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Abstract

The sensitivity of a resonant gw antenna is calculated in terms of spectral
density and frequency bandwidth. For a quantum limited detector the bandwidth
might reach values greater than 100 Hz, with a sensitivity to bursts of h = 3 1072!
(SNR=1). The spectral amplitude sensitivity for the Nautilus detector has been
measured to be 7 10_22/\/E7 and its target value is 7 10_23/@. Using two
near Nautilus detectors the gw stochastic background can be measured with a
sensitivity, with respect to the critical density, of a few 107> for an integration
time of one year, as shown by simulations.

PACS. 04.80.4z - Experimental tests of general relativity and observation of
gravitational radiation.

1. Introduction

At the beginning of the experimental search for gravitational waves (gw) the main
scientific goal was to detect gw bursts due to gravitational collapses. Subsequently
various detectors were developed with the purpose to look also for other types of gw,
like those due to pulsars or to coalescence of binary systems [1]. All these detectors,
constructed or planned, cover the frequency range 10 Hz - 10 kHz. Another type of gw
considered by various authors is the stochastic background. This is one of the most
interesting, as it might give information on the very early stages of the Universe and
its formation. Several sources of stochastic background have been considered in the
past years [1]. We recall the effect of the superposition of waves generated by pulsars,
and of bursts due to gravitational collapses and to coalescence of binary systems.
Considerations based on the nucleosynthesis put an upper limit to the stochastic
gw, which is usually expressed in terms of the ratio Q of the gw energy density to
the critical density needed for a closed universe ( Q@ < 107°). Considering a gw
with a dimensionless amplitude h, the general relationship between the gw density



Q(f) = %L and the power spectrum Sy (f) of h (in 1/Hz) is:
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where H is the Hubble constant.

Recently a new source based on the string theory of matter has been proposed
[2], which predicts relict gw whose density €(f) increases with the frequency f to
the third power. In such a case Sj(f) would be independent on the frequency. In
fact the previous models of stochastic background tend to predict gw in the frequency
range below 1 Hz, less than the operating frequency of the detectors already in oper-
ation (resonant bars) or entering in operation in the next four to five years (long-arm
interferometers).

Resonant detectors are being developed since 1960 and large cryogenic bars were
put into continuous operation beginning in 1990 [3, 4, 5]. In this paper we have
decided to re-examine the sensitivity of resonant bars to the various types of gw,
putting special emphasis on the stochastic background.

2. The resonant detector

We have re-examined the sensitivity of a resonant bar to gw in a simple form, although
sometimes with approximations only aimed to help clarity. As an initial model for
these detectors, we consider the simplest resonant antenna, a cylinder of high Q ma-
terial, coupled to a non resonant transducer followed by a very low noise electronic
amplifier. In practice, the detectors now operating use resonant transducers (and
therefore there are two modes coupled to the gravitational field) (see section 5) in
order to obtain high coupling. For a non resonant transducer the equation for the end
bar displacement £ is

wo
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where F is the applied force, m the oscillator reduced mass (for a cylinder m = M/2),
wo = 2w fy is the angular resonance frequency and @) is the merit factor. We consider
here only the noise of fundamental origin, which derives from two contributions : the
thermal (Brownian) noise of the basic detector and the electronic noise of the readout
system. By referring the overall noise to the displacement of the bar ends, we obtain
[6] the noise power spectrum :
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where T, is the equivalent temperature of the detector that includes the heating effect
(back-action) due to the electronic amplifier, and T' (usually T' < 1) is the spectral
ratio between electronic and brownian noise [7].

When a gravitational wave with amplitude h and optimum polarization impinges
perpendicularly to the bar axis of length L, the bar displacement corresponds [8] to



the action of a force F' = f—QmLﬁ For a gw excitation with power spectrum Sy, (f), the
spectrum of the corresponding bar end displacement is
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We notice that the power spectrum of the bar displacement for a constant spectrum
of gw is similar to that due to the action of the Brownian force. Therefore, if only the
Brownian noise were present (I' = 0), we would have an infinite bandwidth, in terms
of signal to noise ratio (SN R). By taking the ratio of the noise spectrum (3) and the
signal spectrum (5) we obtain the signal to noise ratio (SN R)
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By equating to unity the above ratio we obtain the gw spectrum detectable with
SNR =1, that is the detector noise spectrum referred to the input
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At the resonance fy we have (being I' < 1)
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where p is the density of the material, v the sound velocity, S the cross section of the
cylinder and we have used the relation

fo=v/(2L) (9)

We remark that for a cylinder Si(f,) does not depend on its resonance frequency
but on the size of the bar (section) and some characteristics of the material (p, v).
We also notice that, for a given resonance frequency fg, the best spectral sensitivity,
obtained at the resonance, only depends on the temperature 7', on the mass M and
on the quality factor @ of the detector, provided T' ~ T, that is the coupling between
bar and read-out system is sufficiently small. Note that those conditions are rather
different from that required for optimum pulse sensitivity (see later).

An example of the sensitivity expressed in terms of the spectral amplitude is
given in Fig.1 where we have used the target parameters for the NAUTILUS antenna.
The bandwidth, in this example, estimated at half-height of the power spectrum, is
Af = 130 Hz. This quantity is given in general by
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which is obtained [7] from the spectrum (7). Again we notice that if the amplifier
were noiseless (I' = 0) the bandwidth would be infinite.

Af (10)

3. Sensitivity for deterministic signals

3.1 Short bursts



We now apply the optimum filter for detecting short signals. It can be shown [9] that
the SNR for a gravitational wave signal h(t) with Fourier transform H(f) is given by
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We solve (11) with SNR = 1 by noticing that S, has a minimum around the
resonance (see Fig.1) and that, for a short burst of duration < 1/fy, H(f) = Hy. We

obtain s
Hg _ h(fO)
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with Af given by (10). The factor of 27 has been introduced because we need the

equivalent frequency bandwidth for a two-sided spectrum. Introducing (8) and (9) we
get
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where

Topp = 4TNT (14)

is the effective temperature [10] which represents the minimum energy change of the
detector (innovation), expressed in kelvin units, that can be detected with SNR=1
after filtering the data.

From eq. (13) one can get the value of h for a short burst assuming a duration of
1 ms and putting, roughly, h = Hy/0.001. The corresponding h value is often referred
to as the conventional amplitude for a gw burst.

By substituting eq. (14) into eq. (10), the bandwidth can be recasted in the form

4T,
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that is as product of the mechanical bandwidth fo/@Q and of the SNR improvement
obtained by filtering the data for burst detection.

(15)

3.2 Monochromatic waves

For a total measuring time ¢,, we could detect, with SNR=1, a monochromatic gw

with strength [11]
25K (f) 2m2kT,
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where the second equality is valid only at the resonance (the factor of 2 takes care
of the fact that Sy is two-sided). This formula can be derived as follows: for a total
measuring time %, a monochromatic wave of amplitude hg is just like a wave packet
of duration ¢,,, whose Fourier transform has maximum hgt,, /2. Thus from (11) we
get
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which gives (16) for SNR = 1.



In the practical case it is not possible to calculate the Fourier spectrum of the
experimental data over the entire period of measurement ¢,,, because of the change in
frequency due to the Doppler effect for a monochromatic wave. It is then necessary
to divide the period t,, in n several sub periods of length At = ¢,,/n. For the search
of a monochromatic wave we have then to consider two cases:

a) The wave frequency is exactly known. In this case we can combine the n Fourier
spectra in one single spectrum taking into account the phase of the signal. The final
spectrum has then the same characteristics of the spectrum over the entire period %,,
and formula (16) still applies.

b) The exact frequency is unknown. In this case when we combine the n spectra we
lose the information on the phase. The result is that the final combined spectrum
over the entire period has a larger variance. The left part of formula (16) has to be
changed in

25, (f 25 (f)
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4. Stochastic waves

Using one detector, the measurement of the noise spectrum given by eq. (7) (see also
Fig.1) only provides an upper limit for the gw stochastic background spectrum. For
improving the estimation of this spectrum one has to cross-correlate the output signals
of two (or more) antennae.

Until now the limits to the stochastic background, near 1 kHz, have been set
using bar detectors in Glasgow [12, 13], interferometers (Garching-Glasgow) [14] and
cryogenic bar detectors [15].

Our considerations in this paper refer to the case of two antennae located very
near one to the other and parallel. The case of two non parallel antennae located at a
distance R has been considered by Michelson [16]. Let us consider two antennae with
transfer functions 731 (f) and T»(f), displacements &; and &; and spectral densities
S1(f) and S2(f): the displacement crosscorrelation function

R§1§2 /61 ‘52 t+ 7—) (19)

only depends on the common excitation of the detectors, as due to the gw stochastic
background spectrum Sy, acting on both of them, and is not affected by the noises
acting independently on the two detectors. Note that the above result only holds if
the crosscorrelation function is evaluated over an infinite time. Otherwise there is a
residual statistical error, due to the noise, whose amount decreases with the duration
of the observation period.

The Fourier transform of eq. (19) represents the displacement cross spectrum. This
is a complex quantity S12(f) = Ci2(f) — jQ12(f). The real part shows the correlation
at zero time delay and, referred to the detector input (multiplying it by 7175 times
4L%/7%), gives an estimate of the gravitational background Sg,. The estimate, as
obtained over a finite observation time t,,, has a statistical error. It can be shown [17]
that the standard deviation of each sample of the spectrum is

Sin(f) - San(f) S1n(f) - San(f)

0nlf) < =g Tnd]
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(20)



where t,, is the total measuring time and Jf is the frequency step in the power spec-
trum.

From Fig.1 we get the obvious result that, for resonant detectors, the error is
smallest at the resonances. If the resonances of the two detectors coincide, the error
is even smaller. In practice, the best is to have two detectors with the same resonance
and bandwidth. If one bandwidth is smaller that the other one then the smallest error
occurs in the frequency region overlapping the smallest bandwidth. Note, however,
that according to eq. (20) there is no improvement, besides an obvious increase of
confidence, by using two detectors instead of one, when the frequency step Jf of
the spectrum is chosen equal to 1/t,,. In this case the statistical improvement factor
\/Oft, reduces in fact to unity and the sensitivity, for two identical detectors, coincides
with that of a single detector, given by eq. (7).

If the background spectrum is expected [2] to be approximately constant over a
few hertz or a few tens of hertz near the resonances of the detector, we can shift our
attention from a detailed, and statistically expensive, spectral estimation to estimating
its intensity over a spectral interval Df much larger than the spectral step Jf, properly
chosen in the region of maximum sensitivity of the detectors, as discussed above, but
such that the two spectral densities are quite flat. The uncertainty of this estimate is
obtained as follows from eq. (20):

7= [ Sin(f) - San(f)df
fo
VI Df

where Df is the smallest of the two overlapping bandwidths.

For the search of a stochastic background, however, one expects at first just to put
upper limits. In this case the estimated spectrum Sy, will be zero with a standard
error given by (21). And the overall sensitivity of this crosscorrelation experiment,
considering an observation bandwidth Df, will be again given by eq. (21).

8Squ(f) < (21)

5. Calculation of the sensitivity for stochastic waves by means of data
simulated for the antenna NAUTILUS

In order to verify that the resonant antennae behave as expected, at least in principle,
we have performed simulations for the ultracryogenic antennae [18, 19, 20]. We recall
that NAUTILUS is an aluminum bar with length L=3 m and mass M=2300 kg. The
antenna is equipped with a capacitive resonant mushroom [19] transducer followed
by a dcSQUID amplifier. Because of the resonant transducer there are two resonant
modes at frequencies about f_ = 905 Hz and fy= 921 Hz.

In the case of a detector with a resonant transducer we can still use the previous
formulae valid for a non-resonant transducer [21], provided we also take into account
the stochastic force acting on the transducer oscillator (corresponding to that repre-
sented by the spectrum (4) for the bar oscillator). If the transducer is well tuned to
the bar the effect of this additional force is equivalent to double the force spectrum
(4). We can therefore use the formulae (3), (7) and (8) near f_ and fy, provided we
rewrite eq. (4) as

4
Spa = %mm (22)

This means that the final spectral sensitivity is reduced by a factor of 2. formulae (3),



(7) and (8) can be also used for any arbitrary tuning of the transducer. In such a case
the equivalent force spectra for the two modes are different: we have

Sf_zilandsf+:§—i with 0<ayr <1 and a_+ay =1 (23)
This means that at one mode we can obtain the full spectral sensitivity at the expense
of a reduced sensitivity for the other mode.

A simulation of the expected spectral amplitude sensitivity h = /Sy for NAU-
TILUS is shown in Fig.2. We have considered a4y = a_ = 0.5; the other parameters are
those used for Fig.1, except for the frequency bandwidth that is taken equal to 6 Hz,
as we plan to reach in a more near future. As expected from (8) and (23) we get at the
two resonances h = 6.5 10-23/4/0.5 = 9.2 10-%3 //Hz. A similar simulation is shown
in Fig.3, with the same parameters except a_ = 0.33 and a4 = 0.67 corresponding to
a looser tuning of the transducer to the bar (here the bar and transducer resonance
frequencies differ by about 5 Hz). We notice, as expected, a worse sensitivity at the
mode f_, in agreement with the calculated h = 6.5 10-2/y/0.33 =1.13 10-2% /\/H 2
and a better sensitivity at the mode fi, h = 6.5 10723/3/0.67 = 7.9 1023 //Hz. The
statistical fluctuation is given by eq. (20); in the case of Fig.3 with \/1,,0f = 8.94, we
calculate a standard deviation at f} of oh = 44107 /V/Hz. This error takes into
account the difference between the expected 7.9 10723 /\/E and the value, found by
simulation, of 8.2 1023 /\/E shown in Fig.3.

Let us now consider two identical NAUTILUS antennae located parallel at a dis-
tance small compared with the gw wavelength. We calculate the crosscorrelation be-
tween the two antennae, from which we derive the estimation of the spectrum Sg,,. In
absence of a gw stochastic background Sg,, should turn out to be null. The standard
deviation is again obtained by means of formula (20), depending on the measuring
time t,, and on the frequency step df.

The result of the cross-correlation is shown in Fig.4. Here we have plotted the
simulated spectral amplitude /Sy (f) for one antenna only (upper curve) with the
parameters of Fig.3 and the square root of the modulus of the cross spectrum of
two identical antennae (lower curve). Since there is no correlation between the two
detectors, we expect a null result at all frequencies, with a certain statistical error.
According to eq. (20) the statistical error can be obtained by the upper curve divided
by v/vtmdf= 4.56. This is exactly the result we obtain by the cross-correlation, as
shown by te lower curve of the figure.

For evidencing a possible correlation between the two detectors it might be conve-
nient to use the coherence function between the two spectra Sy (f) and Sa(f), defined

Yo (f) = S12(f)/V/ S1(f) - Sa(f) (24)

This function has the property to be 0 < |yo| < 1, being equal to 0 for a null correlation
and to 1 for total correlation.

The standard deviations of vo(f) = Re[yo(f)] + jIm[yo (f)] are

Lt [Relyl| L [Imlyoll
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In the case of the cross-correlation of Fig.4 we obtain the results shown in Fig.5
for the real and imaginary part of yo(f) in the frequency window 914 - 915 Hz.

dRe[yo] < dhm[yo] < (25)



We notice that both parts fluctuate near zero, as expected, with average values
1.4 1073 and 2.1 10~*. The statistical errors on the averages from the simulated values
are respectively 1.3 1073 and 1.4 103, indicating that the two averages are indeed
in agreement with null values. The standard deviation obtained from formula (25) is,
with ¢,,=36 hours and Df=1 Hz, 1/v/36 -3600 s - 1 Hz = 2.8 103, in agreement with
the standard deviations obtained by the simulation, because the standard deviation
given by (25) represents only an upper limit of the actual standard deviation.

We have also performed simulation experiments for two identical antennae both
driven by a common stochastic background signal with constant spectrum in the
frequency region of our interest, for various values of intensity of the spectrum.

The results of the crosscorrelation are reported in terms of the correlation param-
eter Teorr (in kelvin units). Using egs. (8) and (24) the coherence function at the
resonance frequencies of the detector can in fact be expressed as

|'70| = Tcorr/Tbar (26)

for two identical antennae. The results are shown in Fig.6 for the absolute values of
the real part of vo(f) and in Fig.7 for the absolute imaginary part, with various values
of Teorr /Thar, Tor the frequency range that includes both resonances.

We notice values of vo (f) different from zero only for the real part, as the imaginary
part would give values different from zero just in the cases the correlation is time-
shifted. For the real part we notice vo(f) = 1 at the frequency where we have applied
a calibration signal. Then we observe values different from zero at all frequencies and
in particular at the resonances, where the detector has the largest sensitivity. We can
compare the values of T,orr determined with this method, making use of (26), with
those belonging to the correlated signal we have put in the simulated data for the two
antennae. We obtain the following table:



Tcorr/Tbar Tcorr /Tbar

stmulated determined from the simulated data
0 0.02 4 0.02
0.40 0.38 4+ 0.03
0.50 0.494 0.03
0.67 0.69 4+ 0.03

where the standard error has been calculated from (25) for ¢,,=36 hours and §f=33.5
mHz multiplied by /7/2 because we have considered absolute values (if  and y are
gaussian variables with zero mean and standard deviation o, then the expected value
for \/22 4+ y? is oy/m/2. The expected value for |z| and |y| is 04/2/7). From the simu-
lation we get a standard deviation of 1.5 1072 and 1.4 10~2 for the real and imaginary
part. Thus the standard deviation for the absolute value is 1.45 10-2/7/2 = 0.018,
in agreement with the calculation. Finally the expected value of vg for Teorr /Thar=0
is just 0.018, as found by simulation.

It is possible, in general, to relate the correlated signals with a gw stochastic
background. From (1), (8) and (21) we get

Tcorr
Q920 Hz) = Q =Q 2
(920 Hz) = @ gz Relol = & 570 (27)
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Teorr can be read directly in a graph like in Fig.6.
The standard error associated with this measurement 1s
Q T _41Q
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With one year of operation and Df ~ 100 Hz, which is within the grasp of the
present technology, we get §Q ~ 6 107°, near to the limit (ten times) calculated on
the basis of nucleosynthesis considerations. An additional increase in the mass of
the resonant detector by a factor of 100 and further cooling of the resonant detector
will improve the sensitivity such as to make it possible to measure values as small as
Q(f) ~ 1077, that is close to the theoretical predictions of the string theory [2].

6. Discussion and conclusions

Resonant g.w. antennae have been originally conceived, designed and optimized for
short burst detection. Their sensitivity has therefore been expressed, most of the
times, in term of the effective temperature 7,;;, which is the minimum energy de-
livered by a g.w. burst that can be detected by the apparatus, or the corresponding
pulse amplitude h. For studying the operation of a resonant antenna as detector for
a gw stochastic background we have to deal with noise spectra. This has brought us
to reconsider the sensitivity to bursts and other types of gw in a somewhat different
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manner, that improves our understanding of the role played by the transducer and the
electronics, the coupling between bar and transducer and the other basic parameters
of the apparatus. The noise spectrum of the apparatus is expressed by formula (7),
that also gives directly the sensitivity for the gw background. We notice that the
optimum sensitivity is obtained at the resonance (or at the resonances) and depends
essentially on the ratio T. /M @, for a given material. The transducer and electronics
determine in practice only the bandwidth of the apparatus, given by (10), with no
appreciable effect on the sensitivity at resonance. To have a larger bandwidth (that
is a good transducer) as a consequence is less important when the scientific objective
is aimed to the measurement of a stochastic background. While for bursts the sen-
sitivity expressed in terms of h depends on f, as shown by formula (12), the spectral
amplitude (in units of 1/v/Hz) for the stochastic background depends on Df'/* only
when cross-correlating two antennae, as shown by eq. (21). For this reason it could be
convenient, also in terms of expenses and feasibility, to consider [22] a cross-correlation
experiment between an interferometer and a near bar, as the greater bandwidth of the
interferometer plays, for the stochastic background measurements, a minor role. We
would like to conclude that resonant detectors, by their own nature of being resonant,
are particularly suited for detecting a possible gw stochastic background.

10
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Figure 1: Spectral amplitude for a resonant antenna with the following characteristics:
fo=900 Hz, Q =85 10% T. = 0.1 K, L =3 m, M = 2300 kg, T.;; =3 107K,
r=710"13
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Figure 2: Spectral amplitude sensitivity versus frequency expected for the Nautilus de-
tector in the year 2000, as obtained by simulation: a) the electromechanical transducer
is well coupled to the bar. b) the transducer is only partially coupled to the bar.
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Figure 4: Simulation. Real and imaginary part of the coherence function vo(f), in the
bandwidth 914.0-915.0 Hz (297 samples), in the absence of correlation.
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