Data analysis of gravitational-wave signals from spinning neutron stars.
IV. An all-sky search
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We develop a set of data analysis tools for a realistic all-sky search for continuous gravitational-
wave signals and we test our tools against simulated data. The aim of the paper is to prepare for
analysis of the real data from the EXPLORER bar detector however the methods that we present
apply both to data from the resonant bar detectors that are currently in operation and the laser
interferometric detectors that are in the final stages of construction and commissioning. With
our techniques we shall be able to perform an all-sky coherent search of 2 days of data from the
EXPLORER detector for frequency bandwidth of 0.76 Hz in one month with 250 Mflops computing
power. This search will detect all the continuous gravitational-wave signals with the dimensionless
amplitude larger than 2.8 x 10723 with 99% confidence, assuming that the noise in the detector is
Gaussian.

PACS number(s): 95.55.Ym, 04.80.Nn, 95.75.Pq, 97.60.Gb

I. INTRODUCTION AND SUMMARY

It was shown that an all-sky full frequency bandwidth coherent search of data of many months duration for contin-
uous gravitational-wave signals is computationally too prohibitive to be realized with presently available computing
power [1,2]. Consequently two alternative approaches emerge. One that we shall call tracking involves tracking of
lines in the time-frequency plane built from the Fourier transforms of one day long stretches of data [3,4]. The other
that we shall call stacking involves dividing the data into a day long stretches, searching each stretch for signals, and
enhancing the detectability by incoherently summing the Fourier transforms of data stretches [5]. In this paper we
develop data analysis tools for the first stage of the stacking approach, namely for the coherent search of a few days
long stretches of data. These tools involve storage of the data in the Fourier domain database, calculation of the
precise position of the detector with respect to the solar system barycenter using JPL ephemeris, calculation of the
detection thresholds, approximation of the signal by a simple linear model, and construction of the grid of templates
in the parameter space ensuring that the loss of signals due to the finite spacing of the grid is minimized.

In this theoretical work we have in mind a particular set of data, namely the data collected by the EXPLORER bar
detector. This detector is most sensitive over certain two narrow bandwidths of about 1 Hz wide at frequency around
1 kHz. To make the search computationally feasible we propose an all-sky search of a few days long stretches of data
in the narrow band where the detector has the best sensitivity. We find that with a 250 Mflops of computing power
we can carry out a complete all-sky search in around a month for signals within a bandwidth of 0.76 Hz at frequency
of 922 Hz and for observation time of 2 days. We assume that the minimum characteristic time for the change of the
signal’s frequency is 1000 years. By our search we shall be able to detect all the continuous gravitational-wave signals
with the parameters given above and with the dimensionless amplitude larger than 2.8 x 10723 with 99% confidence.

The tools developed in this work can be applied not only to the analysis of the bar data but also to the interferometer
data. In the case of the wide-band interferometer one can divide the data into many narrow bands and analyze each
band using the algorithms presented in this paper.

The plan of the paper is as follows. In Sec. II we present responses of a laser interferometer and a resonant bar to
a continuous gravitational wave, including the effects of both amplitude and frequency modulation of the response.
The optimal data processing method is described in Sec. III. In Sec. IV we introduce the frequency domain database
and in Sec. V we discuss how to calculate the precise position of the detector with respect to the solar system



barycenter. In Sec. VI we introduce an approximate model of the detector’s response called the linear model and
we describe its performance. In Sec. VII we construct a grid of templates in the parameter space, we calculate the
computational requirements to do the search, and we perform Monte Carlo simulations to test the performance of our
grid and our search algorithm. In Sec. VIII we discuss and choose parameters for our planned all-sky search of the
EXPLORER detector data. Several details are presented in the Appendixes.

Many methods presented in this paper rely on general analytic tools developed in a previous paper of this series [6]
that we shall call Paper III.

II. DETECTOR’S NOISE-FREE RESPONSE

Dimensionless noise-free response function h of the gravitational-wave detector to a weak plane gravitational wave
in the long wavelength approximation [i.e. when the size of the detector is much smaller than the reduced wavelength
A/(27) of the wave] can be written as a linear combination of the wave polarization functions hy and hy:

B(t) = Fi(t) b (t) + Fx (8) B (0), (2.1)

where I, and F are called the beam-pattern functions. Ezxplicit formulas for the interferometric and the bar beam-
pattern functions can be found in Appendix A, where we have also included the derivation of the beam-pattern
functions for the bar detector.

We are interested in a continuous gravitational wave described by the wave polarization functions of the form

hy(t) = hoy cos U (1), (2.2a)
hy (t) = hox sin U(¢), (2.2b)

where hgy and hgx are the amplitudes of the two independent wave polarizations, ¥ is the phase of the wave. The

amplitudes hgy and hgx depend on the physical mechanisms generating the gravitational wave. In the case of a wave
originating from a spinning neutron star which possesses some static deviation from axisymmetry (supported by the
solid crust or by the star’s own magnetic field) these amplitudes can be estimated by
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where I is the neutron star moment of inertia with respect to the rotation axis, € is the gravitational ellipticity of the
star, 7 is the distance to the star, and f the frequency of the gravitational wave. The value of 107° of the parameter
€ in the above estimate should be treated as an upper bound. In reality it may be several orders of magnitude less.
A different mechanism like for example Chadrasekhar-Friedman-Schutz instability would give a different dependence
of the amplitude on frequency of the wave.

The phase ¥ of the wave is given by

W(t) = Do+ B(8), (2.4a)
S1 tk+1 ng - r'sse (t) S2 tk
P(t) = — 2.4
(t) kZ:Owk Gt 1) + . %wkk!, (2.4b)

where @ is the initial phase of the wave form, rggp is the vector joining the solar system barycenter (SSB) with the
detector, and ngq is the constant unit vector in the direction from the SSB to the neutron star. We assume that the
gravitational wave form is almost monochromatic around some angular frequency wg which we define as instantaneous
angular frequency evaluated at the SSB at ¢t = 0, wi (k = 1,2,...) is the kth time derivative of the instantaneous
angular frequency at the SSB evaluated at t = 0. To obtain formulas (2.4) we model the frequency of the signal in
the rest frame of the neutron star by a Taylor series. For the detailed derivation of the phase model (2.4) see Sec.
II B and Appendix A of Ref. [2]. The integers s; and sy are the number of spin downs to be included in the two
components of the phase. We need to include enough spin downs so that we have a sufficiently accurate model of the
signal to extract it from the noise. This will depend on the length of the observation time.

It is convenient to decompose the response h of the gravitational-wave detector (both resonant bar and laser
interferometer) described by Egs. (2.1), (2.2), and (2.4) [cf. also Egs. (A1) and (A10) in Appendix A] into a linear
combination of several components:
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where the four constant amplitudes A; are given by

Aq = sin ¢ (ho+ cos 29 cos g — hox sin 2¢) sin @) , (2.6a)
As = sin ¢ (hox cos 29 sin ®g + hg sin 2¢) cos @) , (2.6b)
As = sin( (—ho4 cos 2¢p sin Pg — hgx sin 29 cos Dg) , (2.6¢)
Ay = sin ¢ (ho+ cos 29 cos g — hox sin 2¢) sin y) . (2.6d)

The amplitudes A; depend, through ho; and hgx, on the physical mechanism generating the gravitational wave.
They also depend on the initial phase ®y of the wave form and the polarization angle 1 of the wave. The angle ( is
the angle between the interferometer arms (usually ¢ = 90°), and for the case of bars always ¢ = 90°.

The functions h; do not depend on the mechanism generating the gravitational wave and they have the form

ha(t) = a(t) cos B(t), (2.72)
ha(t) = b(t) cos B(t), (2.7b)
ha(t) = a(t) sin &(¢), (2.7¢)
ha(t) = b(t) sin (1), (2.7d)

where the amplitude modulation functions a and b can be found in Appendix A [see Eqgs. (A2) for an interferometer

and Egs. (A11) for a bar|, and ® is the phase given by Eq. (2.4b). The functions a and b depend on the right ascension
a and the declination ¢ of the source (they also depend on the detector’s geodetic latitude ¢ and the angle v describing
the orientation of the detector with respect to local geographical directions). The phase ® depends on the angular
frequency wp, s spin-down parameters wy (k = 1,...,5s), and on the angles «, ¢; it also depends on the latitude ¢
of the detector. We call parameters wg, wg, «, d the phase parameters. The whole signal h depends thus on s + 5
unknown parameters: hoy, hox, @, §, wo, and wy.

The amplitude modulation, determined by the functions a and b, splits the power spectrum of the signal into five
lines corresponding to angular frequencies wg — 2., wg — O, wo, wo + -, and wg + 2€2,., where €),. is the rotational
angular velocity of the Earth. Therefore we need to take it into account in the design of a matched filter since a filter
of constant amplitude and matched only to the phase would mean a drastic decrease of the signal-to-noise ratio as
the signal power would be distributed into five spectral components.

III. OPTIMAL DATA ANALYSIS METHOD

The signal given by Eq. (2.5) will be buried in the noise of a detector. Thus we are faced with the problem
of detecting the signal and estimating its parameters. A standard method is the method of mazimum likelihood
(ML) detection that consists of maximizing the likelihood function, which we shall denote by A, with respect to the
parameters of the signal. If the maximum of A exceeds a certain threshold calculated from the false alarm probability
that we can afford, we say that the signal is detected. The values of the parameters that maximize A are said to be
the mazimum likelihood estimators of the parameters of the signal. The magnitude of the maximum of A determines
the probability of detection of the signal.

In the current paper we consider the gravitational-wave signal consisting of one narrow-band component. The ML
detection of more general signal consisting of NV narrow-band components was studied in detail in Sec. III of Paper
III. We only need here to recall the main results derived in Paper III and specialize them to the case of one-component
signal. A related approach to signal detection has also been developed by Owen [13] and by Mohanty and Dhurandhar
[14,15).

We assume that the noise in the detector is an additive, stationary, Gaussian, and zero-mean continuous random
process. We also assume that over the frequency bandwith of the signal the (one-sided) noise spectral density Sy, (f) is
nearly constant and equal to Si(fo), where fo is the frequency of the signal measured at the SSB at ¢ = 0. Moreover,
to simplify analytic formulas, we restrict to the observation time T, being an integer multiple of one sidereal day, i.e.,



T, = n(27/Q,) for some positive integer n. Then the analytic formulas for the ML estimators of the amplitudes 4;,
cf. Eq. (2.5), are given by (for derivation, cf. Sec. IIT A of Paper III)

$h1>
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Ay~ 2 <<maf;‘°;> : (3.1¢)
A, ~ 2 82ha) (3.1d)
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where we have introduced the following notation (here [0, T,] is the observation interval)

(@) = Ti/o " () dt. (3.2)

Explicit formulas for the time averages <a2> and <b2> are given in Appendix B.
The reduced log likelihood function F can be written as’

2 (RP | IBP
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where

T
F, ::/0 x(t) a(t) exp[—i®(t)] dt, (3.4a)

F = /0 " 2(8) blt) exp|—id (1)) dt. (3.4b)

Thus the ML detection in Gaussian noise leads to a matched filter. The ML estimators of the signal’s parameters
are obtained in two steps. Firstly, the estimators of the frequency, the spin-down parameters, and the angles o and
0 are obtained by maximizing the functional F with respect to these parameters. Secondly, the estimators of the
amplitudes A; are calculated from the analytic formulas (3.1) with the correlations (zh;) evaluated for the values of
the parameters obtained in the first step. Thus filtering for the narrow-band gravitational-wave signal requires two
linear complex filters.

When the signal is absent and phase parameters are known 2F has a x? distribution with four degrees of freedom
and when the signal is present it has a noncentral x2? distribution with four degrees of freedom and noncentrality
parameter equal to the optimal signal-to-noise ratio d. When phase parameters are unkown we can approximate F
by a homogeneous x? random field and divide the parameter space into elementary cells defined by the correlation
function of F (consult Sec. IIT B of Paper III for details). The false alarm probability i.e. the probability PZ that F
exceeds the threshold F, in one or more cell is given by

Pi(Fo) =1~ [1 = Pp(Fo)]™e, (3.5)
where IV, is the total number of elementary cells and
Pr(Fo) = (14 F,) exp(—=F,). (3.6)

The expected number of false alarms N is given by

LF is the log likelihood function A with amplitudes A; replaced by their ML estimators A;.



Ng = N, Pr(F,). (3.7)
The probability of detection Pp i.e. the probability that F exceeds the threshold F, when the signal-to-noise ratio is
equal to d is given by

(o9}

P(d, F)) = /f pi(d, F) dF, (3.8)

where

pi(d, F) = ‘/Z_le (d\/ﬁ) exp (—]—" - %d2> , (3.9)

here I is the modified Bessel function of the first kind and order 1.

It will very often be the case that the filter we use to extract the signal from the noise is not optimal. This may be
the case when we do not know the exact form of the signal (this is almost always the case in practice) or we choose a
suboptimal filter to reduce the computational cost and simplify the analysis. For such a case in Sec. VI of Paper III
we have developed a theory of suboptimal filtering. The suboptimal statistics F,, has the same form as the optimal
statistics F and the data analysis procedure consists of maximizing the value of the suboptimal statistics. One can
show that

1
El{]:sub} =1+ 5 dguba (310)

where E; is the expectation value when the signal is present and the parameter ds,}, is the suboptimal signal-to-noise
ratio.

The formulas for the false alarm and detection probabilities have the same form as in the case of the optimal filter
except that the optimal signal-to-noise ratio is replaced by the suboptimal one. Also for the suboptimal filter the
number of cells Ng. may be different than for the optimal one. Thus the false alarm probability is given by

PL(Fo) =1—[1— Pp(F,)) . (3.11)

The expected number of false alarms Ngp reads

NSF:NSCPF(fO)' (312)
The detection probability takes the form
Pp (dsubafo) = / pl(dsuba}_) dF, (313)
fO

where the probability density function p; is given by Eq. (3.9). Equation (3.10) implies that maximizing expectation
value of the suboptimal statistics when the signal is present is equivalent to maximizing suboptimal signal-to-noise
ratio. We can identify the maximum dgmax of dsup as the signal-to-noise ratio of the suboptimal filter. It was shown
in Paper III that

domax = FF d, (3.14)

where FF is the fitting factor introduced by Apostolatos [11]. The fitting factor FF between a signal h(t; @) and a
filter A'(t;0') (@ and @' are the parameters of the signal and the filter, respectively) is defined as?

I (h(t; 0|1 (1;0') |
O\ J(h(5:0)Ih(:0)) /(0 (1:0) |1 (1:6))

The fitting factor is a good measure of the quality of the suboptimal filter however the performance of the filter can
only be fully determined by the false alarm and detection probabilities given by Egs. (3.11) and (3.13).

(3.15)

*For the narrow-band signals considered in our paper the scalar product (h|h’) can be approximated as

(hl1) ~ %/ﬂ " ht) B (1) dt.



IV. THE FREQUENCY DOMAIN DATABASE

The data collected by the detector constitute a time series with a sampling interval At. This time domain sequence
can also be stored in the frequency domain without any loss of information. Organization of the data in the fre-
quency domain in a suitable way provides a very flexible database that is very useful both for search of the data for
gravitational-wave signals and for characterization of the noise of the detector. The first step to construct frequency
domain database consists simply of taking FFT of 2/V data points and storing the first N points of the FFT. To
improve the quality of the time-domain data that will eventually be extracted from the database the original data
are windowed and overlapped. Each FFT is then normalized and calibrated where the calibration process takes into
account the transfer function of the detector so that the units of the FFT are strain/ VHz. Moreover the quality of the
data represented by FFT is characterized so that it is possible to choose thresholds for vetoing the data or criteria to
weight them. Both the calibration and the data characterization information are stored in the header that is attached
to each FFT.

It is very important to choose a suitable number N of data in each FFT. This depends on the type of signal search
that one wants to perform. In the case of the search for continuous sources which is a subject of this work we choose N
in such a way the maximum expected Doppler shift due to the motion of the detector with respect to SSB is less than
the width of one bin. In the case of the EXPLORER data this leads to N = 2'6. For sampling time At = 0.18176 s
this means length of data for each FFT of around 2/3 of an hour. Another important criterion for the choice of the
length of data interval for each FF'T is that within the interval the noise is stationary. In the case of the EXPLORER
detector stationarity is in general preserved over 2/3 of an hour intervals.

The detailed steps to create the frequency domain database and to extract narrowband time series from the base
are given in Appendix C.

V. POSITION AND VELOCITY OF THE DETECTOR WITH RESPECT TO THE SOLAR SYSTEM
BARYCENTER

A. Dealing with time scales

The data acquisition system of the detector is synchronized to the Coordinated Universal Time (UTC) as dissemi-
nated by international time services. Thus it is assumed that each datum corresponds to a given UT'C. The UTC scale
is essentially uniform, except for occasional 1 s steps introduced internationally to compensate for the variable Earth
rotation. When these steps are taken into account, the UTC is reduced to the International Atomic Time (TAI) scale,
which is uniform and differs from the Terrestrial Dynamical Time (TDT or TT, normally used to describe celestial
phenomena by astronomers) only by a constant term. In principle, the time argument of positions of celestial objects
is the Barycentric Dynamical Time (TDB), however it differs from the TDT only by a very small additive term (less
than 0.001 s in magnitude), thus for all practical purposes they do not have to be distinguished. So we have:

TDB ~ TDT = TAI + 32.184 s,

where TAI is obtained from UTC by removing the time steps.®> One can thus relate given UTC with barycentric
positions of all the major celestial bodies of the solar system.

However, to relate the position of a point on the Earth to the barycenter of the Earth (the latter being obtained
from the solar system ephemeris) one has to use yet another time scale—the rotational time scale UT1, which is
nonuniform and is determined from astronomical observations. The difference UT1 — UTC, which is maintained
within £0.90 s, is taken from the IERS tabulations of daily values.*

3The time steps are available in the form of a table; see http://hpiers.obspm.fr/webiers/general/earthor/utc/
tablel.html.

“They are available as eopc04.yy files, where yy stands for a two digit year number (e.g. 99 for 1999, and 00 for 2000); see
http://hpiers.obspm.fr/iers/eop/eopcO4.



B. Topocentric coordinates

To be able to relate a point on the Earth surface to the solar system barycenter it is necessary to know orientation of
the Earth in space. The primary effects that should be taken into account are: diurnal (variable) rotation, precession
and nutation of the Earth rotational axis, and polar motion. The precession and nutation can be accounted for
by applying standard astronomical theories. The remaining two effects are unpredictable for a longer future, so
observational data must be used.®

The polar motion is taken into account by modifying the conventional geographical coordinates of a point on the
Earth:

¢ = o + Pycos Ao — Pysin A, (5.1a)
A= X + (Pysin Ao + P, cos Ao ) tan o, (5.1b)

where ¢, is the conventional geographical latitude, A,—the conventional longitude, and P, and P, are the coordinates
of the pole with respect to the Conventional International Origin.

The rotational angle of the Earth is included through conversion of UTC to UT1 (the quantity UT1 — UTC is
tabulated in the IERS files). UT1 serves to calculate the apparent sidereal time 6, which is essentially equal to
¢r + Q,t of Egs. (A2) and (A11) plus the nutation in longitude projected on the celestial equator. The sidereal time
in turn is used to find rectangular coordinates of the point (the detector) in the IERS celestial reference frame:

rE =T1cos0, (5.2a)
yg =rsinb, (5.2b)
zg = bsin + hsin ¢, (5.2¢)
where
r = acosy + hcos¢p (5.3)

is the equatorial component of the radius vector, ¢ = arctan(btan ¢/a) is the reduced latitude, h is the height above
the Earth ellipsoid, and a = 6378.140 km and b = a(1 — 1/f) (where f = 298.257) are the semiaxes of the Earth
ellipsoid. These coordinates are affected by the polar motion through dependence of r and ¥ on ¢, and ¢ on .

The polar motion (P, and P,) and UT1 — UTC quantities are linearly interpolated between the daily IERS values.

Since these coordinates are naturally referred to the epoch of date, they are further precessed back to the standard
epoch J2000. The precessed Cartesian coordinates (zg, g, 2E)2000 may now be straightforwardly added to coordinates
of the Earth barycenter with respect to the solar system barycenter (which are described in the next paragraph) to
obtain the desired position vector of the detector.

C. Barycentric coordinates of the Earth (JPL ephemeris)

For computing the coordinates of the Earth barycenter, relative to the SSB, use is made of the latest JPL Planetary
and Lunar Ephemerides, “DE405/LE405” or just “DE405” .5 created in 1997 and described in detail by Standish [12].
It represents an improvement over its predecessor, DE403. DE405 is based upon the International Celestial Reference
Frame (ICRF; an earlier popular ephemeris DE200, which has been the basis of the Astronomical Almanac since
1984, is within 0.01 arcseconds of the frame of the ICRF). It constitutes of a set of Chebyshev polynomials fit with
full precision to a numerical integration over 1600 AD to 2200 AD. Over this interval the interpolating accuracy
is not worse than 25 meters for any planet and not worse than 1 meter for the Moon. The JPL package allows a
professional user to obtain the rectangular coordinates of the Sun, Moon, and nine major planets anywhere between
JED 2305424.50 (1599 DEC 09) to JED 2525008.50 (2201 FEB 20).

SFor past years, since 1962, the data necessary for reduction are included in eopc04.yy files mentioned in footnote 4.
5Tt is available via the Internet (anonymous ftp: navigator.jpl.nasa.gov, the directory: ephem/export) or on CD (from the
publisher: Willmann-Bell, Inc.; http://www.willbell.com/software/jpl.htm).



In the application described in this paper we have used only a 21-year (1990 to 2010) subset of the original ephemeris.
The ephemeris gives separately the position of the Earth—-Moon barycenter and the Moon’s position relative to this
barycenter. The Earth position vector is thus calculated as a fraction (involving the masses of the two bodies) of the
Moon’s one and opposite to the latter.

Finally, the vector traveled by the Sun towards its apex (with the speed of 20 km/s) between J2000 and the epoch of

observation is added to the Earth barycentric position. The direction of solar apex is assumed at 181 in right ascension
and 30° in declination at the epoch J1900. This direction is precessed to J2000. What is commonly known as the
solar apex refers rather to solar system barycenter apex. However since the apex motion is known only approximately,
really there is no need to distinguish between motions of the Sun and of the barycenter.

D. Velocities

Although the primary concern in this project is to convert positions, the velocity of the gravitational-wave detector
relative to the SSB may prove to be useful in future analyzes of spectra obtained from the acquired data.

The velocity of the detector is the sum of diurnal rotational motion of the Earth, Earth motion in space relative to
the SSB, and motion of the solar system itself towards the apex. The last of the named components, towards the apex,
has been described in the previous paragraph. The Earth barycentric velocity vector is obtained directly from the JPL
ephemeris along with the position vector. Finally, the detector motion relative to the Earth barycenter is represented
by a vector of constant length v, := 27r/(sidereal day) directed always towards the east in the topocentric reference
frame. Thus this diurnal velocity vector has the following Cartesian components (in the barycentric reference frame):

Vi = v cos(0 + m/2), (5.4a)
Vy = vo sin(f + m/2), (5.4b)
V., =0. (5.4¢)

This vector is rotated back to J2000 by the precessional angle.
A short description of the FORTRAN code that generates both the position and the velocity of a detector with
respect to the SSB is given in Appendix D.

VI. A LINEAR FILTER

The phase of the gravitational-wave signal contains terms arising from the motion of the detector with respect to the
SSB. These terms consist of two contributions, one which comes from the motion of the Earth barycenter with respect
to the SSB, and the other which is due to the diurnal motion of the detector with respect to the Earth barycenter.
The first contribution has a period of one year and thus for shorter observation times can be well approximated by a
few terms of the Taylor expansion. The second term has a period of 1 sidereal day and to a very good accuracy can
be approximated by a circular motion. We thus propose the following approzimate simple model of the phase of the
gravitational-wave signal:

S
Uy(t)=p+pot+»_ prt*™ + Acos(Qt) + Bsin(Qyt), (6.1)
k=1

where 2, is the rotational angular velocity of the Earth. The parameters A and B can be related to the right ascension
a and the declination ¢ of the gravitational-wave source through the equations [cf. Eq. (18) in Ref. [2]]

A= w_zr cos 0 cos(a — ¢y ), (6.2a)

B= W—ZT cosd sin(a — ¢r), (6.2b)

where wq is the angular frequency of the gravitational-wave signal and r is defined in Eq. (5.3).
The phase model (6.1) has the property that it is a linear function of the parameters. We have shown in Paper
III that for linear phase models the optimal statistics is a homogeneous random field and consequently the statistical



theory of signal detection described in Sec. III of the present paper applies to this case. The polynomial in time part
of the phase Uy [cf. Eq. (6.1)] contains two contributions. The first one comes from the intrinsic frequency drift of
the gravitational waves emitted by a source. For example, if the source is a spinning neutron star, the frequency of
the gravitational waves it emits can evolve as the frequency of the revolution of the star. In general the star will lose
its energy and will spin down. This evolution of the frequency can be approximated by a Taylor series. The second
contribution comes from the Taylor expansion of the motion of the Earth around the Sun. It is clear that the longer
the observation time of the signal the more terms of the Taylor expansion we need to include in order to accurately
approximate the true signal.

In order to verify the accuracy of the linear model (6.1) we have calculated the fitting factor FF between the linear
model and the accurate model of the signal. As the accurate model of the phase of the signal we have taken the
following model:

s+1 s+1
. 3 . t
\I/a(t) =g+ wyt+ E Wk thH 4 wo + E (k + 1)wkt"] w, (6.3)
k=1 k=1

where wy is the signal’s frequency wqg shifted by a known frequency wsg, i.e. wgy = wg — ws. The down-conversion
frequency w; (as well as the bandwidth of the signal) can be chosen arbitrarily and an appropriate time sequence can
be extracted from the frequency domain database as described in Appendix C. The parameters wj are spin-down
parameters and they arise by approximating the intrinsic frequency evolution of the signal by a Taylor expansion. In
the accurate model (6.3) we include one more spin down than in the linear model (6.1). This additional spin down
serves to represent the uncertainty of our model.

For the case when the signal is narrow-band around some frequency wq the formula (3.15) for the fitting factor can
be approximated by

FF ~ max (cos (¥ (t:¢,) = T.(6: ). (6.4)

where ¢, = (®o,wo, w1, ..., wst1, @, d) are the parameters of the accurate model (6.3) and ¢ = (p, po, p1,-..,ps, 4, B)
are the parameters of the linear model (6.1). The linear phase model (6.1) can shortly be written as

s+3

Vi(t:¢) =3 Gli(t). (6.5)

The phase ¥, in the accurate model (6.3) can be expressed as a sum similar to the sum from Eq. (6.5) plus a certain
remainder r that we assume to be small:

s+3

Val(t;€a) = D CaslCa) lil) +7(t5C,). (6.6)

=0

Note that the coefficients (,; are some functions of the accurate phase parameters ¢,. In numerical calculations
described below the vector rggp in the accurate phase model (6.3) was computed by our Top2Bary code described
in Appendix C, and then the coefficients (,; and the residual r(¢;¢,) were computed by making a least-squares fit
(within the observational interval) of the template Y-, (,; li(t) to the accurate phase W, (¢ ¢, ).

Making use of Egs. (6.5) and (6.6), from Eq. (6.4) one gets

;

s+3 s+3
wax< 15 S @ 6) Gy~ Q) EO O cosr(t) Y @i~ G (1) sinr<t>>, (6.7)

< i,7=0 i=0

s5+3
FF ~ mcax <cos lz (Zaz - Ci) Li(t) +r(t)

i=0

where the last approximation was obtained by Taylor expansion of the cosine function and by keeping only the
quadratic terms in the (assumed to be small) differences (,; — ;. It is now easy to find in Eq. (6.7) the maximum over
the parameters ¢ as the right-hand side of Eq. (6.7) is quadratic in these parameters. The values of the parameters
that maximize the fitting factor are given by the solution of the following set of s + 4 linear equations:



s+3

Zsz (Zaj —¢) = —Ls, (6.8)

j=0
where
Lij = <l1 (t) lj (t) COS ’I“(t» s (69&)
Li == (I;(t)sinr(t)) . (6.9b)

We have used the above prescription to calculate the fitting factor numerically. Once we have found the parameters
of the extremum (6.7) by solving Eqs. (6.8), we have used these values as input to an optimization routine (based on
Nelder-Mead simplex algorithm) to find an accurate value of the fitting factor directly from the formula (6.4) without
the Taylor expansion. Nelder-Mead method is one of algorithms to find extremum of a function of n variables [21,22].
This algorithm involves calculation of the function to be maximized at vertices of certain simplexes in the parameter
space but not function’s derivatives.

In our calculation we have used the following estimates of the maximum values of the spin-down parameters

wo

_ 6.10
(k+ 1)Trllclin’ ( )

|wk|max =

where Tyin is the minimum characteristic spin-down age of the neutron star. These estimates were adopted in the
previous papers of this series and they were taken from the work of Brady et al. [1]. We have computed the fitting
factor for three phase models with s = 0,1,2, i.e. for a monochromatic signal, 1-spindown signal, and 2-spindown
signal. We have carried out computations for two values of the spin-down age (Tmin = 40 years and Tyin, = 1000 years),
and for different values of the signal’s frequency fo = wo/(27) and the observation time T,. For each case we have
made calculation for a grid of positions of the source in the sky. We have chosen our observations to start from the
beginning of the year 2000 (Julian day = 2451545.0) and the position of the detector to coincide with the geographical
location of the EXPLORER resonant bar.

Our results are summarized in Tables I, I, and III. For each grid of positions of the source in the sky we have found
the minimum value FF;, of the fitting factor (the worst case). In the tables we have given the maximum length
of the observation time for which FF i, is greater than 0.9, 0.9'/2, and 0.999. The conservative value of the fitting
factor equal to 0.9'/3 ~ 0.967 comes from the arguments of Apostolatos [11] by which such a fitting factor leads to
affordable 10% loss of events. The ultraconservative value of the fitting factor equal to 0.999 gives a negligible loss of
0.3% of events.

From the results presented in Tables I, II, and III it follows that the monochromatic linear model is adequate
for a few hours of the observation time, 1-spindown model for a few days of the observation time, and 2-spindown
model for around 1 week of the observation time. For several months of the observation time we do not expect
to fit an adequate linear model however we know that for such long observation times a coherent all-sky search is
computationally prohibitive [1,2]. Thus we conclude that in realistic (i.e. computationally feasible) coherent searches
of not more than 1 week duration a satisfactory linear model can be chosen.

VII. SPACING OF FILTERS, THE SEARCH ALGORITHM, AND COMPUTATIONAL REQUIREMENTS
A. Grid of templates

In this section we shall present a construction of a grid in the parameter space on which the statistics F will be
calculated in order to search for signals. We assume that as filter (or template) that we use in order to calculate the
statistics we shall use an approximations of the signal by a suitable linear model studied in Sec. VI. We would like to
choose the grid in such a way that the additional loss of potential gravitational-wave signals due to the finite spacing
of the grid is negligible. In order to determine an appropriate grid of templates we shall use the correlation function
of the statistics F. We shall choose the grid in such a way that the correlation function for two filters evaluated for
parameters at two neighboring points of the grid is not less than a certain specified value.

This method is conceptually different from the approach that uses the Fisher matrix as a metric on the parameter
space. However when the Fisher matrix is constant, independent of the values of the parameters which is the case for
the linear model the two approaches coincide.

We consider here a constant amplitude signal
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TABLE I. Adequacy of the monochromatic linear model.

Maximal observation time 7, (hours)

Frequency (Hz) Tmin = 40 years Tmin = 1000 years
FFmin > 0.9 FFpmin > 0.91/3 FFmin > 0.999 FFmin > 0.9 FFmin > 0.91/3 FFmin > 0.999
100 4 3 2 8 7 4
200 3 3 1 6 6 3
300 3 2 1 6 5 3
400 2 2 1 5 5 3
500 2 2 1 5 4 3
600 2 2 1 5 4 2
700 2 2 1 5 4 2
800 2 2 1 4 4 2
900 2 2 1 4 4 2
1000 2 2 1 4 4 2

TABLE II. Adequacy of the 1-spindown linear model.

Maximal observation time 7T, (days)

Frequency (Hz) Tmin = 40 years Tmin = 1000 years
FFmin > 0.9  FFmin > 0977 FFmin >0.999  FFuin > 0.9  FFuin > 0.9 FFpin > 0.999
100 4 3 1 4 3 2
200 3 2 1 3 2 1
300 2 2 1 3 2 1
400 2 2 1 2 2 1
500 2 2 1 2 2 1
600 2 1 1 2 2 1
700 2 1 1 2 1 1
800 2 1 1 2 1 1
900 1 1 1 2 1 1
1000 1 1 1 2 1 1
TABLE III. Adequacy of the 2-spindown linear model.
Maximal observation time 7T, (days)
Frequency (Hz) Tmin = 40 years Tmin = 1000 years
FFmin > 0.9  FFmin > 0977 FFmin >0.999  FFmin >0.9  FFmin > 0.9"7°  FFmin > 0.999
100 14 12 8 14 12 8
200 13 11 7 13 11 7
300 11 9 6 12 10 6
400 10 9 5 10 9 5
500 9 8 5 9 8 5
600 9 8 5 9 8 5
700 9 7 5 9 7 5
800 8 7 4 8 7 4
900 8 7 4 8 7 4
1000 8 7 4 8 7 4
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h (t; ho, @0, &) = hosin [® (t;€) + Do), (7.1)

where @ is the initial phase of the wave form and the vector & collects all other phase parameters.
The correlation function C' of the optimum statistics F for signal (7.1) can be approximated using Taylor expansion
around 7 = 0. Keeping terms at most quadratic in 7; one gets

7') ~ l_zfijTiij (72)

where the matrix ' has the components

= (22)-(2)(2)
T 873 87'1' 8Tj

The matrix ' is the reduced Fisher information matrix for the signal (7.1) where the initial phase parameter ®y has
been reduced (see Sec. IV and Appendix B of Paper III for details).

The statistics F can be expressed as a Fourier transform where the parameter pg corresponds to angular frequency
and consequently F can be calculated using the FFT algorithm. However the FFT gives the values of the statistics on
a certain grid of frequencies called Fourier frequencies. These frequencies in normalized units are separated by factor
of 2w. Thus when the true frequency falls between the two Fourier frequencies we cannot achieve the theoretical
maximum of the optimal statistics . The worst case is when the frequency falls half way between the Fourier
frequencies. One can easily find that in such a case the signal-to-noise ratio calculated approximately by means of the
Taylor expansion of the correlation function is equal only to 0.42 of the optimal signal-to-noise ratio. This would lead
to a drastic loss of signals. Therefore we need a finer grid. A way to achieve this and still take advantage of the speed
of FFT is to pad the time series with zeros.” Padding with zeros of the length of the original time series gives a grid
that is twice as fine as the Fourier grid i.e. the difference between the Fourier frequencies is equal to w. Then in the
worst case the signal-to-noise ratio is 0.89 of the optimal one. As we shall see later from Monte Carlo simulations this
choice of spacing of the frequencies leads to a search algorithm where there is no additional loss of events due to bad
grid spacing and the rms errors of the estimators of parameters are close to the theoretical minimum. It is also useful
to note that the signal-to-noise ratio calculated form the exact correlation function formula yields the values of the
fractions of the optimal signal-to-nose ratio equal to 0.63 and 0.90 for the difference between the Fourier frequencies
equal to 27 and 7, respectively. This indicates the limits of the validity of the Taylor expansion.

We introduce a convenient normalization of the spin-down parameters py of the linear model (6.1), namely

Dp = TET k=0,...,s. (7.4)

This is equivalent to using a time coordinate ¢ := ¢/T, normalized by the total observation time T, (then the normalized
time duration of the signal is always 1). Using definition (7.4) the linear phase model (6.1), after dropping the initial
phase parameter p, can be written as:

k+1
D(t;€) =Py — T+ Z De ( ) + Acos(Q,t) + Bsin(,1), (7.5)

where s is the number of spin downs included. In the quadratic approximation (7.2) and for the phase model (7.5),
equation

1— Z fijTiTj = Cy = const, (7.6)

describes the surface of the (s+3)-dimensional correlation hyperellipsoid.

"Padding time series with zeros of the length of the original time series in real signal search means that we would need to
calculate FFTs of twice the length of the original data. This means doubling the computational time and the computer memory
used. To avoid this pulsar astronomers have invented special interpolation algorithms that work in the Fourier domain and
give twice as fine Fourier grid from the FFT of the original data. In the analysis of EXPLORER data we shall use one such
algorithm provided to us by Duncan Lorimer (the details of which can be found in Ref. [23]).
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It is clear that we cannot fill the parameter space completely with hyperellipsoids. But such filling can be done by
means of some prisms constructed with the aid of the correlation hyperellipsoid. We shall illustrate our construction
in the special case of 1-spindown (i.e., s = 1) linear phase model (7.5). In this case the components of the matrix

I' as functions of the observation time are given by [here the order of the phase parameters is as follows: T =
(Aﬁm A]_jla AA; AB)]

1/12 1/12 0 —1/(2nm)
1/12 4/45  1/(2n2m?) —1/(2nm)
I — (7.7)
0 1/(2nr?) 1/2 0
—1/(2nm) —1/(2nm) 0 1/2

where n is the observation time expressed in sidereal days, i.e., n:= (Q,T,)/(27).

In the first step we choose spacing in the frequency parameter p, to be equal to 7. Then we compute the value Cq
of the correlation at the surface of the 4-dimensional correlation hyperellipsoid (7.6) by requesting that the p, axis
intersects this surface at the points Ap, = +m/2. Substituting 7 = (Ap,, 0,0, 0) into Eq. (7.6), one gets

_ 2
Co =1~ Tpp, A5 = 1 — 7= ~ 0.70. (7.8)

Making use of Egs. (7.7) and (7.8), the general equation (7.6) can be written in the case of 1-spindown signal in the
form [we also substitute 7 = (py, p;, 4, B)]

1_ 1_ 8 _ _ _ 72
A’ + B+ Do+ PP+ = D1 +2CPAD, —2( B (By + ) — 5= =0, (7.9)
6 3 45 24
where we have introduced
1
= 7.10
(= (7.10)

We first construct the elementary cell of the grid in the filter space (which is the space spanned by the parameters
D1, A, and B). We consider the p, = 0 cross section of the 4-dimensional hyperellipsoid (7.9). This cross section
defines the 3-dimensional ellipsoid in the (p;, A, B) space:

2
(A+ P+ (B-(P)? = 3 - (% 4244) pi (7.11)

(let us note that & — (2 — ¢* > 0 for n > 1). Next we take the cross sections of the ellipsoid (7.11) with the planes
Py = %6 for some positive constant §. These cross sections define two adjacent circles. We inscribe two regular
hexagons into these circles. The hexagons form the bases of the inclined prism inscribed in the ellipsoid (7.11). The
3-dimensional volume of this prism reads

V(6) =3V3 B—z - <4% N g4> 52} 6. (7.12)

Then we maximize the volume V(§) with respect to §. The function V(#) attains its maximal value for

™

6max: .
3 2 4
6\/5\/5—4 -

The maximal value V (dmax) of the volume (7.12) is the volume of the elementary cell in the filter space. It reads

(7.13)

3

8 2 4‘
24\/6\/574 —¢

Equation (7.14) gives the following values of the volume Vg, of the elementary cell in the filter space: Vg = 2.05, 1.35,
1.29, 1.27 for n = 1, 2, 3, 4, respectively.

Vi = (7.14)
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The elementary cell in the 4-dimensional space (Py, Py, A, B) we construct as follows. The 3-dimensional prism of
maximal volume, described above, which lies in the P, = 0 subspace, we parallelly translate in four dimensions, in
two opposite directions, into the subspaces py, = —7/2 and p, = +7/2. As the direction of translation we choose one
of the principal directions® of the hyperellipsoid (7.9). Such constructed elementary cell is the 4-dimensional prism
which bases are two adjacent 3-dimensional hexagonal prisms lying in the p, = —7/2 and p, = +7/2 subspaces.

It is clear from the construction that our elementary cell will stick out the 4-dimensional hyperellipsoid (7.9). For
the case of n = 2 we have calculated the correlation function C(7) =1—3, . I';7;7; at all vertices of the elementary
cell and we have found that the smallest value of C'(7) is equal to 0.77. Thus the grid constructed above ensures that
the correlation between the filter and the signal is not less than 0.77. The Monte Carlo simulations presented below
show that using such a grid we do not lose any signals and that rms errors of the parameter estimators are very close
to the minimum ones allowed by the Cramer-Rao bound.

If as a base of the elementary cell in the filter space we choose a square instead of a regular hexagon the volume of
the cell (independently of the value of n) decreases by a factor of 3v/3/4 ~ 1.3.

B. Monte Carlo simulations

In order to test the effectiveness of the chosen grid we have made Monte Carlo simulations of the detection of our
signal in the noise and estimation of its parameters. In the simulations we have taken the signal s to be 1-spindown
linear model with a constant amplitude hq:

2mnt 2mnt
s(t):hoexp{i [p+pot+p1t2+Acos< ;n>+Bsin( ;n )}}, (7.15)

o o

where T, is the observation time and n is the integer equal to the number of sidereal days of observation in real search.
Simulation of parameter estimation of the accurate signal with the phase given by Eq. (6.3) are presented in the next
subsection. In the case of signal (7.15) the maximum likelihood detection involves finding the global maximum of the
functional Fg with respect to the parameters pg, p1, A, B. The functional F; is given by

_2AXP

FS - bl
ST,

(7.16)

where

Ty
X = / 2(t) exp {z {pl #2 + A cos (2;"t) + Bsin (2;"t>] } exp(—ipot) dt. (7.17)
0 o o

In Eq. (7.17) the data x(t) = s(t)+n(t), where n(t) is the stationary noise with spectral density S;. In our simulations
we have generated white and Gaussian noise n(t). Thus our statistics Fs consists of taking the modulus of the Fourier
transform of the data demodulated for a grid of parameters p;, A, and B. To find the maximum of Fs; we have
used a hierarchical algorithm consisting of two steps: a coarse search and a fine search. The coarse search involves
calculation of F on the grid in the parameter space constructed in Sec. VII A and finding the maximum value of F;
on that grid. The values of the parameters of the filter that give the maximum are coarse estimates of the parameters
of the signal. The fine search involves finding the maximum of F, using a maximization routine with the starting
values of the parameters equal to the coarse estimates of the parameters. As a maximization routine we have used
the Nelder-Mead simplex algorithm. We plan to use the above hierarchical procedure in analysis of real data from
the EXPLORER detector.

The procedure described above differs from another two-step hierarchical algorithm proposed by Mohanty and
Dhurandhar [14,15]. The first step of the two procedures is the same but in the second step Mohanty and Dhurandhar
propose to use a fine grid in the parameter space around the maximum obtained from the coarse search whereas we
propose to use a maximization routine. However as any optimization routine the Nelder-Mead algorithm may fail to
find the global maximum. Therefore in the real data search we may have to use a combination of both hierarchical

8The reasonable result one obtains only when translating along this principal direction of the hyperellipsoid (7.9), which
almost coincides with the p, axis.
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FIG. 1. Monte Carlo simulations of the rms errors of the parameter estimators of the signal given by Eq. (7.15) for n = 2.
The z axes are labeled by the optimal signal-to-noise ratio d. The y axes are labeled by the standard deviation o except for the
case of the amplitude parameter where the relative rms error o, := ¢ /hg is given. Both ¢ and o, are dimensionless. The results
of simulations of 1000 runs for each value of d are marked by the circles. The thin solid lines are calculated from covariance
matrix and they constitute the Cramer-Rao bound, i.e. the smallest rms error for an unbiased estimator. The thick solid lines
are calculated from a model that takes into account the false alarms.

procedures: whenever our maximization routine fails we use as the second step a fine search proposed by Mohanty
and Dhurandhar.

We have performed Monte Carlo simulations by generating a signal s(t) given by Eq. (7.15) and adding white
Gaussian noise n(t). By adjusting the amplitude ho we have generated a signal with a chosen optimal signal-to-noise
ratio d. In our simulations we have chosen the observation time to be n = 2. We have done 1000 runs for several
values of d. We have compared the standard deviations of the parameter estimators obtained from the simulations
with the theoretical ones calculated from the Cramer-Rao bound. We have also compared the probability of detection
of the signal obtained from the simulations with the theoretical one calculated from Eq. (3.8). In our simulations we
have used the hexagonal grid constructed in Sec. VIT A.

The results of our computations are depicted in Fig. 1. We have observed that above a certain signal-to-noise ratio
(that we shall call the threshold signal-to-noise ratio) the results of the Monte Carlo simulations agree very well with
the calculations of the rms errors from the covariance matrix. However below the threshold signal-to-noise ratio they
differ by a large factor. This threshold effect is well-known in signal processing [16] and has also been observed in
numerical simulations for the case of a coalescing binary chirp signal [17,18]. As was explained in Sec. VII of Paper III
this effect arises because sometimes the global maximum of the functional Fs occurs as a result of noise and not the
signal. This happens the more often the lower the signal-to-noise ratio. Following the theory of this effect developed
in Paper III we have calculated the approximate rms errors of the estimators of the parameters. They are shown as
thick lines in Fig. 1.

The comparison of probability of detection obtained from the simulations with the theoretical formula (3.8) shows
that for lower signal-to-ratios we have more detections than expected. This is because the theoretical formula assumes
that when the signal is detected its parameters are located in the cell corresponding to the true parameters of the
signal. However in practice for lower values of d as a result of the noise the signal may drift to neighboring cells.
Thus for threshold signal-to-noise ratio of 7 we find that simulated probability of detection is 5% greater than the
theoretical one whereas for signal-to-noise 8 and greater the simulated and the theoretical probabilities of detection
agree within 0.5%.

C. Estimation of parameters of the signal

Once the optimal statistics, calculated with the linear filter of Sec. VI, crosses a chosen threshold we register the
estimates of the parameters pg, p1, A, and B. We would like to estimate physically interesting parameters: frequency,
spin down, declination and right ascension of the source. We propose the following algorithm to achieve this. From
Egs. (7.18) and least-squares fit of the linear model to the accurate model of the signal we calculate the approximate
values of parameters wg, wi, §, a. Then using the accurate model of the signal as a filter we search for accurate
estimates of the parameters on a small grid around the approximate estimates.

We have made Monte Carlo simulations of the above procedure by making 100 runs for one position of the source
in the sky and for five signal-to-noise ratios: 8, 12, 16, 20, 24. First of all we have found that probability of detection
of the signal from simulation agrees within 0.5% with the theoretical one. Concerning accuracy of the parameter
estimation we have obtained that rms errors for declination and right ascension were very close to their Cramer-Rao
bounds, however the rms errors for frequency and spin down were worse. The mean biases in the estimators of the
parameters wg, w1, 9, and a were less than 0.1%, 0.5%, 0.005%, and 0.01%, respectively.
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D. Amplitude modulation

Approximation of the continuous gravitational-wave signal by a simple linear model and consequently approximation
of the optimal statistics F, Eq. (3.3), by a homogeneous random field were studied under the assumption that the
amplitude of the signal was constant. However as the modulation of the amplitude of the signal is very slow (it
changes on a time scale of one sidereal day) in comparison to the rapid modulation of the phase we expect that our
linear model of the phase is a satisfactory approximation of the phase of the optimal filters given by Eqgs. (3.4). We
also expect that the calculation of the number of elementary cells (except for a factor of 2, see below) and construction
of the grid in the parameter space given in Sec. VII A above are valid for the amplitude modulated signal.

To calculate the optimal statistics F, we first need to correct the time series for amplitude modulation i.e. multiply
the time series by the functions a(t) and b(t). Our grid is on the space parameterized by po, p1, A, and B whereas the
functions a(t) and b(t) depend on the declination ¢ and the right ascension a. From Egs. (6.2) we have the following
expressions for § and « in terms of A and B:

VAT B

0 = Farccos | —g7— | » (7.18a)
o
B

a = ¢, + arctan <Z> . (7.18b)

Since for each set of parameters A and B there are two sets of parameters § and « the number of cells needs to be
multiplied by a factor of 2 and this number is to be used to compute from Eq. (3.5) the threshold corresponding to a
given false alarm probability.

We see that the declination § of the source, Eq. (7.18a), depends on the angular frequency wq of the signal that we
do not know before we detected the signal. The uncertainty in ¢ affects the constant amplitudes in front of the time
dependent modulation factors. However for the case of the EXPLORER detector data (which we plan to analyze
employing the methods developed above) we have that frequency fo is around 1 kHz within the band B ~ 1 Hz (see
Sec. VIII below). Thus by choosing in the equation for declination § the frequency equal to the middle frequency of the
band to be analyzed instead of the unknown frequency wg, we shall lose at most only a fraction ~ B/(2fy) ~ 0.0005
of the signal-to-noise ratio.

E. Computational requirements

To estimate the computational requirements to do the search we calculate the number of FFTs that one needs to
compute. This number depends on the total volume VE of the filter space, which is given by

wmaxT /(2Tmin)
Vp = // dA dB/ dp,, (7.19)
B>(0,r,) WmaxT2/(2Tmin)
where w,x is the maximum angular frequency of the signal and Bs(0,r,) is a 2-dimensional disc in the (A, B) plane
of radius r,,

wmaxr

= —2X 7.20
ro = (7.20)
Thus we get
T wd T2
Vi = —L 7.21
F 02 Tmin ( )

The number of grid points on which the optimal statistics F, Eq. (3.3), should be calculated is obtained by dividing
the volume V of the filter space by the volume Vj; of the elementary cell of the chosen grid in the filter space. In the
previous subsection we have found that for each set of parameters A and B there are two sets of parameters § and
« [see Egs. (7.18)]. Moreover the optimal statistics involves calculations of two FFTs—F, and F; [see Egs. (3.3) and
(3.4)]. Thus the total number Nppr of FFTs is 4 times the number of grid points and it is given by
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V
Nppp = 4VF . (7.22)
gr

Assuming that the data processing rate should be comparable to the data acquisition rate and that the data
processing consists only of computing the FFTs the number P of floating point operations per second (flops) can be
estimated by

P = 6AvNrrr |log,(2AVT,) + % , (7.23)

where Av = (Wmax — ws)/(27) is the bandwidth of the search. Equation (7.23) does not take into account the
computational requirements to do the fine search. This is because the fine search will only be triggered when there
is threshold crossing and this as estimated in the next section will be a rare event. It is worth pointing out that the
formula (7.23) coincides with the analogous formula for a broadband search (see, e.g., Ref. [1]) with the maximum
frequency replaced by the bandwidth of the search.

VIII. A NARROWBAND ALL-SKY SEARCH OF EXPLORER DATA

The data analysis tools for searching continuous gravitational-wave signals that we have developed in the previous
sections of the present work can be applied both to the resonant bar and the laser interferometric detectors. We plan
to apply these tools to the data from the resonant bar detector EXPLORER? [19]. The detector has already collected
many years of data with high duty cycle (e.g. in 1991 the duty cycle was 75%). Our primary objective is to carry out
an all-sky search. It is a unique property of the gravitational-wave detectors that with a single time series one can
search for signals coming from all sky directions. In the case of other instruments like optical and radio telescopes
to cover the whole or even part of the sky requires a large amount of expensive telescope time. The directed search
of the galactic center has already been carried out and limits for the amplitude of the gravitational waves has been
established [20].

The EXPLORER detector is most sensitive over certain two narrow bandwidths (called minus and plus modes)
of about 1 Hz wide at two frequencies around 1 kHz. To make the search computationally feasible we propose an
all-sky search of data of a few days long in the narrow band were the detector has the best sensitivity. By narrowing
the bandwidth of the search we can shorten the length of the data to be analyzed as we need to sample the data at
only twice the bandwidth and thus we reduce the computational time. To reduce the parameter space to search we
restrict ourselves to only one spin-down parameter. We would also like to use the linear filter model as the search
template. Then as our frequency is around 1 kHz from Table IT we read that we can consider up to 2 days of coherent
observation time in order that the fitting factor is greater then 0.9. For the sake of the FFT algorithm it is best to
keep the length of the data to be a power of 2. Consequently we choose the number of data points to analyze to be
N = 28, Then for T, = 2 days of observation time the bandwidth Av of the data will be Av = N/(2T,) ~ 0.76 Hz.
We also choose to analyze the data for the plus mode which has frequency around 922 Hz. With these parameters we
can calculate the number of filters that we need to compute. From Eq. (7.22) and for the hexagonal grid over the sky
we get that Nppr ~ 3.7 x 108, Assuming that the data processing rate should be comparable to the data acquisition
rate the computing power required [calculated by means of Eq. (7.23)] is around 7.7 Gflops. If we allow a month for
off-line processing of data with the above parameters we only need around 250 Mflops of computer power.

From Eq. (3.11) we can calculate the threshold that we need to set. For example choosing the false alarm probability
to be 1% we find by inverting Eq. (3.11) and using Eq. (3.10) that for the parameters that we have chosen above the
threshold signal-to-noise ratio is 8.3. However we know that in the coarse search we are using a suboptimal filter and
we are losing signal-to-noise ratio. For the parameters of our search we find that in the worst case the fitting factor
is 0.94. Moreover due to our discrete grid in the parameter space the signal-to-noise ratio can decrease in the worst
case by an additional factor of v/0.77 ~ 0.88. Thus in the worst case the signal-to-noise ratio of our coarse search can
be a factor of 0.83 of the optimal one. Hence in order not to lose any signals we lower the signal-to-noise threshold
by a factor of 0.83. By lowering the threshold we must make sure that the number of false alarms does not increase
excessively. From Eq. (3.12) we find that the expected number of false alarms with the lower threshold is ~ 310.
This is certainly a manageable number that will insignificantly increase the computational time of the total search.

9The EXPLORER detector is operated by the ROG collaboration located in Italian Istituto Nazionale di Fisica Nucleare
(INFN); see http://www.romal.infn.it/rog/explorer/explorer.html.
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We can consider lowering the threshold even further in order to have more candidate events that can be later verified
using longer stretches of data. For example by lowering the threshold by a factor of 0.8 the expected number of false
alarms is around 1600 which will still be manageable to verify.

The minimum detectable amplitude hg, i.e. the amplitude for which the signal-to-noise ratio is equal to 1, is given
by

S
ho = Th (8.1)

where S}, is the one-sided spectral density of noise. For 2 days of observation time 7, and spectral density S} at the
plus mode equal to 2 x 10~*2/Hz, the minimum detectable amplitude is 3.4 x 10724, In order that we have a detection
with 99% confidence by the calculation above we need a signal-to-noise ratio of 8.3 and thus the amplitude of the
signal must be around 2.8 x 10723, Consequently by estimate given in Eq. (2.3) a continuous gravitational-wave signal

from a neutron star located at a distance of 1 kpc, spinning with period of 2 ms, and with ellipticity € ~ 1075 will be
detectable.
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APPENDIX A: BEAM-PATTERN FUNCTIONS
1. Interferometric beam-pattern functions

Noise-free response function h of the laser interferometric detector is defined as the difference between the wave
induced relative length changes of the two interferometer arms. Derivation of formula (2.1) in the case of the laser
interferometer can be found e.g. in Sec. IT A of Ref. [7].

Ezplicit formulas for the interferometric beam-pattern functions F and Fy from Eq. (2.1) are derived e.g. in Sec.
IT A of Ref. [2]. The functions read

F,(t) =sin( [a(t) cos 21 + b(t) sin 2¢)] (Ala)
Fy (t) = sin [b(t) cos 2¢) — a(t) sin 2¢] (A1b)
where

1
a(t) = 1 sin 2y(1 + sin® ¢)(1 + sin §) cos[2(a — ¢, — Q1))
1 . C 9oy
— 5 cos 2y sin ¢(1 4 sin® 6) sin[2(a — ¢, — Q1))
1. . .
+Z sin 27 sin 2¢ sin 2§ cos(a — ¢, — Q1)
1 . .
—5 cos 27 cos ¢ sin 20 sin(a — ¢ — Q)
3 2 2
+Z sin 2 cos® ¢ cos” 4, (A2a)

b(t) = cos 27y sin ¢sin § cos[2(a — ¢ — Q1))
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1
+5 sin 27(1 + sin? ¢) sin § sin[2(a — ¢y — Qt)]
+ cos 27y cos ¢ cos 0 cos(a — ¢ — Qyt)
1
+5 sin 27 sin 2¢ cos § sin(a — ¢ — Q,1). (A2b)

In Egs. (Al) ¢ is the angle between the interferometer arms (usually ¢ = 90°) and v is the polarization angle of
the wave. In Egs. (A2) the angles a and ¢ are respectively right ascension and declination of the gravitational-wave
source. The geodetic latitude of the detector’s site is denoted by ¢ [its precise definition is given in Eq. (5.1a)], the
angle v determines the orientation of the detector’s arms with respect to local geographical directions: v is measured
counter-clockwise from East to the bisector of the interferometer arms. The rotational angular velocity of the Earth
is denoted by €2, and ¢, is a deterministic phase which defines the position of the Earth in its diurnal motion at t = 0
(the sum ¢, + €,t essentially coincides with the local sidereal time of the detector’s site, i.e. with the angle between
the local meridian and the vernal point; see Sec. VII B).

2. Bar beam-pattern functions

We consider here the response of a bar detector to a weak plane gravitational wave in the long wavelength approx-
imation. Moreover, we assume that the frequency spectrum of the gravitational wave which hits the bar entirely lies
within the sensitivity band of the detector. Under these assumptions the dimensionless response function h of the bar
detector can be computed from the formula (cf. Sec. 9.5.2 in Ref. [8])

h(t)=n- [ﬁ(t)n} , (A3)

where n denotes the unit vector parallel to the symmetry axis of the bar, H is the three-dimensional matrix of the
spatial metric perturbation produced by the wave in the proper reference frame of the detector, and a dot stands for
the standard scalar product in the three-dimensional Cartesian space. In the detector’s reference frame we introduce
Cartesian detector coordinates (zq, ¥4, zq) with the zq axis along the Earth’s radius pointing toward zenith, and the
x4 axis along the bar’s axis of symmetry. In these coordinates the vector n from Eq. (A3) has components

n = (1,0,0). (A4)

In the wave Cartesian coordinate system (%, Yw, 2w) (in which the wave travels in the +z,, direction), the three-
dimensional matrix H of the wave induced spatial metric perturbation has components

hi(t) hye(t) O
H(t)=| hx(t) —hy(t) O |, (A5)
0 0 0

where the functions hy and hy describe two independent wave’s polarizations. The matrices H and H are related
through equation

H(t)= M) H() M(1)", (A6)

where M is the three-dimensional orthogonal matrix of transformation from the wave coordinates to the detector
coordinates, T denotes matrix transposition. Collecting Eqgs. (A3)—(A6) together one can see that the response
function h is a linear combination of the functions hy and hy:

h(t) = Fi ()b (t) + Fu (8)hs (1), (A7)

where F; and F«x are beam-pattern functions.

Because of the diurnal motion of the Earth the beam-patterns F, and F\y are periodic functions of time with
a period equal to one sidereal day. We want to express F and Fx as functions of the right ascension « and the
declination § of the gravitational-wave source and the polarization angle ¢ (the angles «, §, and 1 determine the
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orientation of the wave reference frame with respect to the celestial reference frame defined below). We represent the
matrix M of Eq. (A6) as

M = M3 My MT, (A8)

where M7 is the matrix of transformation from wave to celestial frame coordinates, M> is the matrix of transformation
from celestial coordinates to cardinal coordinates and M3 is the matrix of transformation from cardinal coordinates
to detector coordinates. In celestial coordinates the z axis coincides with the Earth’s rotation axis and points toward
the North pole, the x and y axes lie in the Earth’s equatorial plane, and the z axis points toward the vernal point.
In cardinal coordinates the (z,y) plane is tangent to the surface of the Earth at detector’s location with « axis in the
North-South direction and y axis in the West-East direction, the z cardinal axis is along the Earth’s radius pointing
toward zenith. Under the above conventions the matrices My, My, and M3 are as follows (matrices M; and My are
taken from Sec. IT A of Ref. [2])

sinacosy —cosasindsiny —cosacosy —sinasindsiny cosd siny
M; = | —sinasiny —cosasindcosy cosasiny —sinasindcosyy cosdcosy |, (A9a)
— COS (L COS ) —sinacosd —sind
sin ¢ cos(¢, + Q,t) singsin(p, + Qt) —cos ¢
M, = —sin(¢, + Qpt) cos(¢py + Q1) 0 , (A9b)
cos @ cos(@, + Q1) cospsin(g, + Q,t) sing
—siny cosy 0
M3 = | —cosy —siny 0 |. (A9c)

0 0 1

In Eq. (A9b) ¢ is the geodetic latitude of the detector’s site, €2, is the rotational angular velocity of the Earth, and
the phase ¢, defines the position of the Earth in its diurnal motion at ¢ = 0 (the sum ¢, + Q,¢ essentially coincides
with the local sidereal time of the detector’s site; see Sec. VII B). In Eq. (A9c) « determines the orientation of the
bar’s axis of symmetry with respect to local geographical directions, it is measured counter-clockwise from East to
the bar’s axis of symmetry.

To find the explicit formula for 'y and F we have to combine Egs. (A3)—(A9). After some algebraic manipulations
we arrive at the expressions:

F(t) = a(t) cos 2 + b(t) sin 29, (A10a)
Fy (t) = b(t) cos 2¢) — a(t) sin 21, (A10Db)
where

1
a(t) = §(COS2 v — sin? ysin? ¢)(1 + sin? §) cos[2(a — ¢, — Q)]

1. . D9y

—1—5 sin 27y sin ¢(1 4 sin® §) sin[2(a — ¢ — Q,t)]
1.9 . .

— g sinysin 2¢ sin 2§ cosjae — ¢, — Q1]
1. . .

+5 sin 27 cos ¢sin 2§ sin(a — ¢ — Q1)

—I—%(l — 3sin? v cos? ¢) cos? &, (Alla)
b(t) = —sin 27y sin ¢sin § cos[2(a — ¢ — Q1))
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+(cos? v — sin? v sin? ¢) sin  sin[2(a — ¢, — Q1))
— sin 29 cos ¢ cos § cos(a — ¢, — Q1)
— sin? 7 sin 2¢ cos I sin(a — ¢, — Q,.1). (Al11b)

In Egs. (A10) and (A11) a, 6, ¥, ¢, Q, and ¢, all have the same meaning as in Egs. (A1) (A2); the angle v determines
the orientation of the bar detector with respect to local geographical directions: - is measured counter-clockwise from
East to the bar’s axis of symmetry.

Equivalent explicit formulas for the functions a and b from Egs. (A1l) can be found in Ref. [9] where different
angles describing the position of the gravitational-wave source in the sky and the orientation of the detector on the
Earth are used.'°

APPENDIX B: THE TIME AVERAGES <a2> AND <b2>
1. Laser interferometeric detector

The time averages <a2> and <b2> entering Egs. (3.1), for the observation time T, chosen as an integer number of
sidereal days, for the laser interferometeric detector take the form (here n is a positive integer):

(@)

1 1 1
= —sin% 2y {9 cost ¢ cos* § + = sin® 2¢sin® 26 + — (3 — cos 2¢)” (3 — cos 26)°
Tonomse, 16 2 32

1
+§ cos? 2y [4 cos® ¢sin® 26 + sin® ¢ (3 — cos 25)2} , (Bla)

1
(v*) =2 sin? 2 [(3 — cos2¢)” sin? § + 4 sin® 2¢ cos® 6}

To=n27/Qp

1
+Z cos? 27 (1 + cos 2¢ cos 26) . (B1b)

We see that <a2> and <bz> depend only on one unknown parameter of the signal—the declination § of the
gravitational-wave source. They also depend on the latitude ¢ of the detector’s location and the orientation v of
the detector’s arms with respect to local geographical directions.

2. Resonant bar detector

For the resonant bar detector the time averages <a,2> and <b2>, for the observation time T, being an integer number
of sidereal days, have the form:

1 1
<a2> =Z (1 — 3sin? 5 cos? ¢)2 cos* § + = sin® v cos? ¢ (1 — sin? y cos? gi)) sin? 28
To=n27/Q 4 2
1
+3 [sin2 27sin® ¢ + (cos? v — sin® v sin’ ¢)2] (1 + sin® 5)2 , (B2a)
1
<b2> == (sin2 2 cos? ¢ + sin* sin? 2¢) cos?
To=n27/Qp 2

0ur functions a and b from Eqs. (A11) are identical with the functions S; and Sx from Egs. (2.90) and (2.91) of Ref.
[9], provided the following identification of the variables 1, a, 6, ¥ used in [9] with our variables Qr, ¢r, a, J, ¢, v is made:
n— —(a—¢r —Qt)ya—>m/2—-6,0 >7/2— ¢, ¥ — v —7/2.
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1 1
+3 (cos4 T+ 5 sin? 27y sin? ¢ + sin* ~ sin* ¢> sin? §. (B2b)

As in the case of the laser interferometeric detector, the time averages (a?) and (b?) depend on the declination §
of the gravitational-wave source, the latitude ¢ of the detector’s location, and the orientation v of the detector’s axis
of symmetry with respect to local geographical directions.

APPENDIX C: THE FREQUENCY DOMAIN DATABASE

The detailed steps to construct the frequency domain database are as follows.

e Each FFT is computed using 2N data, sampled with sampling time At¢. The data are windowed, in the time
domain, before the Fourier transform. We use a Hamming window, which is defined by

w; = A— Beos[2mi/(2N — 1)] + C cosdni/(2N —1)], i=0,...,2N —1,

with A = 0.54, B = 0.46, and C' = 0. The Hamming window is used because it has the property that it never
goes to zero and thus it is possible to recover the original data.

e The FFTs are calibrated, normalized, and stored in units of strain/v/Hz so that their squared modulus is the
spectrum.

e The basic FFTs of the database overlap for half their length. The time duration of each FFT is tg = 2INAt,
and a new FFT is done after time ¢y/2. This is important since it avoids distortions in the final time domain
sequence—this is the well-known “overlap-add” method, described in many data analysis textbooks.

Once we have a database we can extract from it a time domain sequence of time duration 2M N At and bandwidth
Av by the following procedure.

e Take the data from n’ = NAv/B bins in the frequency band Av of the actual search, where B is the total
bandwidth of the detector.

e Build a complex vector that has the following structure:

— the first datum equal to zero;
— the next n’ data equal to those from the selected bins of the FFT;

— gzeroes from bins n’ + 1 up to the nearest subsequent bin numbered with a power of two; let us say that in
this way one has obtained n bins;

— zeroes in the next n bins; one thus ends up with a vector that is 2n long.

e After the bandwidth has been selected, the data (still in the frequency domain) should be windowed, to avoid
edge effects in the transformed data. This frequency domain window has a quadratic slope.

e Take the inverse FFT of the vector obtained above. This is a complex time series that is called the analytic
signal because by construction above its spectrum is zero for negative frequencies. The signal has the bandwidth
Av that is shifted towards the lower frequencies and the signal is sampled at a sampling rate lower by a factor
N/n compared to the original time data.'! The time of the first sample here is exactly the same as the time of
the first datum used for the database and the total duration is also that of the original time stretch. There are
fewer data because the sampling time of the original data is shorter.

e Remove the window w used when constructing the FF'T database simply by dividing the new time domain data
by w.

1The construction of the analytic signal is a standard procedure of lowpass filtering for a bandpass process. By the fact that
the analytic signal is zero on the left frequency plan one avoids aliasing effects in the lowpass sampling operation; see, e.g.,
Ref. [24].
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e Repeat the steps outlined above for all the M FFTs.
e If any FFT under consideration is vetoed or if it is missing the corresponding data are set to zero.

e Each new group of time domain data is appended to the previous groups after elimination of the overlapped
data. Since the overlapping involved half the data we eliminate 1/4 of the data at the beginning and end of
each stream. The first 1/4 data in the first FF'T and the last 1/4 in the last FFT can be discarded. The data of
missing or vetoed periods, set to zero as explained above, are appended to the other stretches in the same way.

Thus by the above procedure we have a subsampled time domain data stream which represents the analytic signal
associated with the original data.

APPENDIX D: THE TOP2BARY PROCEDURE

The algorithms described in Sec. V were implemented in an easily callable subroutine named Top2Bary consisting
of about 900 lines of FORTRAN code. The ephemeris files (DE405°90.°10, tai-utc.dat and yearly eopc04.yy)
required by the program must be kept in the directory \Top2Bary\EphData on the current disk. The procedure
header is shown below.

subroutine Top2Bary(CJD_E,clat,clong,height,pve,pvo)

¢ Procedure to calculate position (km) and velocity (km/s) of an observatory
¢ located at given geographical position (conventional coordinates in degrees
c and height above the Earth ellipsoid in m) at given Julian day.

¢ It requires some ephemeris files, placed in the ’path’ directory.

C Argument description:

¢ CIJD_E - Julian Day number representing the Coordinated Universal Time

c If CIJD_E is negative it is assumed that it is -1x(Ephemeris JD).

c clat - observatory conventional geographical latitude (deg).

c clong - observatory conventional geographical longitude (deg).

¢ height- observatory height above the Earth ellipsoid (m).

c pvo - 6 element array of barycentric vectors (3 for position in km, and

c 3 for velocity in km/s) of the observatory relative to Earth baryc.
c pve - 6 element array of barycentric vectors (3 for position in km,

c and 3 for velocity in km/s) of the Earth barycenter relative to SSB.
¢ More important subroutines called:

¢ polmot(CJD,Px,Py,UT1_UTC,dpsi,deps) - reads polar motion and UT1 data

¢ topobs(DJ1,glat,glong,height,pvo,amst) - returns observer’s coord. in ’pvo’
c earthPV(BJD,pve) - returns Earth barycentric position (J2000 frame) in ’pve’
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