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Abstract. The sensitivity of a resonant gravitational wave (GW) antenna is calculated in terms
of spectral density and frequency bandwidth. For a quantum-limited detector the bandwidth
might reach values greater than 100 Hz, with a sensitivity to bursts ofh = 3 × 10−21

(SNR = 1). The spectral amplitude sensitivity for the Nautilus detector has been measured
to be 7× 10−22 Hz−1/2 and its target value is 7× 10−23 Hz−1/2. Using two near-Nautilus
detectors the GW stochastic background can be measured with a sensitivity, with respect to the
critical density, of a few 10−5 for an integration time of one year, as shown by simulations.

PACS number: 0480N, 9880

1. Introduction

At the beginning of the experimental search for gravitational waves (GWs) the main
scientific goal was to detect GW bursts due to gravitational collapses. Subsequently,
various detectors were developed with the purpose of also looking for other types of
GW, such as those due to pulsars or to the coalescence of binary systems [1]. All these
detectors, constructed or planned, cover the frequency range 10 Hz–10 kHz. Another type
of GW considered by various authors is the stochastic background. This is one of the
most interesting, as it might give information on the very early stages of the Universe and
its formation. Several sources of stochastic background have been considered in the past
few years [1]. We recall the effect of the superposition of waves generated by pulsars
and of bursts due to gravitational collapses and to the coalescence of binary systems.
Considerations based on nucleosynthesis put an upper limit on the stochastic GW, which
is usually expressed in terms of the ratio� of the GW energy density to the critical
density needed for a closed universe (� 6 10−5). Considering a GW with a dimensionless
amplitudeh, the general relationship between the GW density�(f ) = d�/d(ln f ) and the
power spectrumSh(f ) of h (in Hz−1) is

�(f ) = 4π2

3

f 3

H 2
Sh(f ) = 1.25× 1045

(
f

1 kHz

)3(100 km s−1 Mpc−1

H

)2

Sh(f ) (1)

whereH is the Hubble constant.
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Recently, a new source based on the string theory of matter has been proposed [2],
which predicts relict GWs, the density of which�(f ) increases with frequencyf to the
third power. In such a caseSh(f ) would be independent of the frequency. In fact, the
previous models of stochastic background tend to predict GWs in the frequency range below
1 Hz, less than the operating frequency of the detectors already in operation (resonant bars)
or entering into operation in the next four to five years (long-arm interferometers).

Resonant detectors have been developed since 1960 and large cryogenic bars were put
into continuous operation in 1990 [3–5]. In this paper we have decided to re-examine the
sensitivity of resonant bars to the various types of GW, putting special emphasis on the
stochastic background.

2. The resonant detector

We have re-examined the sensitivity of a resonant bar to GW in a simple form, although
sometimes with approximations only aimed to help clarity. As an initial model for these
detectors, we consider the simplest resonant antenna, a cylinder of high-Q material, coupled
to a non-resonant transducer followed by a very low-noise electronic amplifier. In practice,
the detectors currently operating use resonant transducers (and therefore there are two modes
coupled to the gravitational field) (see section 5) in order to obtain high coupling. For a
non-resonant transducer the equation for the end bar displacementξ is

ξ̈ + ω0

Q
ξ̇ + ω2

0ξ =
F

m
(2)

whereF is the applied force,m the oscillator reduced mass (for a cylinder withm = M/2),
ω0 = 2πf0 is the angular resonance frequency andQ is the merit factor. Here we consider
only noise of fundamental origin, which derives from two contributions: the thermal
(Brownian) noise of the basic detector and the electronic noise of the readout system.
By referring the overall noise to the displacement of the bar ends, we obtain [6] the noise
power spectrum:

Snξ (f ) =
SF

(2π)4 m2

1+ 0[Q2(1− (f/f0)
2)2+ (f/f0)

2]

(f 2− f 2
0 )

2+ (ff0/Q)2
(3)

with

SF = 2ω0

Q
mkTe (4)

whereTe is the equivalent temperature of the detector that includes the heating effect (back-
action) due to the electronic amplifier, and0 (usually0 � 1) is the spectral ratio between
electronic and Brownian noise [7].

When a gravitational wave with amplitudeh and optimum polarization impinges
perpendicularly to the bar axis of lengthL, the bar displacement corresponds [8] to the
action of a forceF = (2/π2)mLḧ. For a GW excitation with power spectrumSh(f ), the
spectrum of the corresponding bar end displacement is

Sξ (f ) = 4L2f 4Sh(f )

π4

1

(f 2− f 2
0 )

2+ (ff0/Q)2
. (5)

We notice that the power spectrum of the bar displacement for a constant spectrum of GWs
is similar to that due to the action of the Brownian force. Therefore, if only the Brownian
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noise were present (0 = 0), we would have an infinite bandwidth, in terms of signal-to-
noise ratio (SNR). By taking the ratio of the noise spectrum (3) and the signal spectrum (5)
we obtain the signal-to-noise ratio (SNR)

SNR(f ) = Sξ (f )

Snξ (f )
= 64L2f 4m2Sh(f )

SF

1

1+ 0[Q2(1− (f/f0)2)2+ (f/f0)2]
. (6)

By equating to unity the above ratio we obtain the GW spectrum detectable with SNR= 1,
that is the detector noise spectrum referred to the input

Sh(f ) = π

8

kTe

MQL2

f0

f 4
(1+ 0[Q2(1− (f/f0)

2)2+ (f/f0)
2]). (7)

At the resonancef0 we have (0 � 1)

Sh(f0) = π

8

kTe

MQL2

1

f 3
0

= πkTe

ρv3SQ
(8)

whereρ is the density of the material,v the sound velocity,S the cross section of the
cylinder and we have used the relation

f0 = v/(2L). (9)

We remark that for a cylinderSh(fo) does not depend on its resonance frequency but
on the size of the bar (section) and some characteristics of the material (ρ, v). We also
notice that, for a given resonance frequencyf0, the best spectral sensitivity, obtained at the
resonance, only depends on the temperatureT , on the massM and on the quality factor
Q of the detector, providedT ' Te, that is the coupling between bar and read-out system
is sufficiently small. Note that those conditions are rather different from that required for
optimum pulse sensitivity (see later).

An example of the sensitivity expressed in terms of the spectral amplitude is given in
figure 1 where we have used the target parameters for the Nautilus antenna. The bandwidth,

Figure 1. Spectral amplitude for a resonant antenna with the following characteristics:
f0 = 900 Hz,Q = 8.5× 106, Te = 0.1 K, L = 3 m, M = 2300 kg,Teff = 3× 10−7 K,
0 = 7× 10−13.
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in this example estimated at the half-height of the power spectrum, is1f = 130 Hz. This
quantity is given, in general, by

1f = f0

Q

1√
0

(10)

which is obtained [7] from the spectrum (7). Again we notice that if the amplifier were
noiseless (0 = 0) the bandwidth would be infinite.

3. Sensitivity for deterministic signals

3.1. Short bursts

We now apply the optimum filter for detecting short signals. It can be shown [9] that the
SNR for a gravitational wave signalh(t) with Fourier transformH(f ) is given by

SNR=
+∞∫
−∞

|H(f )|2
Sh(f )

df . (11)

We solve (11) with SNR= 1 by noticing thatSh has a minimum around the resonance
(see figure 1) and that, for a short burst of duration< 1/f0, H(f ) = H0. We obtain

H 2
0 =

Sh(f0)

2π1f
(12)

with1f given by (10). The factor of 2π has been introduced because we need the equivalent
frequency bandwidth for a two-sided spectrum. Introducing (8) and (9) we get

H0 = L

2v2

√
kTeff

M
(13)

where

Teff = 4Te
√
0 (14)

is the effective temperature [10] which represents the minimum energy change of the detector
(innovation), expressed in kelvin units, that can be detected with SNR= 1 after filtering
the data.

From equation (13) one can get the value ofh for a short burst assuming a duration of
1 ms and putting, roughly,h = H0/0.001. The correspondingh value is often referred to
as the conventional amplitude for a GW burst.

By substituting equation (14) into equation (10), the bandwidth can be recast in the
form

1f = f0

Q

4Te
Teff

(15)

that is, as a product of the mechanical bandwidthf0/Q and of the SNR improvement
obtained by filtering the data for burst detection.

3.2. Monochromatic waves

For a total measuring timetm we could detect, with SNR= 1, a monochromatic GW with
strength [11]

h =
√

2Sh(f )

tm
=
√

2π2kTe

MQv2ω0tm
(16)
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where the second equality is valid only at the resonance (the factor of 2 takes care of the
fact thatSh is two-sided). This formula can be derived as follows: for a total measuring
time tm a monochromatic wave of amplitudeh0 is just like a wavepacket of durationtm,
whose Fourier transform has a maximumh0tm/2. Thus from (11) we get

SNR= h2
0 t

2
m/4

Sh(ω0)

2

tm
(17)

which gives (16) for SNR= 1.
In the practical case it is not possible to calculate the Fourier spectrum of the

experimental data over the entire period of measurementtm, because of the change in
frequency due to the Doppler effect for a monochromatic wave. It is then necessary to divide
the periodtm into n subperiods of length1t = tm/n. For the search of a monochromatic
wave we have to consider two cases:

(i) The wave frequency is exactly known. In this case we can combine then Fourier
spectra into one single spectrum, taking into account the phase of the signal. The final
spectrum then has the same characteristics of the spectrum over the entire periodtm and
equation (16) still applies.

(ii) The exact frequency is unknown. In this case when we combine then spectra we
lose the information on the phase. The result is that the final combined spectrum over the
entire period has a larger variance. The left-hand side of equation (16) has to be changed
to

h =
√

2Sh(f )√
1t tm

=
√

2Sh(f )

tm

√
n. (18)

4. Stochastic waves

Using one detector, the measurement of the noise spectrum given by equation (7) (see also
figure 1) only provides an upper limit for the GW stochastic background spectrum. To
improve the estimation of this spectrum one has to cross-correlate the output signals of two
(or more) antennas.

Until now the limits to the stochastic background, near 1 kHz, have been set using bar
detectors in Glasgow [12, 13], interferometers (Garching–Glasgow) [14] and cryogenic bar
detectors [15].

Our considerations in this paper refer to the case of two antennas located very near one
another and parallel. The case of two non-parallel antennas located at a distanceR has
been considered by Michelson [16]. Let us consider two antennas with transfer functions
T1(f ) and T2(f ), displacementsξ1 and ξ2 and spectral densitiesS1(f ) and S2(f ): the
displacement cross-correlation function

Rξ1ξ2(τ ) =
∫
ξ1(t)ξ2(t + τ) dt (19)

only depends on the common excitation of the detectors, due to the GW stochastic
background spectrumSGW acting on both of them and is not affected by the noises acting
independently on the two detectors. Note that the above result only holds if the cross-
correlation function is evaluated over an infinite time. Otherwise there is a residual statistical
error, due to the noise, which decreases with the duration of the observation period.

The Fourier transform of equation (19) represents the displacement cross spectrum. This
is a complex quantityS12(f ) = C12(f ) − jQ12(f ). The real part shows the correlation at
zero time delay and, referred to the detector input (multiplying it byT1T2 times 4L2/π4),
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gives an estimate of the gravitational backgroundSGW. The estimate, obtained over a finite
observation timetm, has a statistical error. It can be shown [17] that the standard deviation
of each sample of the spectrum is

δC12(f ) 6
√
S1h(f )S2h(f )√

tm δf
; δQ12(f ) 6

√
S1h(f )S2h(f )√

tm δf
(20)

wheretm is the total measuring time andδf is the frequency step in the power spectrum.
From figure 1 we get the obvious result that, for resonant detectors, the error is smallest

at the resonances. If the resonances of the two detectors coincide, the error is even smaller.
In practice, the best policy is to have two detectors with the same resonance and bandwidth.
If one bandwidth is smaller that the other one then the smallest error occurs in the frequency
region overlapping the smallest bandwidth. Note, however, that according to equation (20)
there is no improvement, besides an obvious increase of confidence, in using two detectors
instead of one, when the frequency stepδf of the spectrum is chosen to be equal to 1/tm.
In this case the statistical improvement factor

√
δf tm reduces in fact to unity and the

sensitivity, for two identical detectors, coincides with that of a single detector, given by
equation (7).

If the background spectrum is expected [2] to be approximately constant over a few
Hz or a few tens of Hz near the resonances of the detector, we can shift our attention
from a detailed, and statistically expensive, spectral estimation to estimating its intensity
over a spectral interval Df much larger than the spectral stepδf , properly chosen in the
region of maximum sensitivity of the detectors, as discussed above, but such that the two
spectral densities are quite flat. The uncertainty of this estimate is obtained as follows from
equation (20):

δSGW(f ) 6

√
(1/Df )

∫
Df S1h(f )S2h(f ) df
√
tm Df

(21)

where Df is the smallest of the two overlapping bandwidths.
For the search for a stochastic background, however, one expects at first just to find

upper limits. In this case the estimated spectrumSGW will be zero with a standard error
given by (21) and the overall sensitivity of this cross-correlation experiment, considering
an observation bandwidth Df , will be again given by equation (21).

5. Calculation of the sensitivity for stochastic waves by means of data simulated for
the antenna Nautilus

In order to verify that the resonant antennas behave as expected, at least in principle, we
have performed simulations for the ultracryogenic antennas [18–20]. We recall that Nautilus
is an aluminium bar with lengthL = 3 m and massM = 2300 kg. The antenna is equipped
with a capacitive resonant mushroom [19] transducer followed by a DC SQUID amplifier.
Because of the resonant transducer there are two resonant modes at frequencies of about
f− = 905 Hz andf+ = 921 Hz.

In the case of a detector with a resonant transducer we can still use the previous formulae
valid for a non-resonant transducer [21], provided we also take into account the stochastic
force acting on the transducer oscillator (corresponding to that represented by the spectrum
(4) for the bar oscillator). If the transducer is well tuned to the bar the effect of this additional
force is equivalent to double the force spectrum (4). We can therefore use equations (3),
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(a)

(b)

Figure 2. Spectral amplitude sensitivity versus frequency expected for the Nautilus detector in
the year 2000, as obtained by simulation: (a) the electromechanical transducer is well coupled
to the bar; (b) the transducer is only partially coupled to the bar.

(7) and (8) nearf− andf+, provided we rewrite equation (4) as

Sf± =
4ω±
Q

mkTe. (22)

This means that the final spectral sensitivity is reduced by a factor of 2. Equations (3),
(7) and (8) can be also used for any arbitrary tuning of the transducer. In such a case the
equivalent force spectra for the two modes are different: we have

Sf− =
SF

a−
and Sf+ =

SF

a+
with 06 a± 6 1 and a− + a+ = 1. (23)

This means that at one mode we can obtain the full spectral sensitivity at the expense of a
reduced sensitivity for the other mode.

A simulation of the expected spectral amplitude sensitivityh̃ = √Sh for Nautilus
is shown in figure 2. In figure 2(a) we have considereda+ = a− = 0.5; the other
parameters are those used in figure 1, except for the frequency bandwidth which is taken
to be equal to 6 Hz, which we plan to reach it in the near future. As expected from (8)
and (23) at the two resonances we geth̃ = 6.5 × 10−23/

√
0.5 = 9.2 × 10−23 Hz−1/2.

A similar simulation is shown in figure 2(b), with the same parameters except that
a− = 0.33 and a+ = 0.67, corresponding to a looser tuning of the transducer to
the bar (here the bar and transducer resonance frequencies differ by about 5 Hz). We
notice, as expected, a worse sensitivity at the modef−, in agreement with the calculated
h̃ = 6.5× 10−23/

√
0.33 = 1.13× 10−22 Hz−1/2 and a better sensitivity at the modef+,

h̃ = 6.5 × 10−23/
√

0.67 = 7.9 × 10−23 Hz−1/2. The statistical fluctuation is given by
equation (20); in the case of figure 3 with

√
tm δf = 8.94, we calculate a standard deviation

at f+ of δh̃ = 4.4× 10−24 Hz−1/2. This error takes into account the difference between the
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Figure 3. The lower curve shows the result of a simulated cross-correlation of two identical
near-Nautilus detectors (the upper curve shows for reference the spectral amplitude sensitivity
for a single detector). We note the improvement in sensitivity by a factor of(tmδf )

1/4 = 4.6,
as expected (tm = 36 h, δf = 3.35 mHz).

expected value, 7.9×10−23 Hz−1/2, and the value found by simulation of 8.2×10−23 Hz−1/2

shown in figure 2(b).
Let us now consider two identical Nautilus antennas located in parallel at a distance

which is small compared with the GW wavelength. We calculate the cross-correlation
between the two antennas, from which we derive the estimation of the spectrumSGW. In
the absence of a GW stochastic backgroundSGW should turn out to be null. The standard
deviation is again obtained by means of equation (20), depending on the measuring timetm
and on the frequency stepδf .

The result of the cross-correlation is shown in figure 3. Here we have plotted the
simulated spectral amplitude

√
Sh(f ) for one antenna only (upper curve) with the parameters

of figure 2 and the square root of the modulus of the cross spectrum of two identical antennas
(lower curve). Since there is no correlation between the two detectors, we expect a null
result at all frequencies, with a certain statistical error. According to equation (20) the
statistical error can be obtained by the upper curve divided by

√√
tm δf = 4.56. This is

exactly the result we obtain by the cross-correlation, as shown by the lower curve in the
figure.

To show a possible correlation between the two detectors it might be convenient to use
the coherence function between the two spectraS1(f ) andS2(f ), defined as

γ0(f ) = S12(f )/
√
S1(f )S2(f ). (24)

This function has the property that 06 |γ0| 6 1 and is equal to 0 for a null correlation and
to 1 for total correlation.

The standard deviations ofγ0(f ) = Re[γ0(f )] + j Im[γ0(f )] are

δRe[γ0] 6 1+ |Re[γ0]|√
tm δf

; δ Im[γ0] 6 1+ | Im[γ0]|√
tm δf

. (25)

In the case of the cross-correlation of figure 3 we obtain the results shown in figure 4
for the real and imaginary part ofγ0(f ) in the frequency window 914–915 Hz.
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Figure 4. Simulation. Real and imaginary part of the coherence functionγ0(f ), in the bandwidth
914.0–915.0 Hz (297 samples), in the absence of correlation.

(a) (b)

Figure 5. Simulation. Modulus of the real part of the coherence function: (a) without correlation
(the peak is due to the calibration signal); (b) with partial correlation(Tcorr = Tbar/2).

We notice that both parts fluctuate near zero, as expected, with average values 1.4×10−3

and 2.1 × 10−4. The statistical errors on the averages from the simulated values are
1.3 × 10−3 and 1.4 × 10−3, respectively, indicating that the two averages are indeed in
agreement with null values. The standard deviation obtained from equation (25) is, with
tm = 36 h and Df = 1 Hz, 1/

√
36× 3600 s× 1 Hz = 2.8× 10−3, in agreement with

the standard deviations obtained by the simulation, because the standard deviation given by
(25) represents only an upper limit of the actual standard deviation.

We have also performed simulation experiments for two identical antennas both driven
by a common stochastic background signal with constant spectrum in the frequency region
of interest, for various values of intensity of the spectrum.

The results of the cross-correlation are reported in terms of the correlation parameter
Tcorr (K). Using equations (8) and (24) the coherence function at the resonance frequencies
of the detector can, in fact, be expressed as

|γ0| = Tcorr/Tbar (26)
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(a) (b)

Figure 6. Simulation. Modulus of the imaginary part of the coherence function: (a) without
correlation; (b) with partial correlation(Tcorr = Tbar/2).

for two identical antennas. The results are shown in figure 5 for the absolute values of
the real part ofγ0(f ) and in figure 6 for the absolute imaginary part, having considered
Tcorr/Tbar= 1/2, for the frequency range that includes both resonances.

We notice values ofγ0(f ) different from zero only for the real part, as the imaginary
part would give values different from zero just in the cases where the correlation is time-
shifted. For the real part we noticeγ0(f ) = 1 at the frequency where we have applied
a calibration signal. Then we observe values different from zero at all frequencies and in
particular at the resonances, where the detector has the largest sensitivity. We can compare
the values ofTcorr determined with this method, making use of (26), with those belonging
to the correlated signal we have put in the simulated data for the two antennas for various
values ofTcorr/Tbar. We obtain the following table.

Table 1.

Tcorr/Tbar Tcorr/Tbar

simulated determined from the simulated data

0 0.02± 0.02
0.40 0.38± 0.03
0.50 0.49± 0.03
0.67 0.69± 0.03

In the above table the standard error has been calculated from (25) fortm = 36 h and
δf = 33.5 mHz multiplied by

√
π/2 because we have considered absolute values (ifx

andy are Gaussian variables with zero mean and standard deviationσ , then the expected
value for

√
x2+ y2 is σ

√
π/2. The expected value for|x| and |y| is σ

√
2/π ). From

the simulation we get a standard deviation of 1.5 × 10−2 and 1.4 × 10−2 for the real
and imaginary parts, respectively. Thus the standard deviation for the absolute value is
1.45× 10−2√π/2 = 0.018, in agreement with the calculation. Finally, the expected value
of γ0 for Tcorr/Tbar= 0 is just 0.018, as found by simulation.
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It is possible, in general, to relate the correlated signals with a GW stochastic
background. From equations (1), (8) and (21) we get

�(920 Hz) = �1
T

0.1 K
Re[γ0] = �1

Tcorr

0.1 K
(27)

where

�1(920 Hz) = 3.3

(
100 km s−1 Mpc−1

H

)2
2300 kg

M

107

Q
.

Tcorr can be read directly from a graph as in figure 5.
The standard error associated with this measurement is

δ�(f ) 6 �1(f )(T /0.1 K)+�(f )√
tm Df

. (28)

With one year of operation and Df ' 100 Hz, which is within the grasp of present
technology, we getδ� ' 6× 10−5, near to the limit (ten times) calculated on the basis of
nucleosynthesis considerations. An additional increase in the mass of the resonant detector
by a factor of 100 and further cooling of the resonant detector will improve the sensitivity
such as to make it possible to measure values as small as�(f ) ' 10−7, which is close to
the theoretical predictions of string theory [2].

6. Discussion and conclusions

Resonant GW antennas have been originally conceived, designed and optimized for short-
burst detection. Their sensitivity has therefore been expressed, most of the time, in terms of
the effective temperatureTeff, which is the minimum energy delivered by a GW burst that
can be detected by the apparatus, or the corresponding pulse amplitudeh. For studying the
operation of a resonant antenna as a detector for a GW stochastic background we have to
deal with noise spectra. This has brought us to reconsider the sensitivity to bursts and other
types of GW in a somewhat different manner, which improves our understanding of the role
played by the transducer and the electronics, the coupling between the bar and transducer
and the other basic parameters of the apparatus. The noise spectrum of the apparatus is
expressed by equation (7), which also gives the sensitivity for the GW background directly.
We notice that the optimum sensitivity is obtained at the resonance (or at the resonances)
and depends essentially on the ratioTe/MQ, for a given material. The transducer and
electronics determine in practice only the bandwidth of the apparatus, given by (10), with
no appreciable effect on the sensitivity at resonance. To have a larger bandwidth (that is a
good transducer) is consequently less important when the scientific objective is aimed at the
measurement of a stochastic background. While for bursts the sensitivity expressed in terms
of h depends on1f , as shown by equation (12), the spectral amplitude (in units of Hz−1/2)
for the stochastic background depends on Df 1/4 only when cross-correlating two antennas,
as shown by equation (21). For this reason it could also be convenient, in terms of cost
and feasibility, to consider [22] a cross-correlation experiment between an interferometer
and a nearby bar, as the greater bandwidth of the interferometer plays a minor role for the
stochastic background measurements. We would like to conclude that resonant detectors, by
their nature of being resonant, are particularly suited for detecting a possible GW stochastic
background.
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