ON UPPER LIMITS FOR GRAVITATIONAL RADIATION

P.Astone! and G. Pizzella?
LINFN, Sezione di Roma 1,Rome, Italy
2 University of Rome Tor Vergata and INFN, Laboratori Nazionali di Frascati
P.O. Box 13, I-00044 Frascati, Italy

Abstract

A procedure with a Bayesian approach for calculating upper limits to gravitational
wave bursts from coincidence experiments with multiple detectors is described,
where the detection efficiency for small signals is taken into consideration. The
Bayesian approach to the upper limit estimation is confronted with the unified

approach for the case when no events are observed in presence of a non-zero back-
ground.
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1 Introduction

After the initial experiments with room temperature resonant detectors, the new
generation of cryogenic gravitational wave (GW) antennas entered long term data taking
operation in 1990 (EXPLORER [1}), in 1991 (ALLEGRO [2]), in 1993 (NIOBE [3]), in
1994 (NAUTILUS [4]) and in 1997 (AURIGA [5]).

Searches for coincident events between detectors have been performed. Between
EXPLORER and NAUTILUS and between EXPLORER and NIOBE in the years 1995
and 1996 [6]. Between ALLEGRO and EXPLORER with data recorded in 1991 [7]. In
both cases no significative coincidence excesses were found and an upper limit to GW
bursts was calculated [7].

A recent search [9] of coincidences between EXPLORER and NAUTILUS in the
period June-December 1998 using event selection algorithms based on the energy of the
events and on the directionality of the detectors has shown a small coincidence excess
when the detectors are favorably oriented towards the Galactic Centre. Nevertheless the
evidence is too small to allow a claim of detection of gravitational waves, and upper limit
estimations retain their validity.

Finally, the first network of five widely spaced detectors (IGEC) has put a new
upper limit on events in the Galaxy/§].

However, the upper limit determination has been done under the hypothesis that the
signal-to-noise ratio (SNR) is very large. According to theoretical estimations the signals
expected from cosmic GW sources are extremely feeble, so small that extremely sensitive
detectors are needed. In fact, according to present knowledge, the detectors available
today have not yet reached the sensitivity to detect even a few events per year.

Thus it is important to study the problem of the upper limit determination in the
cases the SNRs of the observed events are not large. In order to do this we have to discuss
our definition of event.

The raw data from a resonant GW detector are filtered with a filter matched to short
bursts [10]. We describe now in more detail the procedure used for the GW detectors of
the Rome group, EXPLORER and NAUTILUS.

After the filtering of the raw-data, events are extracted as follows. Be x(t) the fil-
tered output of the electromechanical transducer which converts the mechanical vibrations
of the bar in electrical signals. This quantity is normalized, using the detector calibration,
such that its square gives the energy innovation £; of the oscillation for each sample,
expressed in kelvin units. In absence of signals, for well behaved noise due only to the
thermal motion of the bar and to the electronic noise of the amplifier, the distribution of
x(t) is normal with zero mean. The variance (average value of the square of z(t)) is called
ef fective temperature and is indicated with T, ;¢. The distribution of x(t) is

J(@) = o7 W

w/27TTeff

For extracting events (in absence of signals the events are just due to noise) we set a
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threshold in terms of a critical ratio defined by

o= <lel > _ VSVEr— /2

CR=
o (Je) 2

where o(]z|) is the standard deviation of |z| and we put

Ey

SNE; = 7+

(3)

The threshold is set at a value CR such to obtain, in presence of thermal and
electronic noise alone, a number of events which can be easily exchanged among the other
groups who participate to the data exchange. For about one hundred events per day the
threshold corresponds to an energy £, = 19.5 T, ¢¢.

We calculate now the theoretical probability to detect a signal with a given SNR,
in presence of a well behaved Gaussian noise. We put y = (s + x)? where s = VSNR is
the signal we look for and x is the gaussian noise. We obtain easily [11]

o 1
probability(SNR) = / e cosh(/y - SNR)dy (4)
SNR; V2TY

We put SNR; = 19.5 for the present EXPLORER and NAUTILUS detectors.

2 Upper limit determination

We consider M detectors and search for M-fold coincidences over a total period of
time t,,, during which all detectors are in operation. Be n the average number of accidental
coincidences (due to chance) and n. the number of coincidences which are found within
a given time window.

For events which have a Poissonian distribution in time the expected average number
of M-fold accidental coincidences is given [16] by

1,M
n = Mw"™? H g (5)
k

where ny, is the event density of the k¥ detector.

The accidental coincidence distribution can be estimated experimentally by proper
shifting [12] the event occurrence times of each detector. In the case of Poissonian dis-
tribution the average number of the M-fold accidental coincidences coincides with that
given by eq. 5. The comparison between n. and n allows to reach some conclusion about
the detection of GW or to establish an upper limit to their existence.

In paper [7] and in the previous paper [13] the upper limit has been estimated
as follows. It has been found that, for various energy levels of the observed events, the
number n,. was smaller than or did not exceeded significantly 7. Such numbers n., one

for each energy level, were used for calculating the upper limit. A Poissonian distribution



of the number of the observed events was considered together with the hypothesis of
an isotropic distribution in the sky of the GW sources. The value of h (adimensional
perturbation of the metric tensor) was then derived from the energy levels, using the
detector cross-section for gravitational waves.

This procedure can be objected on two points:
a)The most important point is that, as shown in [14], for SNR small and up to values of a
few dozens, the energy of an event is not the energy of the GW absorbed by the detector.
This means that we cannot deduce the value of h directly from the energy levels of the
observed events;
b)In addition, the efficiency of detection, again for SNR values up to one or two dozens,
is rather smaller than unity, and this changes the upper limit, particularly at small SNR.

We introduce a new procedure for estimating the upper limit, which circumvents
the difficulties indicated in the above two points.

The problem to determine the upper limit has been discussed in several papers.
In particular in paper [17], as indicated by the PDG, [18], and, more recently, in paper
[19]. According to [19] the upper limit can be calculated using the relative belief updating
ratio[20]

R(ngw,ne, i) = e "W (1 + nGTW)"C (6)

referring to a given period t,,, of data taking. This function is proportional to the likelihood
and it allows to infer the probability to have ngy signals for given priors (using the Bayes'’s
theorem). It has already been used in High Energy Physics [21, 22, 23].

In Appendix A some properties on the R function are reviewed.

We calculate the upper limit by solving the equation

R(ngw,ne,n) = 0.05 (7)

We remark that 5% does not represent a probability but it is an useful way to put a
limit independently on the priors"). In the case the prior is taken to be uniform then the
probability is just 5%. If the prior, based on previous knowledge, is not uniform (see ref
[20], Section 7 Table 1) then the probability can be larger or smaller than 5%. As shown in
ref [20], after a few experiments asymptotically the prior distribution becomes irrelevant.

Eq. 7 has a very interesting solution. Putting n, = 0 we find ngy = 2.99, inde-
pendent on the value of the background n. If we use the calculations of ref. [17] we find
that, for n, = 0 and n = 0, the upper limit is 3.09 (almost identical to the previous one)
but it decreases for increasing 7. The reason for this different behavior is due to the non-
Bayesan character of the calculations made in [17], as discussed in [24] and reported in
Appendix B.

Suppose we have n. = 0 and n # 0. This certainly means that the number of acci-

dentals, whose average value can be determined with any desired accuracy, has undergone

) To avoid confusion we call this limit standard sensitivity bound [19]. We remark that this limit
becomes the standard upper limit if an uniform prior is used.
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Figure 1: Number of GW signals expected for the sensitivity limit of 5% versus the number
of coincidences equal to the average number of accidentals.

a fluctuation. For larger n values, smaller is the (a priori) probability that such fluctua-
tion occur. Thus one could reason that it is less likely that a number ngy be associated
to a large value of n, since the observation gave n, = 0.

According to the Bayesan approach instead, one cannot ignore the fact that the
observation n. = 0 had already being made at the time the estimation of the upper limit
is considered. The Bayesan approach requires that, given n. = 0 and 7 # 0, one evaluate
the chance that a number ngy of signals exist. This chance of a possible signal is referred
to the observation already made and, rather obviously, it cannot depend on the previous
fluctuation of the background, since the presence of a signal cannot be related to the
background due to the detector.

Mathematically,(as shown in [24] and in the Appendix B), it is easy to demonstrate
that that due to the Poissonian character of the number of accidentals this relative
chance (for n. = 0) is indeed independent on 7.

It can be seen, comparing the results of [17] with those of [20], that the Bayesan
upper limits are for all values of n. and 7 (except n. = 7 = 0), greater than those obtained
with the non-Bayesan procedure. In our opinion the Bayesan approach has to be preferred,
and so we do in this paper.

If we have n. # 0 then we apply eq. 6. It is interesting to show the result for the
case n, = n # 0 for the standard sensitivity bound of 5%. The result is given in fig.1 We



note that for n, = n and ngw << n eq. 6 can be approximated with
ngw ~ vV 6n (8)

From the result shown in fig.1 it appears evident that the lowest upper limit is
obtained for n, ~ n ~ 0. In order to obtain n ~ 0 one can raise the threshold used for
determining the events. However in doing this one diminish the efficiency of detection,
as shown in eq.4. Whether the procedure to raise the threshold is convenient or not, it
depends on the numerical effects of the two competing operations. Certainly for large GW
signals, when the detection efficiency is always unity, it is much better to have a threshold
that gives n = 0. For smaller signals one has to consider specific cases. However it can
be seen that in the most interesting cases it is better to raise the threshold until we get
n ~ 0. This will be shown in the section where we reconsider the upper limit obtained
with ALLEGRO and EXPLORER in 1991 [7].

In the estimation of the upper limit we consider the efficiency of detection, which
we indicate with e,(SNR) where k refers to the k" detector. For EXPLORER and NAU-
TILUS the theoretical efficiency is obtained from eq. 4.

We must relate the h values of the GW to the energy E absorbed by the detectors.
We have to consider that the absorbed energy depends on the direction of the impinging
GW and on its polarization. For taking care of the various polarization we use the average
value dividing the cross section by a factor of two. We then have [15]

h=11310""VE (9)

with the energy E expressed in kelvin unit. This formula is valid only if the GW arrives
perpendicularly to the detector axis (6 = 90°). For a given direction we calculate the
absorbed energy using the sin(6)* dependency. We also consider that for an isotropic
distribution of sources the number of possible GW impinging directions is proportional
to sin(0)2.

The procedure for calculating the upper limit is accomplished thru the following
points:
a) consider various values of h;
b) assume an isotropic distribution of the GW sources;
¢) for each direction 6 and for each h calculate the absorbed energy F(6) by means of eq.
9 and the sin*() dependency;
d) for each detector calculate the SNR for the adsorbed energy by taking into consideration
the noise i :
E(9)
Tesrk

SNR(0) = k=1,..M (10)

e) using the individual efficiencies €, (SN Ry (0)) consider the total efficiency ¢/(f) =
v er(SNRy(0));
f) integrate ¢(0) over 6 with the weight sin?(0), because of the assumed isotropic distri-

bution of the sources;



Table 1: Procedure for calculating the upper limit with two detectors. We assume that
one detector has noise Tprr = 1 mkK, the other one has noise 1,5y = 2 m. For each
value of h we give: maximum energy adsorbed by the detector (for sint(§) = 1), SNR
and efficiency of detection for each detector, total weighted efficiency (having considered
an isotropic distribution of the GW sources. Due to the angular weighting €10 < €4€p).
The upper limit is given by 222

€total

h E.s | Detector A Detector B upper limit
101 || [mK] SNR4 €A SNRpg €B | €tor
% % %
2 31 31 0.88 15.5 0.32 | 0.12 16
3 70 70 1 35 0.93 | 0.56 4.3
4 126 126 1 63 1 10.76 3.6
10 783 783 1 392 1 10.95 3.1

g) from eq.6, given n. and 71, we obtain ngy. We then divide ngy by the result of point
f) and obtain for each value of h the upper limit during the measuring time ¢,,.

We remark that in this case we have not used the energy of the observed events, as
done instead previously [13, 7].

The total efficiency is calculated with the following eq. 11.

Z 1L,M _
2 ) SNR, 9 9 9 d@
€ot(h) = fo k €k ﬂ k(0))sin?(0)

4

(11)

For more clarity we show in table 1 some of the steps needed for our calculation,
using two parallel detectors and n, = 0. We use the efficiency given by eq. 4, valid for a
well behaved noise?.

3 Ricalculation of the upper limit with the data of ALLEGRO and
EXPLORER in 1991

In a previous paper [7] the upper limit for GW bursts was calculated, using the data
recorded by ALLEGRO and EXPLORER in 1991. We wish now to recalculate the upper
limit according the considerations discussed in this paper.

In 1991 the EXPLORER data filtering was done differently from that described in
this Introduction. For both ALLEGRO and EXPLORER the output of the electrome-
chanical transducer was sent to lock-ins referred to the frequencies of the resonant modes.
Then the outputs of the lock-ins (in phase and in quadrature) were filtered searching for
delta-like signals and combined for obtaining the energy innovation, which we still indi-
cate with Ey. In this case the probability to have an event (above threshold SNR;) due
to a signal with given SNR is obtained (see ref. [2, 14]) with the following equation:

probability(SNR) = /

e SNEHO [ (91 /y - SN R)dy
SNR;

2) The real data often show a non gaussian behaviour. In this case the efficiency differs from the theo-
retical one given by eq.4, but one can easily make use of the efficiency experimentally measured.

(12)
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Figure 2: The asterisks indicate the upper limit calculated in [7]. The other line indicates
the standard sensitivity bound evaluated with the Bayesan approach.

Here y = %, 1, is the modified Bessel function of order zero, and the noise temperature
Tess is the average value of the energy innovation Fy.

We recall that in a time period of 123 days 70 coincidences were found with a
background of 59.3. For extracting the events the ALLEGRO threshold was SNR; = 11.5
with a noise temperature 7,5y ~ 8 mK. For EXPLORER the threshold was SN R, = 10
also with T.;r ~ 8 mK. Applying eq.6 we find an upper limit of ngw = 37 over the 123
days.

According to the previous considerations we can raise the event threshold, say for
EXPLORER, in order to reduce the number of accidentals. For instance, for a threshold
SNR; = 24 we get n. = 1 and n = 0.74, obtaining, from eq. 6, the value ngy = 4.8.

Thus the procedure for calculating the upper limit with the Bayesan approach when
we have data at various thresholds, including cases with n. and 7 different from zero, is
the following.

Start with n, and 7 for various thresholds and use eq.6 for obtaining ngy at each
threshold. Calculate the upper limit for various values of h as shown in the previous
section. For each h take as upper limit the smallest value among those obtained by varying
the threshold. Clearly at large h values, when we get n. = 0, the standard sensitivity bound
is, for the entire period of time, ngy = 2.99.

The result is shown in fig.2 together with that obtained previously in [7]. It turns
out that the two upper limits are similar, if an uniform prior is assumed.

The reason for this is due to the fact that in applying the previous algorithm [7] we
started from an energy level higher than the largest energy of the detected (accidental)
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coincidences, thus obtaining, at this level (n, = n = 0) an upper limit of 3.09 very close
to the value 2.99 obtained with the Bayesan approach. The similarity of the results at
lower h values is accidental. In the previous algorithm the increase at lower h is due only
to the increase of the number 7 of accidentals. In the present algorithm the increase is
due to the smaller efficiency of detection and to the increase in ngy which roughly goes
with v/7i (eq.8).

In spite of the similar numerical results, we believe that the procedure proposed here
which does not extract the value of A from the energy levels of the accidental coincidence
is more correct. Furthermore the use of the Bayesan approach allows to obtain a more
general result expressed by the R function, and this can be used for obtaining probabilities

using priors based on previous knowledge.

4 Discussion

The best upper limit which can be obtained with an array of M identical parallel
detectors in MP coincidence cannot go below the value 2.99, because this is the upper
limit [20] when one finds zero coincidences independently on the background.

The basic advantage in using many detectors comes from the fact that with many
detectors it is easier to obtain n ~ 0, and thus (in absence of GW) n. = 0. Because of
the Poisson distributions, the average number of accidental coincidences for M detectors
in a time window 4w is given by eq.5. On the time scale of 1 second (w=1 s) it turns out
that n, << 1. By increasing the number of detectors one obtains smaller values of n, thus
approaching the requirement to have n. = 0 and then the lowest possible upper limit.

This is certainly true at large h values, where the detection efficiency for all detectors
is unity. The result, as shown in fig.2, is a plateau. Instead it might be convenient at low
h values to use the two most sensitive detectors, in order to have the largest possible
efficiency of detection. The overall upper limit is then obtained by taking the smallest
ones among the values of the various upper limit determinations.

The above procedure can be easily adjusted to the more general case of any distri-
bution of the GW sources, and of non-parallel detectors.

5 APPENDIX A: The relative belief updating ratio
In this Appendix we report on relative belief updating ratio in the case of Poisson
processes. The full derivation and discussion on this subject is in [20].

From the Bayes theorem, we have:

f(r|ne,m) oc fne|r,m) - fo(r), (13)

where r = ngw /T, with T the observation time, r, = n/T and fo(r) is the prior probability
density function. From (13) it follows, considering two possible values of r (r; and ry),

that
f(rl | ’I’LC,Tb) _ f(nc | 7"1,7"[)) . fo(rl)
f(ra|nery)  f(nelre,m)  folra)
—_——

Bayes factor

(14)



The ratio of likelihoods is known as the Bayes factor and it quantifies the ratio of evidence
provided by the data in favour of either hypothesis. The Bayes factor is considered to
be practically objective because likelihoods (i.e. probabilistic description of the detector
response) are usually much less critical than priors (see the extended discussion in [20])
The Bayes factor can be extended to a continuous set of hypotheses r, considering a
function which gives the Bayes factor of each value of » with respect to a reference value
rrer. The reference value could be arbitrary, but for our problem we choose rzrpr = 0,
obtaining
f(ne|r,m)

fne|r=0,1)"
This choice is convenient for comparing and combining the experimental results. The

R(T‘; N, rb) = (15)

function R has nice intuitive interpretations which can be highlighted by reordering the
terms of (14) in the form

T‘ncarb /fr—0|nc,7"b) f(ncyrarb)

=0 Tllr=ory e (16)

(valid for all possible a priori r values). R has the probabilistic interpretation of relative
belief updating ratio, or the geometrical interpretation of shape distortion function of the
probability density function (p.d.f.). R goes to 1 for r — 0, i.e. in the asymptotic region
in which the experimental sensitivity is lost. As long as R = 1, the shape of the p.d.f.
(and therefore the relative probabilities in that region) remains unchanged. Instead, in
the limit R — 0 (for large r) the final p.d.f. vanishes, i.e. the beliefs go to zero, no matter
how strong they were before.

Moreover there are some technical advantages in reporting the R function as a result
of a search experiment:

— One deals with numerical values which can differ from unity only by a few orders
of magnitude in the region of interest, while the values of the likelihood can be
extremely low. For this reason, the comparison between different results given by
the R function can be perceived better than in terms of likelihood.

— Since R differs from the likelihood only by a factor, it can be used directly in Bayes’
theorem, which does not depend on constants, whenever probabilistic considerations
are needed.

— The combination of different independent results on the same quantity r can be
done straightforwardly by multiplying individual R functions.

— Finally, one does not need to decide a priori if he wants to apply a ‘discovery’ or an
‘upper limit’ analysis, as conventional statistics teaches. The R function represents
the most unbiased way of presenting the results and everyone can draw their own

conclusions.

6 APPENDIX B: Upper limits in the case that zero events are observed
In this Appendix we report on the intuitive solution to the “background dependence

puzzle, in case that zero events are observed (as discussed in [24]). According to the (FC)
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“unified approach”[17] the upper limit is calculated using a revised version of the classical
Neyman construction for confidence intervals. This approach is usually referred to as the
“unified approach to the classical statistical analysis”, and it aims to unify the treatment
of upper limits and confidence intervals. On the Bayes side, according to [19], the upper
limit may be calculated using the function R that is proportional to the likelihood.

Comparison between the two approaches is difficult for the general case. But we
have noticed a special case which is easier to discuss. In this case the greater efficacy of
one approach compared to the other one seems clear. This case is when the experiment
gave no events, even in the presence of a background greater than zero.

When there are zero counts, the predictions obtained with the two methods are
different. Our intuition would be satisfied by an upper limit that increases with the back-
ground level, and this is, in general, the case when the observation gives a number of
events of the order of the background. However, when zero events are observed, the “uni-
fied approach” upper limit decreases if the background increases (a noisier experiment
puts a better upper limit than a less noisy one, which seems absurd) while the Bayesian
approach leads to the predictions that a constant upper limit will be found (the upper
limit does not depend on the noise of the experiment). Various papers|25, 26, 27| have
been devoted to the problem. In particular, in [26], the proposed method "gives limits
that do not depend on background in the case of no observed events” (that is the Bayesian
result ).

In what follows we will give an explanation for the two results.

We remind the reader that the physical quantity for which a limit must be found
is the events rate (i.e. a gravitational wave burst rate) r. Here we will assume stationary
working conditions. For a given hypothesis r, the number of events which can be observed
in the observation time 7" is described by a Poisson process which has an intensity equal
to the sum of that due to background and that due to signal.

In general, the main ingredients in our problem are:

— we are practically sure about the expected rate of background events r, = n, /T but
not about the number of events that will actually be observed (which will depend
on the Poissonian statistics);

— we have observed a number n, of events but, obviously, we do not know how many
of these events have to be attributed to background and how many (if any) to true
signals.

Under the stated assumptions, the likelihood is

e )T ((p 4 ) T

n,!

f(nc | r, rb) =

: (17)

We will now concentrate on the solution given by the Bayesian approach.
As shown in Appendix A, the “relative belief updating ratio” R is defined as

f(ne|r,m)

3 (3] ’T == bl
R(r;ne,rpy, T) T lr =0.m0)

(18)
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This function is proportional to the likelihood and it allows to infer the probability
that rT" signals will be observed for given priors (using the Bayes’s theorem).
Under the hypothesis r, > 0 if n. > 0, R becomes

R(r;ne,ry, T) = e T (1 + i) . (19)

Ty
(that is Eq. 6 in the text).
The upper limit, or -more properly- "standard sensitivity bound” [19], can then be
calculated using the R function. The value 7, is obtained when

R(Tssp; ne; mo; T) = 0.05 (20)

We remark that 5% does not represent a probability, but is a useful way to put a
limit independently of the priors.
Eq. 19 when no events are observed, that is, when n.=0, becomes:

R(rine =01, T) =e"" (21)

In this case we find r gy = 2.99, independently of the value of the background ny,.

We will not describe the well known (FC) procedure here, but we just observe that,
according to this procedure, for n. = 0 and n, = 0, the upper limit is 3.09 (numerically
almost identical to the Bayes’ one) but it decreases as n, increases (e.g. for n. = 0 and
ny = 15 the upper (FC) limit at 95% CL is 1.47).

In an attempt to understand such different behaviour we will now discuss some par-
ticular cases. Suppose we have n. = 0 and n;, # 0. This certainly means that the number
of accidentals, whose average value can be determined with any desired accuracy, has
undergone a fluctuation. The larger the n;, values, the smaller is the a priori probability
that such fluctuations will occur. Thus one could reason that, since the observation gave
n. = 0, it is less likely that a number ng,, of real signals could have been associated with
a large value of ny, as predicted by the (FC) approach.

According to the Bayesian approach, instead, one cannot ignore the fact that the
observation n. = 0 has already being made at the time the estimation of the upper limit
comes to be calculated. The Bayesian approach requires that, given n. = 0 and n;, # 0,
one evaluates the chance that a number n,, of signals exists. This chance of a possible
signal is applied to the observation that has already been made.

Suppose that we have estimated the average background, for example n,=10, with
a high degree of accuracy. In absence of signals, the a priori probability of observing zero
events, due just to a background fluctuation, is given by

fo=f(n.=0n, =10) =™ =4.5-10"" (22)

Now, suppose that we have measured zero events, that is n.=0. In general n. =
(np+ng, ). It is now nonsense to ask what the probability that n,.=0 is, since the experiment
has already been made and the probability is 1.

12



We may ask how the a priori probability would be changed if n,,, signals were added
to the background. We get

fon = f(ne = 0|y = 10,n,,,) = e~ (wFnow) (23)

It is obvious that f,, < f,.
The right question to ask now, since we have already measured n. = 0, is: what is that

signal ng,, which would have reduced the probability f,, by a constant factor, for example
0.05 7

fon=[fn-0.05=¢ "0 . "o (24)
Using Eqgs. 22, 23 and 24 the solution is:

e~ = 0.05 (25)

that is:
Ngw = 2.99 (26)

independent on the background. Now suppose another situation, n,=20, thus f, = 2.1 -
107°. Repeating the previous reasoning we still get the limit 2.99.

The meaning of the Bayesian result is now clear: we do not care about the absolute
value of the a priori probability of getting n. = 0 in the presence of noise alone. The
observation of n, = 0 means that the background gave zero counts by chance. Even if
the a priori probability is very small, its value has no meaning once it has happened. The
fact that the single background measurement turned out to be zero, either due to a zero
average background or due to the observation of a low (a priori) probability event, must
not change our prediction concerning possible signals.

For n. = 0 we are certain that the number of events due to the background is zero.
Clearly this particular situation gives more information about the possible signals. In the
case n. # 0, instead, it is not possible to distinguish between background and signal.
The mathematical aspect of this is that the Poisson formula when n. = 0 reduces to the
exponential term only, and thus it is possible to separate the two contributions, of the
signal (unknown) and of the noise (known).

We note that the different behaviour of the limit in the unified approach is due
to the non-Bayesian character of the reasoning. In such an approach an event that has
already occurred is considered “improbable”: given the observation of n. = 0 they still
consider that the probability

Jon = f(nv = 0], ngw) = ¢ (mtmgw) (27)

decreases as ny increases. As a consequence they deduce that to a larger n; corresponds
a smaller upper limit ng,.
Given the previous considerations, we must now admit that our intuition to ex-

pect an upper limit that increases with increasing background, even when n. = 0, was
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wrong. We should have expected to predict a constant signal rate, as a consequence of
the observation of zero events, independently of the background level.
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