S$  BR's to high accuracy

 $K_S$  Rare decays:  $K_S$  semileptonic...  $K_S \rightarrow \pi^0 \pi^0 \pi^0$ ,  $K_S \rightarrow \pi^0 \nu \overline{\nu}$ 

in addition to CP and CPT, the original mission of KLOE.



#### Things to do

- 1. Measure  $V_{ij}$
- 2. Verify unitarity
- 3. Find  $K_S \rightarrow \pi^0 \pi^0 \pi^0$
- 4. Study  $K_S \rightarrow \pi \ell \nu$
- 5. Verify  $\Delta S = \Delta Q$
- 6. Keep an eye on TCP
- 7. Hopefully peek beyond the SM



| Mode                                  | BR                   | Acc. | Events            | Acc  | Events | Note         |
|---------------------------------------|----------------------|------|-------------------|------|--------|--------------|
|                                       |                      | KLOE |                   | NA48 |        |              |
| $K_S \rightarrow \pi^+ \pi^-$         | 0.67                 | 0.15 | $5	imes 10^9$     |      |        |              |
| $K_S \rightarrow \pi^0 \pi^0$         | 0.31                 | 0.15 | $2.5	imes10^9$    |      |        |              |
| $K_S { ightarrow} \pi e \nu$          | $7.4 	imes 10^{-4}$  | 0.05 | $2	imes 10^6$     |      |        |              |
| $K_S \rightarrow \pi^0 e^+ e^-$       | $5.2 \times 10^{-9}$ | 0.05 | 13                | 0.05 | 7      | Ind CR       |
| $K_S { ightarrow} 3\pi^0$             | $2 	imes 10^{-9}$    | 0.17 | 16                | 0.05 | 4      | $\eta_{000}$ |
| $K_S \rightarrow \pi^0 \gamma \gamma$ | $4	imes 10^{-8}$     | 0.15 | 300               | 0.1  | 114    |              |
| $K_S \rightarrow \pi^+ \pi^- \gamma$  | $1.8 \times 10^{-3}$ | 0.15 | $1.35 	imes 10^7$ |      |        |              |
| $K_S \rightarrow \pi^+ \pi^- \pi^0$   | $3.2 \times 10^{-7}$ | 0.17 | 2500              |      |        |              |
| $K_L \rightarrow \pi^+ \pi^- \pi^0$   | 0.12                 | 0.16 | $1 	imes 10^9$    |      |        |              |
| $K_L \rightarrow \pi^+ \pi^-$         | 0.002                | 0.11 | $1.1 	imes 10^7$  |      |        |              |
| $K_L \rightarrow \pi^0 \pi^0$         | 0.001                | 0.1  | $4	imes 10^6$     |      |        |              |
| $K_L \rightarrow \pi^+ \pi^- \gamma$  | $4.6 \times 10^{-5}$ | 0.16 | $3.7 	imes 10^5$  |      |        |              |



| Mode                                            | BR                   | Acc. | Events             | Acc, | Events           | Note |
|-------------------------------------------------|----------------------|------|--------------------|------|------------------|------|
|                                                 |                      | KLOE |                    | NA48 |                  |      |
| $K^{\pm} \rightarrow \pi^{+} \pi^{-} \pi^{\pm}$ | 0.056                | 0.03 | $1.26 	imes 10^8$  |      | $2 	imes 10^9$   | (1)  |
| $K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm}$     | 0.017                | 0.09 | $1.22 \times 10^8$ |      | $1.2 	imes 10^8$ | (2)  |
| $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$  | $2.8 \times 10^{-4}$ | 0.1  | $2	imes 10^6$      | 0.1  | $1	imes 10^6$    | (3)  |
| $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$   | $5 \times 10^{-7}$   | 0.15 | 3750               |      |                  |      |

Notes:

(1). KLOE:  $\delta A_g = 4 \times 10^{-4}$ ,  $\delta A_{\Gamma} = 10^{-4}$ . NA48/2:  $\delta A_g = 2 \times 10^{-4}$ . (2). KLOE:  $\delta A_g = 2 \times 10^{-4}$ ,  $\delta A_{\Gamma} = 10^{-4}$ . NA48/2:  $\delta A_g = 3.5 \times 10^{-4}$ . (3). KLOE:  $\delta A_{\Gamma} = 10^{-3}$ . NA48/2  $\delta A_{\Gamma} = 10^{-2}$ .



$$f_1 \bullet \begin{array}{c} t_1 & \phi & t_2 \\ \bullet & K_S, \ K_L & K_L, \ K_S \end{array} \bullet f_2$$

$$I(f_1, f_2, t_1, t_2) = |\langle f_1 | K_S \rangle|^2 |\langle f_2 | K_S \rangle|^2 e^{-\Gamma_S t/2} \times [|\eta_1|^2 e^{\Gamma_S \Delta t/2} + |\eta_2|^2 e^{-\Gamma_S \Delta t/2} - 2|\eta_1||\eta_2|\cos(\Delta m t + \phi_1 - \phi_2)]$$

$$I(f_1, f_2; \Delta t) = \frac{1}{2\Gamma} |\langle f_1 | K_S \rangle \langle f_2 | K_S \rangle|^2 \times [|\eta_1|^2 e^{-\Gamma_L \Delta t} + |\eta_2|^2 e^{-\Gamma_S \Delta t} - 2|\eta_1| |\eta_2| e^{-\Gamma \Delta t/2} \cos(\Delta m \Delta t + \phi_1 - \phi_2)]$$

Measure  $\Delta M$ ,  $\Gamma$ ,  $\eta_i$  – including phases.

$$\eta_i = \frac{A(K_L \rightarrow i)}{A(K_S \rightarrow i)}, \text{ arg}(\eta) = \phi$$



#### **Interference** examples









### $K_S$ -decays

 $\Delta I = 1/2$ 

Chiral expansion parameters

Calculation of  $\Re(\epsilon'/\epsilon)$ 

BR's for  $K_S$  decays (and  $K_L$ )

$$R = \Gamma(K_S \to \pi^+ \pi^-) / \Gamma(K_S \to \pi^0 \pi^0)$$
, not well known, few%  
 $(L \to + -/L \to 00) / (S \to + -/S \to 00)$  known to ~0.1%  
Would like to reach 0.1% on former.

Corrections are background sensitive.



### $K_S$ decays

 $\Gamma(K_S \to \pi^+ \pi^-) / \Gamma(K_S \to \pi^0 \pi^0)$ 



 $K_L$  interacting in the calorimeter gives an ideal  $K_S$  tag, almost in-dependent of  $K_S$  decay mode





 $R = 2.239 \pm 0.003 (\text{stat.}) \pm 0.015 (\text{syst.})$  PLB 538, 21, June 2002 KLOE includes all  $K_S \rightarrow \pi^+ \pi^- \gamma$ , others inc. unknown fraction.



 $K_S \rightarrow \pi e \nu$  KLOE '01



Use only non spiraling tracks. TOF for electron ID Compare  $E_{miss}$  with  $|p_{miss}|$ Almost complete rejection of  $\pi^+\pi^-$  background









 Ecal (MeV)
 5
 10
 20
 40
 60
 80
 100
 120
 140
 160
 200

 Blois, 16
 June 2002
 Juliet Lee-Franzini - CP and CPT Studies..
 45

$$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$$

$$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$$

$$R^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$$

$$F(X, Y; g, h, k) = 1 + gY + hY^{2} + kX^{2}$$

$$X = (s_{1} - s_{2})m_{\pi}^{2}$$

$$Y = (s_{3} - s_{0})m_{\pi}^{2}$$

$$\frac{6.33 \text{ pb}^{-1}}{(\varepsilon_{MC} \text{ normalized})}$$

$$\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$



### Conclusions

NA48/1 and NA48/2 will (presumably) have results by 2004.

KLOE Will begin taking data in 2004.

Thereafter one needs more intense kaon sources to attack the golden processes  $K_L \rightarrow \pi^0 \nu \bar{\nu}$ ,  $\rightarrow \pi^0 e^+ e^-$ .

We have studied CR for 39 years, we still have quite a few to go.

