

6th Edoardo Amaldi Conference on Gravitational Waves Okinawa, June 20-24, 2005

Approaching the quantum limit with a new read-out on EXPLORER and NAUTILUS

Alessio Rocchi University of Rome "Tor Vergata" and INFN Roma 2 for the ROG Collaboration

Alessio.Rocchi@Inf.infn.it

www.lnf.infn.it/esperimenti/rog

EXPLORER and NAUTILUS Duty cycle more than 90%

Talk by M. Visco this morning

Single gap transducers (gap \approx 10µm) and single-stage dc SQUIDS ($\epsilon \approx$ few thousand \hbar)

Double-gap transducer

Actual gap on NAUTILUS transducer ≈ 9µm

Preliminary results on the Double-gap transducer

Minenkov, J. Phys. D: Appl. Phys. 33, 1134–1136 (2000)

@ T=4.2 K, Q = 1.5·10⁶, U_{pol} ≈ 200 V gap ≈ 10 μm

21st June 2005

The ROG 2-stage SQUID amplifier

Carelli et al., Appl. Phys. Lett. 72, 115 (1998)

Open input noise measurement of the ROG 2-stage SQUID amplifier

Working point stabilization via cold-damping network¹

High-Q input circuit (L_0 =96mH, Q_0 =0.7·10⁶, k=0.38). f₀= 1740 Hz

1 see Vinante et al., Physica C 368, 176-180 (2002)

21st June 2005

Next Steps

- Investigate temperatures below 2 K;
- Increase the transformer coupling;
- Measurement of back-action to estimate noise temperature T_n;
- Couple the system to the double gap transducer.

Expected S_h for NAUTILUS @ 0.12K, double gap transducer (11 µm and Q=1.5·10⁶) and double SQUID (L₀=2.5 H, k=0.7, Φ_n = 0.16µ Φ_0/\sqrt{Hz}).

 $T_{eff} \approx 7\mu K$ (corresponding to h=2.1.10⁻²⁰), sensitivity < 1.10⁻²¹/ \sqrt{Hz} over 35Hz.

Carelli et al. 98 Amaldi 6 - Alessio Rocchi