

5th EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES

July 6 - 11, 2003 Green Park Resort Tirrenia (Pisa) - Italy

THE NEW RUN OF EXPLORER AND NAUTILUS

P.Astone, A.Fauth, D.Babusci, M.Bassan, P.Carelli, G.Cavallari, E.Coccia, C.Cosmelli, S.D'Antonio, V.Fafone, G.Giordano, Y.Minenkov, I.Modena, G.Modestino, A.Moleti, G.V.Pallottino, G.Pizzella, L.Quintieri, A.Rocchi, F.Ronga, R.Terenzi, G.Torrioli and <u>M.Visco.</u>

INFN - Laboratori Nazionali di Frascati - Sezione di Roma 1 - Sezione di Roma 2 CNR - Istituto di Fisica dello Spazio Interplanetario-Istituto di Elettronica dello Stato Solido Università degli Studi di Roma "La Sapienza" Università degli Studi di Roma "Tor Vergata" Università degli Studi de L'Aquila CERN - European Organization for Nuclear Research

OUTLINE OF THE TALK

- Description of NAUTILUS and EXPLORER
- Past and present performances
- Results of searches for different kind of signals:

-Continuous waves

-Stochastic background

-Search for burst

G.W. ANTENNA EXPLORER CERN - GINEVRA

Bar Al 5056M = 2270 kgL = 2.97 m $\emptyset = 0.6 \text{ m}$ $v_A = 915 \text{ Hz}$ @T = 2.5 KCosmic ray detector (recently completed)

_ July 7th, 2003 Amaldi Conference

Plastic scintillators

2 layers of 13 m^2

1 layer of 6 m^2

G.W. ANTENNA NAUTILUS LNF - FRASCATI

Al 5056 bar M = 2270 kg L = 2.97 m Ø = 0.6 m $v_A = 935 \text{ Hz}$

Cooled by a dilution refrigerator T=130 mK

Cosmic ray telescope

July 7th, 2003 Amaldi Conference 🏾 👔

NAUTILUS CRYOSTAT

ROME GROUP TRANSDUCER

SENSITIVITY OF BAR DETECTORS

• The sensitivity of a detector is usually given in terms of the noise spectral density referred to the input of the antenna

• The "peak" sensitivity depends on "physical" parameters (T,M,Q). To increase the overall sensitivity a larger bandwidth is required. It can be obtained decreasing the electronics noise contribution and increasing the energy transfer

WIDENING THE BAND IN EXPLORER

TARGET SENSITIVITY OF EXPLORER

• EXPLORER can reach a sensitivity of $T_{eff}=150 \ \mu K$ h = 1 \cdot 10 $^{-19}$ -bandA

EXPLORER STATUS

- EXPLORER was upgraded in 1999. After a tune-up period, it has been on the air since 2000 with a duty cycle close to 84% excluding six months in 2002 and the yearly stop for CERN winter
- The apparatus is now equipped with a cosmic ray detector consisting of plastic scintillators:1 layer of 6 m² under the cryostat and 2 layers of 13 m² over it the cryostat

NAUTILUS STATUS

• It has worked from 1999 to March 2002 with a dutycycle xxxx greater then 80% and an effective temperature smaller then 5 mK corresponding to $h = 6 \cdot 10^{-19}$

• NAUTILUS operations has been stopped on March 2002 for an upgrade, restarted March 2003

• The apparatus is approaching optimum performance

OPERATIONS DURING 2003

GAUSSIANITY

1 day of data on june 2003

SIGNAL DETECTABLE TODAY

- STOCHASTIC SOURCES:
 - fluctuation in the density of early universe

$$\Omega_{GW} \approx 2 \times 10^{-3} \left(\frac{f}{900 Hz}\right)^3 \left(\frac{\tilde{h}^2}{10^{-22} Hz^{-1/2}}\right)^2 \sqrt{\frac{1 Hz}{\Delta f}} \sqrt{\frac{1 y}{T_{obs}}}$$

 CONTINUOUS: spinning neutron stars (M~1.4 M_o ε ~10⁻⁶)

$$SNR = 30 \left(\frac{10kpc}{d}\right)^2 \left(\frac{10^{-44} Hz^{-1}}{\tilde{h}^2}\right) \left(\frac{\varepsilon}{10^{-6}}\right) \left(\frac{T_{obs}}{1y}\right)$$

• BURST SIGNAL: Black hole (M~ $10M_o$) ~ $10^{-4} M_o$ into GW

$$SNR = 6 \times 10^3 \left(\frac{10 kpc}{d}\right)^2 \left(\frac{10^{-44} Hz^{-1}}{\tilde{h}^2}\right) \left(\frac{\Delta f}{1 Hz}\right)$$

Coaleshing binaries NS-NS M~1.4 M_o

$$SNR = 10^3 \left(\frac{10kpc}{d}\right)^2 \left(\frac{10^{-44} Hz^{-1}}{\tilde{h}^2}\right) \left(\frac{\Delta f}{1Hz}\right)$$

July 7th, 2003 Amaldi Conference

SEARCH FOR STOCHASTIC BACKGROUND

• Crosscorrelation of EXPLORER and NAUTILUS data over 10 hours in a band of 0.1Hz in 1997

P.Astone, et al. : "Crosscorrelation measurement of stochastic gravitational waves with two resonant gravitational wave detectors", Astron. and Astrophys, 351, 811-814, (1999).)

Upper limits:

• From the GC, using 95.7 days of EXPLORER data $h_c = 3 \cdot 10^{-24}$ in the frequency interval 921.32 ÷ 921.38 Hz (P.Astone et al. "Search for periodic gravitational wave sources with the Explorer detector" Phys. Rev. D 65, 022001,2002)

•From all the Sky, using 2 days of EXPLORER data $h_c = 2 \cdot 10^{-23}$ in the frequency interval 921.00 ÷ 921.76 Hz (P.Astone et al. "All-Sky upper limit for gravitational radiation from spinning neutron stars", proceedings GWDAW 2002 – collab with KrolaK et alii)

SEARCH FOR BURST SIGNALS

• The search for burst signals with a single detector is of not interest. It is almost impossible to distinguish the candidate events from the back-ground of noise. The "coincidence analysis" between the event candidates of different detectors strongly decrease the false alarm probability.

BURST SIGNALS

• International Gravitationl Event Collaboration: "*First Search for Gravitational Wave Burst with a Network of Detectors*", Physical Review Letters, 85, 5046-5050, (2000).

P.Astone et al.: "Study of coincidence between resonant gravitational wave detectors", Classical and Quantum Gravity, 18, 243-251, (2001).

P.Astone et al.: "Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 2001", Classical and Quantum Gravity 19, 5449-5463 (2002).

P. Astone et al.: "Search for correlation between GRB's detected by BeppoSAX and gravitational wave detectors EXPLORER and NAUTILUS", Physical Review D, 66, 2002 102002

• Collaboration for data exchange between the five resonant detector operating world wide

2001 DATA ANALYSIS

- During 2001 EXPLORER and NAUTILUS were the only two operating resonant detectors.
- •Never before two detectors operated with such sensitivity
- A new algorithm based on energy compatibility of the event was applied to reduce the "background"

EFFECTIVE TEMPERATURE OF THE EVENTS Best performances ever obtained by two detectors

RESULT OF THE ANALYSIS

July 7th, 2003 Amaldi Conference

AVERAGED ANGLES VS SIDERAL HOURS

DOES THE EXCESS SEEN MAKE ANY SENSE?

- The "interesting coincidences" have an energy around 100 mK corresponding to a conventional burst amplitude h ~ $2 \cdot 10^{-18}$
- The energy is equivalent to a conversion of $4 \cdot 10^{-3}$ solar masses in galactic center (8 kpc)
- New data are needed for further considerations

EFFECT OF COSMIC RAYS ON A RESONANT DETECTOR

• The first analysis confirmed the calculation made by several authors.

P.Astone et al.: "Cosmic rays observed by the Resonant Gravitational wave detector Nautilus" Physical Review Letter, **84**, (2000)14-17 (K) 0.01 0.0075 0.005 0.005 0.0025 -40 -20 0 20 40time(s) Maximum 11.5 mK Average

(K)

60

40

 $\mathbf{20}$

0

• Detection of very large unexpected events.

P.Astone et al.: "Energetic Cosmic Rays observed by the resonant gravitational wave detector NAUTILUS", Phys. Letters B 499, Feb 2001 16-22

10

-5

15

time (s)

58 K

87 TeV

threshold

RESULTS WITH NAUTILUS BAR NOT SUPERCONDUCTOR

Period	NAUTILUS temperature (K)	Duration (hours)	nc	n	Rate(ev/day)
Sept-Dec 1998	0.14	2002	12	0.47	
Feb-July 2000	0.14	707	9	0.42	
total		2709	21	0.89	0.178
Aug -Dec 2000	1.1	118	0	0.03	
Mar-Sept 2001	1.5	2003	1	0.54	
total		2121	1	0.45	0.006

• Superconductivity is presently considered as the origin of the anomalous events

P.Astone et alii: "Effect of cosmic rays on the resonant g.w. detector Nautilus at temperature T=1.5K" Physics Letters B 540 179-184 (2002)).

COINCIDENCE EXPLORER-COSMIC RAY

)2	Noise	Tempo	Min density	Coincidence ±0.1 s	Background	Ev/day
20	5 mk	71.6 days	1000	7	1.5	0.08

No event E > 1 Kelvin

	Noise	Тетро	Min density	Coincidence ±0.1 s	Background	Ev/day
2003	10 mK	24.8 days	1000	4	0.45	0.14
	100 mk	30.5 days	1000	16	8	0.25

4event E > 1 Kelvin

THE END

