Searching for gravitational wave signal as counterpart of gamma-ray bursts.

giuseppina modestino INFN-LNF Lab. Naz. Frascati (Rome) ROG Collaboration Gamma Ray Bursts (GRBs) and Gravitational Waves (GWs) Association

•GRBs likely arise from shocks in a relativistic fireball that is triggered by rapid accretion on to a newly formed massive object. •Proposed GRB progenitors include binary neutron star mergers (Eichler, Livio, Piran, Schramm, 1989) and collapsar the collapse of a rotating star to a black hole - classical source for GW.

Gravitational Waves and γ -bursts may have the same sources

•Resonant cryogenic detectors. -Present sensitivity-.

•Proposed analysis procedures - for detecting association between the two emissions (GW & γ -b_s)-

•Experimental results

IGEC Collaboration - 5 cryogenic GW resonators-

ALLEGRO AURIGA EXPLORER NAUTILUS NIOBE

IGEC ROG ALLEGRO AURIGA EXPLORER NAUTILUS NIOBE AI5056 Bar Material AI5056 AI5056 AI5056 NЬ Bar Mass [kg] 2296 2230 2270 2260 1500 Bar Length [m] 3.0 2.9 3.0 3.0 2.75 Freq. - [Hz] 895 912 905 908 694 Freq. + [Hz] 920 930 921 924 713 Q ± [1E6] 2 3 1.5 0.5 20 Bar Temp. [K] 4.2 2.6 0.1 5 0.25 Misalignment* **6**° **5° 3° 2°** 16°

* Angle between bar axis and the perpendicular to the Earth great circle closer to the five detectors.

- almost parallel detectors
- resonant frequencies span from 694 to 930 Hz
- typical frequency bandwidths per each resonance ~ 1 Hz
- typical amplitude thresholds for bursts search in 1997–1998 at resonances:

 $H_{th} \sim 1.5 - 4 \times 10^{-21}$ /Hz Fourier component of the g.w. burst amplitude $h_{th} \sim 1.5 - 4 \times 10^{-18}$ strain g.w. amplitude for a conventional --1ms burs

MAIN FEATURES

The detector sensitivity to short GW bursts measurable with SNR=1 in terms of GW amplitude h:

$$\Delta l/l = h = L/\tau_g v^2 (kT_{eff}/M)^{1/2}$$

L : bar length τ_g:burst duration V:sound velocity

M : bar mass

For NAUTILUS, EXPLORER:

$$h \simeq 8 \ 10^{-18} \ (T_{eff})^{1/2}$$

for a typical Galactic burst: (10 kpcs, 1ms, 10⁻³ M_o)

h=10-18

EXPLORER PERFORMANCES

NAUTILUS sensitivity

Strain sensitivity, i.e. minimum impulsive signal detectable with SNR = 1,

The bandwidth of the antenna can be increased acting on the transducer-amplifier of the signals, by increasing β and/or decreasing T_n

OPERATIONS DURING 2001

sigrav 2002

Explorer and Nautilus 2001

EXPLORER (CERN)

- ON from March to December
- Bandwidth = 9 Hz
- T = 2.6 K
- Duty Cycle=267/294=91%
- Average sensitivity
 h=4.5 10-19 →
 1.2 10-4 M0 in GC

- NAUTILUS (LNF)
- ON from January to December
- Bandwidth = 0.4 Hz
- T = 1.5 K
- Duty Cycle=291/365 =80%
- Average sensitivity h=5. 7 10-19 → 2 10-4 M0 in GC

Coincident operation for 213.5 days

Typical theoretical prospect for detection for a single GRB event:

h ~ < 10⁻²¹ 10⁻²² GW amplitude @ R ~ 1 Gpc @ 1 Khz

Theoretical previsions:

According to the rather well established *fireball* [see ref.] concept:

GRBs produce gravitational radiation in **two** phases.

• The first phase is during the formation of the compact object. $(\Delta T \sim 10^3 \text{ s}).$

• The second phase is from the acceleration phase of the ultra relativistic eject. ($\Delta T \ge 0$ s)

sigrav 2002

Piran 1999,2000 Frontera et al. 1999 Sari et al. 1998 Rees & Meszaros 1993,1994

Interpretation of real GW detector data

• Investigate a <u>wide time window</u> to include several possible delays. As matter of facts, taking in account the recent astrophysical hypothesis: t_{GWB} - t_{GRB} = Δt ~1000 s

Do it also in <u>non-stationary noise</u> condition. GW data are often dominated by the contribute of nongaussian, non stationary noise.

In order to consider these fundamental items, studies of adaptive algorithms are required.

Interpretation of real GW detector data

Cumulative techniques have been proposed to detect a statistically significant association between GW signals and GRBs.

- L.S.Finn, S.D.Mohanty, J.D. Romano.
 Phys. Rev. D 60, 121101 (1999).
- G. Modestino, G. Pizzella , A&A., 364, 419 (2000).
- M.T. Murphy, J.K. Webb, I.S. Heng MNRAS. **316**, 657 (2000).
- P. Bonifazi, G.V. Pallottino, A.V. Gusev, A.Kochetkova, Ak. Postnov, V. Rudenko, V.N. Vinogradov CNR-IFSI-2001-28
- G. Modestino and A. Moleti Phys. Rev. D 65, 022005 (2002). sigrav 2002

"Detecting an association between GR and GWB" G.Modestino and G.Pizzella, A&A 364,419 (2000)

•The test indicates the presence of many coherent (Δt =cost) contributions and overcomes the problem of the single spurious peaks.

G.Modestino and G.Pizzella, A&A 364,419 (2000)

Adding signals of 16mK

Proposed techniques: "Detecting an association between GR and GWB" Finn et al.,PRD 60,121101 (1999)

•Cross-correlation of the output of two GW detectors.

•Statistical comparison between on-source set, off-source set.

$$\label{eq:heat} \begin{split} h &\leq 9.4 \ 10^{-22} \quad for \quad t_{GRB}^{} \mbox{-} t_{GW} \simeq 500 \ s \\ h &\leq 1.7 \ 10^{-22} \quad for \quad t_{GRB}^{} \mbox{-} t_{GW} \simeq 0.5 \ s \end{split}$$

Expected U.L. for LIGO detector $(S_o=3x10^{-23} Hz^{-1/2}, Bw=100Hz),$ with 1000 GRBs, with 95% c.l.

"Cross-correlation between GW detectors for detecting association with GRBs"

G.Modestino and A. Moleti, PRD 65,022005 (2002)

• Cumulative cross-correlation technique.

• Study of the real data background of NAUTILUS x EXPLORER

• $h^2 \sim [\Delta t / (N_{GRBs} B_w)]^{1/2}$

• Effective also in the case of non-gaussian data set (N_{GRBs} <100).

• No hypothesis is required about Δt .

Experimental studies

• SEARCH FOR TIME CORRELATION BETWEEN GRBs and DATA FROM TH GRAVITATIONAL WAVE AN TENNA EXPLORER.

Coincidence technique. No evidence in a time window of + 1 s , at several delays.

(ROG Coll.) Astron. Astrophys. Suppl. Ser. 138, 603 –604 (1999)

MEASUREMENTS WITH THE RESONANT GRAVITATIONAL WAVE
 DETECTOR EXPLORER DURING THE GRB 980425

No anomaly in the background of the GW data detector with the sensitivity of $h >= 10^{-18}$

(ROG Coll.) Astron. Astrophys. Suppl. Ser. 138 605-606

• CORRELATION BETWEEN GRBs AND GWs.

Using 120 GRBs, in a 10s time window, an U.L. of 1.5 10⁻¹⁸ was obtained.

(AURIGA Group) Phys.Rev. D 63, 082002

• SEARCH FOR CORRELATION BETWEEN GRB[®] DETECTED Y BEPPOSA) GRAVITATIONAL WAVE DE TECTORS EXPLORER AND NAUTILUS.

Cross-correlation tecnique-

Absence of signal of amplitude of h>1.2 10^{-18} within ± 400 s. h>6.5 10^{-19} + 5 s.

(ROG Coll.) astro-ph/0206431

Search for correlation between GRB's detected by BeppoSAX and gravitational wave detectors EXPLORER and NAUTILUS

P. Astone¹, M. Bassan², P. Bonifazi³, P. Carelli⁴, G. Castellano⁵
E. Coccia², C. Cosmelli⁶, G. D'Agostini⁶, S. D'Antonio², V. Fafone⁷, G. Federici¹
F. Frontera⁸, C. Guidorzi⁹, A. Marini⁷, Y. Minenkov², I. Modena²
G. Modestino⁷, A. Moleti², E. Montanari¹⁰, G. V. Pallottino⁶
G. Pizzella¹¹, L. Quintieri⁷, A. Rocchi², F. Ronga⁷, R. Terenzi¹², G. Torrioli⁵, M. Visco¹³

¹⁾ Istituto Nazionale di Fisica Nucleare INFN, Rome

²⁾ University of Rome "Tor Vergata" and INFN, Rome 2

³⁾ IFSI-CNR and INFN, Rome

⁴⁾ University of L'Aquila and INFN, Rome 2

⁵⁾ IESS-CNR and INFN, Rome

⁶⁾ University of Rome "La Sapienza" and INFN, Rome

⁷⁾ Istituto Nazionale di Fisica Nucleare INFN, Frascati

⁸⁾ University of Ferrara and IASF-CNR, Bologna

⁹⁾ University of Ferrara, Ferrara

¹⁰⁾ University of Ferrara, Ferrara and ITA "I. Calvi", Finale Emilia, Modena

¹¹⁾ University of Rome "Tor Vergata" and INFN, Frascati

¹²⁾ IFSI-CNR and INFN, Rome 2

¹³⁾ IFSI-CNR and INFN, Frascati

stro-ph/0206431. EXPLORER - NAUTILUS (2001) Cross-correlation analysis

 T_{eff} evaluated within a time window of ± 400 s, centered at t_{GRB}

EXPLORER - NAUTILUS Cross-correlation result

Average cross-correlation distribution and gaussian fit.

Cosmic-ray showers interacting with NAUTILUS

Astone et al. (ROG Coll.) Phys. Lett. B 540 179 (2002) The results show a good agreement with the thermoacoustic model

2/4 ROG Coll. (in progress)

GW detector energy as a function of the GW-GRB delay.

97.5% $h \le 1.4 \ 10^{-19}$

to look for a correlation with $sin^4\theta$.

θ

 $sin^{4}\theta$ correspondingly to the **534** selected GRB arrival times. The five regions of increasing $sin^{4}\theta$, separated by vertical lines, correspond to the data subsets separately analyzed. sigrav 2002

ROG Coll. (in progress)

4/4

ROG Coll. In progress Signal-to-noise ratio for GRB-average, median and Kolmogorov maximum distance evaluated at the arrival time of GRB, for five data subsets of increasing $sin^4\theta$

Interpretation of real GW detector data

1) Cumulative technique:

Combine the signals from each GRB and from different GW detectors, to simulate a single detector of greater amplitude. Statistically significant: $S/N \sim (N_{det} \times N_{GRBs})^{1/2}$ BUT... We need to assume: t_{GWB}-t_{GRB} ~ COSt

Interpretation of real GW detector data2) Cumulative technique:

Cross-correlate the output of **two** GW detectors.

Effective also in the case of non-gaussian noise and unpredictable delay between GWs and GRBs, (model independent).

Conclusions:

Experimental searches about physical correlation are possible.

Analyzing the data of the present GW detectors, interesting ranges are been investigate : $h \sim 10^{-19}$.

The proposed methods are robust and effective also in absence of a specific theoretical model.

The conditions are rapidly improving (better sensitivity, more measurements...)