Bar data analysis for searching counterparts of gamma ray bursts.

Giuseppina Modestino
INFN - Frascati

ROG and Beppo-Sax Collaborations

INFN Frascati, Roma1, Roma2
CNR Roma, Bologna
UNIVERSITIES of Roma, l’Aquila, Ferrara
What we know about GRBs:
(principal results from BATSE and Beppo-Sax)

• Cosmological origin
• Isotropic distribution
• $10^{51} - 10^{53}$ erg (in a few seconds)
• Complex temporal behavior
• Bimodal statistic in the duration time
• EM counterparts in lower frequencies
 (phenomenological process)
Typical theoretical prediction for GW associated to a single GRB event:

GW amplitude $h < 10^{-22} - 10^{-21}$ @ 1 kHz @ $R \sim 1$ Gpc

$\Delta T = |T_{GW} - T_{GRB}| = ?$
The detector sensitivity to short GW bursts (in terms of GW amplitude):

$$\Delta \nu/\nu = h \sim 10^{-18}$$

For NAUTILUS, EXPLORER:
- bar length $L = 3\text{m}$
- mass = 2300 Kg
- material Al5056
- resonance $\sim 1\text{ KHz}$
- temperature $= 0.1\text{ K} - 2\text{ K}$

for a typical Galactic burst (10 kpc, 1ms, 10^{-3} M)
measurable with SNR=4
Previous studies and experimental results

Cumulative techniques have been proposed to detect a statistically significant association between GW signals and GRBs.
Principal problems

• Need to investigate a wide time window to include several possible delays. As a matter of facts, taking into account the recent astrophysical hypothesis:
 \[T_{GW} - T_{GRB} = \Delta T \approx 1000 \text{ s} \]

• Non-stationary noise condition. GW data are often dominated by the contribution of non-gaussian, non-stationary noise.

In order to consider these fundamental items, studies of adaptive algorithms are required.
The two cumulative techniques

Combine the output data

Combine the output data from each GRB and from different GW detectors, to simulate a single detector of better sensitivity.

- **Statistically significant:**
 \[
 S/N \sim (N_{\text{det}} \times N_{\text{GRBs}})^{1/2}
 \]

- **BUT…**

 We need to assume:
 \[
 \Delta T = T_{\text{GW}} - T_{\text{GRB}} \sim \text{cost}
 \]

Cross-correlate the output of two GW detectors.

- **Effective also in the case of poor statistic.**

- **No hypothesis is required about \(\Delta T \) (model independent).**

- \[
 h^2 \sim \left[\frac{\Delta T}{(N_{\text{GRBs}} \, \text{BW})} \right]^{1/2}
 \]
EXPLORER - NAUTILUS
Cross-correlation result

Overlapping 47 c-c stretches

$h \leq 1.2 \times 10^{-18} \ (\Delta T = \pm 400\mathrm{s})$
$h \leq 6.5 \times 10^{-19} \ (\Delta T = \pm 5\mathrm{s})$

Searching for GW counterparts at GRB arrival time.

- GRB list = BATSE + Beppo-Sax
- GRB arrival time = Peak Time
- GW detectors = EXPLORER + NAUTILUS
- $DT = |T_{GRB} - T_{GW}| = 0$ (Peak Time ± 5 s)
- GW data background = 30 minutes with temperature noise $t_n < 15 \times 10^{-3}$ kelvin (Peak Time ± 15 min)
- Cumulative median algorithm
Adopting the median algorithm (instead of average)

Better sensitivity: the output filtered data have an exponential distribution. So:

\[m = \ln 2 \mu \]

(m and \(\mu \) are the median and the mean value of the distribution)

Better stationary: the background is much less affected by spurious peaks.

It is ideal for searching small systematic signals.
GRBs Database

Used Data

Trigger GRBs

BATSE (~2700)

BeppoSAX (~1000)

Cumulative Median

- Integration Time: ±5s

- Overlapping 304 30 min GW data stretches

GW detector energy as a function of the GW-GRB delay

\[
E(0) = 6.29 \text{ mk}
\]

\[
\langle E \rangle = 6.19 \text{ mK}
\]

\[
\sigma = 0.17 \text{ mK}
\]

\[
h \leq 1.4 \times 10^{-19}
\]

\[
E(0) = 6.29 \text{ mk}
\]
Conclusions:

The last decade contains a very rich data archive for searching association between GW and GRB emissions.

Correlating the data of the GW bar detectors with existent GRB lists, significant measurements are performed.

Interesting ranges have been investigated: $h \sim 10^{-19}$.

The results represent relevant indications for future measurements.