
ar
X

iv
:a

st
ro

-p
h/

01
10

62
0 

  2
9 

O
ct

 2
00

1
On the crosscorrelation between Gravitational Wave Detectors for detecting

association with Gamma Ray Bursts

G. Modestino1, A. Moleti2,3

1) Istituto Nazionale di Fisica Nucleare INFN, Frascati
2) Dipartimento di Fisica, Universita’ di Roma ”Tor Vergata”

3) INFN - Sezione di Roma2, Roma,Italy

(September 13, 2002)

Crosscorrelation of the outputs of two Gravitational Wave (GW) detectors has recently been
proposed [1] as a method for detecting statistical association between GWs and Gamma Ray Bursts
(GRBs). Unfortunately, the method can be effectively used only in the case of stationary noise. In
this work a different crosscorrelation algorithm is presented, which may effectively be applied also in
non-stationary conditions for the cumulative analysis of a large number of GRBs. The value of the
crosscorrelation at zero delay, which is the only one expected to be correlated to any astrophysical
signal, is compared with the distribution of crosscorrelation of the same data for all non-zero delays
within the integration time interval. This background distribution is gaussian, so the statistical
significance of an experimentally observed excess would be well-defined. Computer simulations using
real noise data of the cryogenic GW detectors Explorer and Nautilus with superimposed delta-like
signals were performed, to test the effectiveness of the method, and theoretical estimates of its
sensitivity compared to the results of the simulation. The effectiveness of the proposed algorithm is
compared to that of other cumulative techniques, finding that the algorithm is particularly effective
in the case of non-gaussian noise and of a large (100-1000s) and unpredictable delay between GWs
and GRBs.
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I. INTRODUCTION

Over the last decade, Gamma Ray Bursts have been successfully investigated with the satellite experiments BATSE
[2] and Beppo-SAX [3]. The large database now available includes information, for more than 2,000 GRBs, on the GRB
arrival time, duration, intensity in some frequency bands, sky position of the source, and (for a small GRB subset)
redshift. On the basis of all this information it is possible to design cumulative algorithms to detect a statistical
association between the Gravitational Wave (GW) detector signals and the GRBs. It is well known that the present
sensitivity of GW detectors is not sufficient to detect single events unambiguously, with the exception of very nearby
GW sources, which are expected to be very rare. For this reason, much effort has been devoted to the development
of data analysis techniques for the detection of coincidences between the events recorded by different detectors. The
main problem facing this kind of analysis is that the event lists of both detectors are dominated by the contribution
of non-gaussian and non-stationary noise [4]. Observation of a large number of GRBs, probably associated with
explosive events capable of producing a large GW signal, has afforded the possibility to analyze the GW detector
data around the GRB arrival times. Cumulative techniques have been proposed to detect a statistically significant
association between GW signals and GRBs [5–9]. A difficulty arises from the theoretical uncertainty about the time
delay between the GRB and GW arrival times. This delay depends on the models used to describe GRB dynamics,
and, however, it is not expected to be constant. Theoretical predictions [10–12], and the interpretation of experimental
results [13] based on a fireball model [14] suggest that delays up to 1hr should be expected. Thus, any cumulative
analysis technique of GW detector data, synchronized to the GRB arrival time, would dramatically lose effectiveness
due to the uncertainty about the GW-GRB time delay. Recently, a crosscorrelation method has been proposed by
Finn et al. [1], to detect statistical association between GWs and GRBs. The method is based on measurement of
the average of the crosscorrelation of two detectors (the two LIGO interferometers were considered), on a set (named
on-GRB set) of time windows centered at the arrival times of the GRB events. An off-GRB set is used as a reference,
and the statistical significance of the difference between the average crosscorrelation of the two sets is evaluated. As
correctly claimed by the authors, the non-gaussian nature of the noise does not affect the method, but the hypothesis
of stationarity of the GW detector noise is necessary to obtain a meaningful result. Gravitational wave detectors are
typically affected by noise that is not only non-gaussian, but also non-stationary. The non-stationarity of the noise
and uncertainty about the GW-GRB time delay make it difficult to choose a suitable off-GRB data set providing an
unbiased background. In fact, it would be necessary to choose the off-GRB data samples near those of the on-GRB set
in order to decrease the uncertainty introduced by the noise non-stationarity. On the other hand, due to GW-GRB
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delay uncertainty, unbiased reference samples should be chosen far from the GRB trigger times. Thus it is very
important to design a different crosscorrelation technique, capable of overcoming this difficulty with optimal choice of
the reference quantity. In this work it will be shown that the reasonably obvious assumption of simultaneity of any
real astrophysical GW signal on the two detectors may be used to design a simple technique for detecting association
of GW signals with GRBs, which is affected neither by the non-stationarity nor the non-gaussianity of the detectors’
noise. Simultaneity is assumed to hold within a Wiener filter characteristic time, which, for the narrow-band resonant
GW detectors considered here, is always much longer than the physical delay associated with the distance between
the GW detectors. In Section 2 the proposed method will be described. The results of numerical simulations and
analytical computations will be shown and discussed in Section 3.

II. METHOD

Let xi(t) and yi(t) be the Wiener filtered outputs of the GW detectors X and Y, during a time interval T, centered
at tγi, the time of arrival of the i-th GRB. The data are placed on a circular buffer, to compute on the same data set
the crosscorrelation between the two GW detectors as a function of delay τ :

χi(τ) =
1

T

∫ tγi+T/2

tγi−T/2

dtxi(t)yi(t + τ) (2.1)

The average < χi > and the standard deviation σχi of the i-th χi(τ) distribution are then computed, and the
normalized, zero-mean quantity is obtained:

ci(τ) =
χi(τ)− < χi >

σχi
(2.2)

The functions ci(τ) associated with each GRB are then averaged, yielding a cumulative zero-mean crosscorrelation,
which is a function of delay τ :

C(τ) =
1

N

∑

i

ci(τ) (2.3)

For sufficiently long integration times, the quantity C(τ) is a random variable with gaussian distribution. The
crosscorrelation signal to noise ratio SNRC is then obtained by dividing the zero-delay crosscorrelation C(0) by the
standard deviation σC of the C(τ) distribution:

SNRC =
C(0)

σC
(2.4)

We note here that this procedure, truncated at the step of Eq.2.2, may also be applied to single GRB events. The
behavior of a ci(τ), and the crosscorrelation snr, SNRci may be evaluated for any single GRB. Analysis of an individual
GRB could be interesting in the case of very peculiar GRBs (high power and/or low redshift). However, the method
becomes particularly effective for the cumulative analysis of a large number of GRBs, because the cumulative SNR
advantage, as the square root of the number of samples, is fully obtained also if the delay between the GRB and
the GW is unknown and variable. The only requirement of the GRB-GW delay is that it must be smaller than the
integration time, for all GRBs. In this case the crosscorrelation contributions due to differently delayed GW signals
add coherently, while, in the case of other cumulative algorithms using one detector only, GRB-GW simultaneity is
needed to obtain the full cumulative SNR advantage. It should be added that the integration interval doesn’t need
to be centered around the GRB arrival time, as it is in Eq.2.1. It may be arbitrarily shifted to test the predictions of
different theoretical models.

III. RESULTS AND DISCUSSION

The sensitivity of the above-described procedure has been evaluated, both analytically and with computer simula-
tions, using real Wiener filtered [15] data of the GW detectors Nautilus [16] and Explorer [17]. A period of one year of
GW data was considered. The data sampling time is 0.296 s. The adaptive Wiener filter smooths the noise with the
time constant τ3 ≈ 1 s for both detectors, corresponding to an effective bandwidth β3 ≈ 1 Hz. The noise level of the
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filtered data is expressed by the effective temperature Teff , which is the minimum energy variation detectable by the
antenna with signal to noise ratio equal to unity. One-hour-long common data stretches were used, centered at the
times given by a dummy GRB time list with the same experimental BATSE GRB rate (1/day) [2]. The data stretch
associated with each GRB was selected for the analysis if the average effective temperature proved less than 20 mK on
both detectors. This choice was suggested by the noise distribution of the detectors in the considered year. The noise
distributions of both detectors were peaked in the 10-15 mK range, so a higher threshold would have not significantly
improved the statistics. The above constraints yielded N = 27 selected one-hour common data stretches of 12000
samples each, with an average effective temperature Teff = 13 mK. These figures give the important information
about the size of the statistical sample that can reasonably be obtained for a crosscorrelation analysis of two real
GW detectors. It is clear that the requirement of having both detectors simultaneously in operation with low noise
performance severely reduces the size of the available statistical sample. The same constraint applied to one detector
only would give a much larger sample (N=150). This is clearly a drawback of the proposed method, which could be
limited by using pairs of data coming from more than two GW detectors. In Fig.1 the energy histogram of the filtered
data of both detectors is shown. The energy is normalized to Teff of the selected data. Looking at the distribution
of Fig.1, it is clear that the large non-gaussian tail of the energy event distribution makes it impossible to detect
unambiguously individual events with E/Teff = 5-10.

FIG. 1. Energy histogram of the Wiener filtered data of the detectors in the 27 selected common hours. The energy is
normalized to Teff of the selected data.

This is a well-known problem in GW data analysis, which has generally led the GW data analysis community to
define as GW events, to be used for a coincidence analysis, those with a very large value of E/Teff . The procedure
was applied to the N one-hour periods. The choice of using one hour integration time is proposed to include the
contribution of GW signals associated to GRBs, according to the delay predicted by most theoretical models. This
choice could be optimized, as will be discussed later. In Fig.2 the normalized average crosscorrelation C(τ)/σC and
its histogram are shown for the 27 selected hours. The distribution of the crosscorrelation variable C(τ)/σC shows
a gaussian shape, without any significant tail, while the original distributions of the two detectors’ noise were both
markedly non-gaussian.
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FIG. 2. Cumulative crosscorrelation of the noise of the two GW detectors, and its statistical distribution, which is clearly
well approximated by a gaussian function.

This result, in the light of the central limit theorem, is a quite obvious consequence of the averaging processes
(time integration and sample average) applied to the original data to give the variable C(τ). The gaussianity of the
crosscorrelation variable is very important, as it gives a well-defined statistical meaning to the experimental result.
The probability that a given high value of the experimental crosscorrelation quantity be due to chance may reliably
be computed, as well as the upper limit on the source average power implied by a low experimental value.
An analytical estimate of the sensitivity of the method has been obtained, assuming gaussian noise. The expected
normalized zero-mean crosscorrelation SNRC is given by:

SNRC = (SNRxSNRy + SNRx + SNRy)

√

N

N ′
(3.1)

where SNRx and SNRy are the snr’s of the two detectors, in terms of E/Teff , and N’ = T β3, is the number of
independent samples in the integration interval. A numerical simulation was performed to test the sensitivity of the
algorithm using the non gaussian noise data of two real GW detectors, Nautilus and Explorer. Impulsive signals of
energy E were added to the N stretches of noise data, randomly delayed with respect to tγi within the integration
interval, but simultaneous on the two detectors X and Y. In Fig.3 the normalized cumulative crosscorrelation C(τ)/σC

is plotted as a function of τ , for three values of the added signal amplitude, corresponding to increasing SNR on the
single detector: E/Teff = 2.2, 4.5, 9.1. The data of Fig.3 show the corresponding crosscorrelation signal C(0), emerg-
ing from the gaussian background. Low E/Teff (e.g. between 3 and 10) events, which would be totally immersed in
the non-gaussian tails of Fig.1, distinctly emerge from the gaussian tails of the distribution of Fig.2.

4



FIG. 3. Cumulative crosscorrelation of the noise of the two GW detectors, Nautilus and Explorer, with superimposed signals
of increasing energy: 2.2Teff , 4.5Teff . 9.1Teff . The superimposed GW signals are simultaneous on the two GW detectors, but
variably delayed with respect to the GRB arrival time.

FIG. 4. Crosscorrelation snr, SNRC, plotted as a function of the added signal snr, E/Teff (• for T = 1 hr, ◦ for T = 20
min). The numerical results are compared to the analytical estimation Eq.3.1.

The sensitivity of the algorithm, as computed by the numerical simulations, is shown in Fig.4, where the adimen-
sional crosscorrelation signal to noise ratio SNRC, defined by Eq.2.4, is plotted as a function of the signal SNR,
E/Teff , for two values of the integration time T. The simulation shows that SNRC decreases as the square root
of the integration time, provided that T is larger than the maximum delay between GRBs and GW signals, as in
this simulation, and that the relation between SNRC and E/Teff is in agreement with Eq.3.1. As discussed above,
a given value of the SNR is much more significant for the crosscorrelation variable, due to the gaussianity of the
crosscorrelation background. The sensitivity of the algorithm may be compared to that of a low-threshold coincidence
search, which is a possible alternative two-detector method. Setting an event threshold at SNRt one can compute
[18] the probability of getting an event larger than the threshold in the presence of gaussian noise, as a function of
the signal SNR, SNRs = E/Teff :

Px(SNRs, SNRt) =

∫

∞

SNRt

dx
exp −(SNRs+x)

2 cosh
√

xSNRs
√

2πx
(3.2)

The expected number of coincidences due to the N added signals would be:
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NC = PxPyN (3.3)

For SNRs = SNRt we obtain Px = Py = 0.5 and the coincidence excess is NC ≈ 7. The coincidence background
during the whole time interval NT may also be computed for gaussian noise:

Nacc = P (0, SNRt)P (0, SNRt)NN ′ (3.4)

The coincidence excess with respect to the Poisson distribution of the accidental coincidences has a probability of
being due to chance that may be compared to the corresponding probability of getting by chance the crosscorrelation
excess with respect to the gaussian crosscorrelation background found with the simulation. This comparison is shown
in Table I for three values of the coincidence SNR threshold, in the case SNRs = SNRt and T = 1h. PSNRC is the
probability of finding by chance the corresponding value of SNRC, assuming gaussian statistics. Pc,g is the probability
of finding by chance the coincidence excess NC , assuming the accidental coincidences background Nacc,g, computed in
the case of gaussian noise on both detectors.Pc,r is the probability of finding by chance the same coincidence excess NC ,
assuming the accidental coincidences background Nacc,r, computed from the real event distribution of the detectors,
shown in Fig.1. The evaluation of the accidental coincidences background based on gaussian statistics is not adequate
to describe real GW detectors, whose noise is not gaussian. A more realistic evaluation of the accidental coincidences
background is found using the real event rate of the two GW detectors as a function of the threshold level SNRt. From
Table I it is clear that the coincidence technique would be more effective for a hypothetical detector with gaussian
noise, while the crosscorrelation method proposed here proves preferable in the more realistic case of non gaussian
noise. It should also be added that the coincidence search method is also affected, for non-delta-like signals, by an
uncertainty about the event maximum time that leads either to a decrease of the coincidence detection efficiency, or
to the choice of a longer coincidence window, with a correspondingly higher rate of accidental coincidences. Of course,
other cumulative single-detector techniques could also be effective, but only in the case of close simultaneity between
the GW event and the GRB trigger time. This model-dependent assumption is not needed for the effectiveness of the
proposed crosscorrelation technique. The advantage of the proposed method is the absence of hypotheses, excluding
the obvious assumptions that the signals of the two GW detectors be simultaneous. No hypothesis is made on both
the gaussianity and the stationarity of the noise. A similar method, proposed by Finn et al. [1], is critically based
on the hypothesis of stationarity of the GW detector noise, which is not generally true for present GW detectors.
The intrinsic fluctuation of the noise contribution to the crosscorrelation of the on-GRB sample would require a very
large number of low-noise data samples. The advantage of the method proposed here has nothing to do with the
extraction of a crosscorrelation quantity with the maximum signal contribution. Rather, it lies in the choice of the
reference quantity to which the measured crosscorrelation is compared to evaluate its statistical significance. In the
case of Finn et al., the reference quantity is found by choosing reference data uncorrelated to the GRB arrival times,
according to the noise stationarity hypothesis. In the present work, only the obvious physical hypothesis that the
signals be simultaneous on the two GW detectors is used to define the reference quantity, which makes it possible to
avoid the problem of non-stationarity of the GW detector noise. Model-dependent assumptions on the GRB physics
could be considered to increase the sensitivity of the method. For example, the uncertainty about the time delay
between GRBs and GWs would suggest computing the crosscorrelation on a time window wide enough to include
this uncertainty. As the sensitivity of the method is decreasing with the width of the window, the model-dependent
hypothesis that the delay uncertainty is correlated to the GRB duration could be used, for example, to optimize the
method by choosing each time window width according to the GRB duration. Unfortunately, as pointed out above,
the obvious drawback of any crosscorrelation technique is the reduced size of the data sample, due to the requirement
of simultaneous low-noise operation of two GW detectors. Multiple crosscorrelation with n detectors is also a natural
extension of the proposed method.

TABLE I. Comparison between the crosscorrelation and the low-threshold coincidence technique.

E/Teff SNRC(T = 1h) PSNRC Nacc,g Pc,g Nacc,r Pc,r

2 0.8 0.21 200 0.3 2000 0.4
3 1.5 7 · 10−2 1 10−5 250 0.3
5 3.5 2 · 10−4 0 22 9 · 10−2
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IV. CONCLUSIONS

A new method is proposed to detect statistical association between GW detector signals and GRBs, by using a
cumulative crosscorrelation technique. The originality of the proposed method lies in the choice of the reference
background quantity to which the crosscorrelation should be compared, thanks to which unbiased meaningful results
can also be obtained in the case of non-stationary noise. The obvious physical constraint, i.e. that the signals must
be simultaneous on the two GW detectors, is used to select as physically relevant the crosscorrelation at zero delay
only, while the crosscorrelation integrals computed on the same circularly permuted data for other delays are used
as a background distribution, providing a well-defined estimate of the statistical significance of the zero-delay result,
in the eventuality of an excess, or of an absence of excess. Computer simulations using the real noise data of the
cryogenic GW detectors Nautilus and Explorer have been performed and compared to analytical estimates of the
algorithm sensitivity. The sensitivity of the proposed algorithm has also been compared to that of a low-threshold
coincidence search method, finding that the crosscorrelation method proves more effective in the case of non-gaussian
noise.
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