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In this paper we discuss how the standard optimal Wiener filter theory can be applied, within a linear
approximation, to the detection of an isotropic stochastic gravitational-wave background with two or more
detectors. We apply then the method to the AURIGA-NAUTILUS pair of ultralow temperature bar detectors,
soon to operate in coincidence in ltaly, obtaining an estimate for the sensitivity to the background spectral
density of~10"%° Hz™%, that converts to an energy density per unit logarithmic frequeney®% 10”5 p.,
with p.~1.9xX 1028 kg/m® the closure density of the Universe. We also show that by adding the VIRGO
interferometric detector under construction in Italy to the array, and by properly reorienting the detectors, one
can reach a sensitivity o£6X 107 °X p.. We then calculate that the pair formed by VIRGO and one large
mass spherical detector properly located in one of the nearby available sites in Italy can reach a sensitivity of
~2X1075X p. while a pair of such spherical detectors at the same sites of AURIGA and NAUTILUS can
achieve sensitivities 02X 107X p.. . [S0556-282(97)01004-1

PACS numbd(s): 04.80.Nn, 95.55.Ym, 98.80.Es

[. INTRODUCTION ultralow temperature resonant detectors AURIGA and
NAUTILUS, which have been tested at two sitfS] at
Resonant-mass gravitational-wa@@W) detectors are po- R~400 km apart in Italy.

tentially interesting for the observation of an isotropic sto- We then extend the calculation to the AURIGA-
chastic background of GWs, as recently suggested by estNAUTILUS-VIRGO [6] array that will operate in Italy.
mations [l] based on Cosmo|ogica| String mode|s_ These We f|na”y discuss a pOSSible experimental detection strat-
models predict for that background an almost frequency®9Y for spherical detectors and estimate the potential sensi-
independent GW spectral densi®¢(w) that would put all tivity of the pair formed by VIRGO and one spherical detec-

the detectors under development on a comparable level §f" @nd of an array of two of such detectors.
sensitivity.
An experiment aimed at detecting a stochastic back- II. ISOTROPIC GW STOCHASTIC BACKGROUND
ground of GWSs implies a correlation technique between the
outputs of two or more detectors, possibly distant to each Isotropic stochastic background of GWs has been widely
other to avoid spurious correlation of the detector noises. Aiscussed by many authofg]. Here, we just summarize
suboptimal method has been discussed by Michel@in some of the results reported and give some useful details
with reference to a generic detector, and a quasioptima®mitted in the literature. We assume that the metric tensor
method based on maximum likelihood estimation has beeferturbation can be written as
discussed3] and applied to interferometric detectors. Also a
linearized quasioptimal method has been more recently dis- 1 _
cussed again in connection with an interferometer pHir hij(r,t)= 273 f f f hij(k,t)e'k'rd3k. (1)
Here we first discuss the linearized quasioptimal estima- (2m)
tion method that can be obtained in a straightforward manner
from the standard Wiener theory for optimal filtering. We  Under the assumption that the background is isotropic and
show that it gives the same results as those of Réffor an  stationary, the two-point two-time autocorrelation of the
array of detectors and, when applied to just a pair, of Refmetric tensokh;; (r,t)hy(r’,t")), where the angular brackets
[4], but in a more straightforward way. We then use theindicate an ensemble average, can be writte(sas Appen-
method to discuss the potential sensitivity of the pair ofdix A)
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R L —iw(t-t') 1 dh(t)
(i (1 Dhy (' ) =5 Jiwdw S(w)e Fa()=3 Mala —5z— ©)
x[ao(wR/c)T?jk, +a1(wR/c)Ti1jk| wherem, is the effective mas&l/2 of the physical massl)

and |, is the effective lengtifor a cylinder|,=(4/7%)L,
with L the physical length of the cylindgrFor two parallel
oriented bargthe orientation that always maximizes the cor-
relation), we get

+a(wRIC) Ty . 2

The functionsey(x), a1(x), and a,(x) in the above equa-
tion are given by

15| sinx 5 9\ cox 9 F.(OFo(t'))=m.mul .l —
QO(X)E§_T(1_§Z+F +_xz_(2_x_2) , < a() b( )> a babzﬂ_
15[ sinx 1 3| cox 3 ><f S(w)w'e ' 1"O(H,0R/c)dw,
“1(X)E§_T<_1+?+P>_7( 7)' ® -
()
15[sinx [ 6 12| cox 12
@0=g | % e e 127e) where
while the componentd jj,, of the matricesT" are given O(9,x)= @o(X) [7+4 cog29)+5cog49)]
again in Appendix A. 8
Note that, sinceT?,,,=1 and T},,,=T2,,,=0, and ay(%)
since lim_ gao(X)=1, Egs.(2) and(3) give + > [1+2cog29)+cog49)]
1 (= :
PN — —iw(t—t") as( X

which is a standard normalization in the context of signalygre 4 is the angle between the direction of the detector axis
analysis. _ (the same direction for bottand the straight line joining the
The antenna pattern of any GW detector, in the approXigjtes where the detectors are located. The behavior of the

mation of detector size that is small compared with the graviynction ©(9,x) is reported in Fig. 1 with9 as a parameter.
tational wavelength, can be describgd] by a symmetric  js worth pointing out that, if the detectors have both to
traceless tensdd. By this, we mean that the effective metric po norizontal and still be exactly paralled, can only be

. _ 3 L
perturbation sensed by the detectoh($) =2{j_1D;;h;i(t),  9=9g0°. However, as in the following sections we will focus
with h;;(t) the incoming wave. The expl|e|t expression for 5 observatories wherg< R, with R, the radius of the
the component®;; of D, for the lowest longitudinal mode of - 4141, it is also worth noticing that in that case, whatever the

a cylindrical GW antenna, iB;;=n;n; — 5;;/3, wheren, with 5,6 of 9, the detectors can be made approximately parallel
componentsn;, is the unit vector parallel to its axis. The \yithin an angles~RIR, .

lowest five degenerate quadrupol_e modes_ of a spherical £o; two spheres, each of the five degenerate quadrupole
detector have, instead, the following coupling tensid mode of the sphere acts as an independent detE&towe

m — . 0_ + + 1__ 1,.X
D,l (m; ;2"'2' +121 D _(‘{?’Z/G)Qfxi_exy)' D' =-3%€y»  can write the GW force acting on theth mode as
D "=—3ey, D°=3e,,, andD “=—3e), where the tensors

e,; are defined in Appendix A. 1 d2ha (1)

Finally, for an interferometric antenna with its arms in the Fa(t)= > Myl 4 d—TZ 9
direction of the unit vectorsn and m, we have
Dij = (ninj - mi mj)/2

The cross correlatioR2°(t—t")=(h?(t)h®(t")) between
the effective metric perturbation signat€i(t) and h°(t)
sensed by two detectoesandb located atr andr’, due to
the stochastic GW background, can be written as

where now the effective mass and length refer to the mode
(m, is the physical mass of the sphere dne-0.3 of the
diameter of the sphergl0]) andh3(t) is obtained by con-
traction with the proper tensdd™. The cross correlation
among the forces acting on the five modes of the two spheres

1 (= _ ) separated by a distané® assuming that all the modes are
Rﬁb(t—t’)= pye J do S(w)e [ OyalwR/C) defined with respect to the same coordinate system, is then
’ 1 *© B ’
+Qqa1(wR/C)+Qsas(wR/C)], (5) (FTOFDM (1)) = malamblbﬂ f_ g io(t-t)

whereQ, =33, _,D 3D kT are three constants that only
depend on the_ nature of the detectors, their locations, and X S()w*E (M, wR/c)dw
their relative orientations.
Let us now take two resonant bars. The force acting on
antenna a placed in, is where

Pl m

, (10
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. b ’ . .
3 X)+ai(x)], m=0, The correlationR2°(t—t’) among the GW signals avail-
2lao(x) T ar(x)] able at the output of the detectors is
E(mx)=1{ axx), m==1, (13)
Hag(X)—ay(x)], m==2. Rgb(t—t’)=f dt"H&(t")
0
Note that for any value ofn, E(m,x) has the same limit of - _
3/4 for R—0, and thus the sum over the five modes of two XJ dt”’Hb(t’”)Rﬁb(t—t’—t”+t”’),
colocated spheres gives the usual 15/4 factor coming from 0
the solid-angle average of the energy emitted by a GW (14)

source. Figure 2 reports the behavior®tm,x) as a func- _ _

tion of the dimensionless quantik= wR/c. The correlation whereR22(t—t’) is related toS(w) by the same Eq5) that
of them=0,+1 modes decays faster than the- = 2; there-  relatesR2"(t—t’) to S(w). The response function$®(t) of
fore, in a correlation experiment with two noncolocatedthe ath detector translate the input sigrid(t) into the out-
spheres @R/c=5) we have only these two modes relevantput signal

for the detection of the GW stochastic background.

Asa(t)=JwHa(t’)ha(t—t’)dt’. (15

lll. LINEARIZED ESTIMATION METHOD 0

The stochastic force resulting from the GW background We now look for an optimal estimator of the spectrum
adds just an extra contribution to the Gaussian noise of amplitude by writing down the most general bilinear combi-
single detector. As a consequence, a measurement with ration of the outputs ol detectors:
single detector has to rely on am priori estimate of the
detector noise that has to be subtracted from the data, a pro- ~, N T T e boes
cedure whose accuracy is always highly questionable. A :abE:1 _Tdtf_Tdt Gap(t,t")X3(1)x°(t"),  (16)

A much safer method is obviously to cross correlate the ’
outputs of two or more detectors with no common source ofyhere the “filter” functions g,(t,t') have to be chosen
noise. Correlation of noise sources, such as electromagnetig,ch thatA? is an unbiased estimator,
interference, seismic noise, etc., is expected to decay with

the distance between the detectors. Cross correlation between (Az)zAZ, (17
detectors located far apart is then the most advisable proce- ) R R
dure to estimate the background. and that its variance;,=((A%?)—(A?? is minimal.

The Wiener theory of optimal estimation can be applied These requests lead in general to a nonlinear problem.
both to deterministic signals and to stochastic processes bugtowever, we show in Appendix B that if
ied in detector noise. In this section we show that through a
suitable small-signal linearization, a Wiener-like method can AS(t)<<n?(t), (18
be applied to a cross-correlation estimate of the amplitude of
a stochastic background Signa| of known power Spectrun\{\/hiCh is I|ke|y to be the case for actual detectors, then the
driving a set of noisy detectors. proble_m can be linearized, amyj(t,t") obeys the integral
Assume then that the power spectrum of the GW backequation
ground S(w) in Eq. (2) can be written asS(w)=A?S(w), T .
whereS(w) is a known function otw, while the amplitudeA Zf dt"f At gap(t” t")RA(t—t")RO(L’ —t")
is unknown and has to be estimate®{w) can be a flat -T -T
function of w, as_suggested by some recent string théty
or the power lawS(w) xw ™ ?, which is predicted by the stan- __ ﬁ R2B(t—t") (199
dard inflationary cosmology7]. The output data streams of a 2°°

set of N detectors can then be written )
for a#b, while

X3(t)=n?(t) +As?(t), 1l<a<N, (12
7 Oap(t—t")=0 for a=h. (19b)
where »%(t) are stochastic processes that describe the noise o ) ) _
in each detector ansf(t) is the signal due to the stochastic ~ The Lagrange multipliex/2 in Eq. (193 is obtained from
GW background. N . ;
The statistical properties of the Gaussian processes in Eq. E f dtf dt’gab(t,t’)Rg‘b(t’ 1)
ab=1J-T -T

(2) can be summarized as =1, (20
(*(1)=(s*(1))=0, and we can also show that
A1) 7°(t"))=RA(t—t') Sap, A
<77 7 > n ab 13 a'izE — 5 (22)

(S(DS"(t))y=R(t-1"),
Equation (1989 can be solved numerically. However,
(na(t)sb(t’))zo, 1<a,b,<N. much of the information about the solution can be obtained
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by assuming thag,,(t,t") decays rapidly as a function of where

|t—1t'|. To be more specific, if the optimal bandwidths of the

detectors are of order 4&nd if the light travel time is=R/c, 1 (=

it is then reasonable to assume thgi,(t,t')—0 if Jap(t,t ) ~gap(t—t')= =— J gab(w)ei“’(‘*")dw, (23)
{|{t—t'|=R/c}/r>1 and then choose to integrate on a time 2m J

2T>27+R/c. If this is the case, we can take=« in Eq.

(198 and solve it in terms of Fourier transforms: and where we have defin@f(w) and S2°(w) as the Fou-

b rier transforms oR3(t—t’) and Rab(t—t ), respectively.
()
(22 To evaluate the variance of the estimate, we can then
substitute this solution in Eq20):

A
gab(w)%_EWy

_ S(w)S2(w")
2 !
Oh2= a#b (277 f f do do’ f f dt dt’ exg{i[(t—t")(w—w")]}

283 (w)S(w)
S2(0)SE(w') s (w—w')T
f f do’ =2 3 n( : ) ]5T(w_w,)’ (24)
a#b 2 S (w)Sp(w) (0—")T

|
where which is the uncertainty of the estimate that only uses the

data from detectora andb, Eq. (25 becomes

oot 1 Sln(Tw)
5T((.U)= - d o
1 _ 2 1 2

is a finite-time approximation to the Diragfunction, which 0_,2;2_3<b o2, (27

reduces tad(w) in the limit T—. If we assume again that
the observation timd is large enough to have null correla-
tion functions for|t—t'[>T, thendr(w) is a sharply peaked ~ The result in Eq.(25) can be further clarified: Let us
function iin a very small frequency range compared to thecall H%(w) the transfer function of thath detector, i.e.,
scales on which the functior&”(») andS{(w) change. In  the Fourier transform of the response functiéf(t) appear-
this case, then, Eq24) gives ing in Eq. (15). Then clearlyS3°(w)= Sab(w)|Ha(w)| | HP

_ (w)|?, whereS2 P(w) is the Fourier transform dR2°(t—t")

f [Sab(w)] 1/2 h

& 7).t S w)(w)

o= (25) in Eq. (15). By defining the equivalent input detector noise
In Eq. (25) we have also changed from the sum oaerb

asSM(w)=SNw)/|H¥(w)|?, Eq.(25) can be rewritten as

to that overa<b, which contains half the terms. Note then 2 T (= ['§;"}'°(w)]2 -1
that, if we define TpT| 2 %dw F(0)S(w) (28

-12

T J [S2%(w)]? 26

7ab” | ? S(0)SA(w)

or, by using Eq(2) and the definition o"é(w),

(29

T (= do {S(w)[QoaO(wR/C)+Qla1(wR/C)+Qza2(wR/C)]}}
&S 7)o Si(@)Sy(w)

Note that Eq.27) agrees with the results of Rd8B], which have been derived with a different approach.
The weight functiorg,,(t—t"), which is just the optimal bilinear filter for the search of the stochastic background, can be
explicitly evaluated by solving Eq199 in the Fourier space:

2 S(w)[Qoao(wR/C) +Qqa1(wR/C) +Qza2(wR/C)]

Gar(@) =7} S (0) (30)
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The filter depends on the shape of power specféam), but  whereN@ represents the noise quantum number, which has to
the dependence should be very weak for any detector arraye N=1/2, andk?=/S?/S is a noise “stiffness.” These
that includes resonant detectors. In fact, such detectors ha‘(ﬁ]antities have an immediate physical meaning because they
comparatively narrow bands, and soSif() is its equiva-  directly relate to the antenna burst sensitivify, and post-

lent noise input spectrum, theBi(w) grows very rapidly  §etection bandwidthA w3, respectively. HerehZ,, is de-
outside the post-detection band centered at some center frgse( as the amplitude of the burst, of center frequenay,
qugncyg’g u(]jthe kHz rang%l As atc_gnst(;quence, Lhe ger?plt?]t_%nd duration~ 1/w,, which gives a signal-to-noise ratio of

in Eq. (30) decreases rapidly outside the same band. In thig The relation ofN? andk? to h?

a
limit, S(w) can be approximated by a constant min AN A wpp 1S
S(w)~S(wy).

If, instead, the array includes only wide bandwidth detec-
tors, a set of filters witl5(w)>xw ™~ ? should be constructed
and the data processed with the different choicey pfe-
dicted by different cosmological models. The filters thatThe total noise at the antenna output is given by the sum of
maximize the signal-to-noise rati&’/ o2 give then an esti- a narrow band and a wide band contribution:
mate ofy.

min~> |_
a

1 [2N°h)\ 12 I
o Awpys ———. (33

Maw, aWa

st 1

m; (w5~ )+ (0l 75)?

IV. IMPLICATIONS FOR AURIGA, NAUTILUS, VIRGO, Si(w) =S+ (34

AND LARGE MASS SPHERICAL DETECTORS

In this section, we use E@29) to discuss the sensitivity This noise can be referred to the antenna input, as if it were
of the AURIGA and NAUTILUS pair(soon to be operated a spectrum, dividing33(w) by the squared antenna transfer
in coordinate coincidengeo the GW stochastic background. function. The resulting noise spectrum is shaped as the in-
We also discuss the expected performance of the AURIGAverse of a Lorentzian function and can be written as
NAUTILUS-VIRGO array and the sensitivity of arrays in-
cluding one or more large mass spheres.

(2h3)? [(92— 0?) %+ (0Awdp)?]
Let us consider the simplest model for a resonant antenna, Si(w)= min a PD

4 ’ (35)

in close analogy with the viewpoint suggested by Giffard Awpp @
[11]. The ath antenna is considered as a simple harmonic
oscillator of massm, and lengthl, with resonant angular Where
frequencyw, and decay timer,, excited by the force. The
position x?(t) of the oscillator mass is read by a suitable 4 4 (kp)? 4
position transducer. The transfer function from the input W= wa| 1+ g | ~ g
force to the output displacement is ae

l, w2 is the frequency at which the noise reaches a minimum and

Ha(w)=

(31)  which coincides in practice with the resonance frequency of
the antenna.
Si(w) reaches its minimum value at~ @, :

2m, wi—w’+iolr,

Within this model the oscillator is driven into random motion
by the sum of the Brownian noise force and the back-action

noise force of the position transducer. The position trans- _ _ (2hi)? _ 8kgT” 26
ducer also contributes with an additive position noigét). [Sh(@) Imin~Sh(wa) = w2 “PoT 203Q, (36)

Both the total noise forcd 2(t) and the additive displace-
ment noisex (t) are assumed to have white spectra with

. whereQ,= andT* is the temperature of the antenna.
valuesS? and S, respectively.S¢ and S2 can be param- Qa=waTa P

etrized as
A. Two bars
a
SP=N2hk?, Si=—01, (32 Let us consider the case of two bars. Using the physical
Ky lengthL, and massM ., Eq. (36) gives, for a single bar,
La\ 7% Mg \7H T V1 kHz\3/ Q.| 7!
~ —45 @ a xa -1
Si(wa)~1.3<10 (3m) (2300 kg) (50 mK)( ua ) (1o7> Hz ™ (37)

To evaluate the sensitivity of a pair of bars to the stochastic background, we substit85)EQ. Eq. (28), obtaining

2

O-Az""’

(39)

o

T J’w wiw? wsgz(w)®2(ﬁ,wR/C)dw -1
o AwBpA wpp(4h3ihEi)? [(02— 0?) %+ (0Awdp) 2[(wp— 0?)2+ (wAwbp)?]
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1.2 —————————1——————7 T B. Two bars and one interferometer
1.0 We now discuss the potential sensitivity of the AURIGA-
R NAUTILUS-VIRGO array, assuming for VIRGO the
0.80 planned positior{lat=10° 30 E, long=43° 40 N) and ori-
0.60 entation(one arm at 26°, the other at 296There are many
= noise sources in an interferometric antenna that have been
S 040 carefully estimated13]. However, the resulting total noise
o 0.20 power spectrum in the frequency range of interest here, i.e.,
) around 1 kHz, is dominated by the shot-noise contribution:
0.0 )
w
20.20 SYIREO( )~ Vg)RGO(w_ , 400 Hz=w/27<4000 Hz,
0
040 Tl L L 41
0 5 10 15 20
x=oR/c where, from the published curves of the expected noise spec-

trum [13], one can estimat8;°°=1.6x10"*° Hz ! if w,

is taken asvy,=27920 rad/s. This gives a noise value close to
the minimum value of the input noise of AURIGA or
RAUTILUS.

FIG. 1. Correlation functior® (6,x) for two parallel bar detec-
tors as a function of the reduced distance wR/c, with R the
detector distance. The different curves are parametrized by th

value of the anglg between the detector axis and the line joining .
the detector sites. The flattest curve corresponds=t0; the curve One can apply Eq5) t_o the pairs .AURI_GA'V_IRGO and
of maximum oscillation is for9=x/2. The dotted line corresponds NAUTILUS-VIRGO, which have intersite distances of

to 6=1 rad, which is the orientation of the AURIGA-NAUTILUS ~220 km and~260 km, respectively, corresponding to
pair. w R/Ic=4.2 andw,R/c=5 at a frequency of 920 Hz. The
correlation value corresponding to the AURIGA-VIRGO

To carry out our calculations, we now assume that thé?@r turmns out to be=2 greater than that for NAUTILUS-

detectors are parallel and that they have the same sensitivif{/'RGo-

and the same post-detection bandwidth, but to take into ac- | 1€ Sensitivity to the stochastic background for each bar-
count the real physical situation, we allow for slightly differ- interferometer pair and for 1 yr of integration is obtained by

ent resonant frequencies. Fap{/Aw3p)?>1, the integral substituting Egs(40) and(35) in Eq. (28) and by integrating:

in Eqg. (38) can be approximated by

VIRGO 1/2
by 4 A wd )2]12 TA2= [ShlminSho ! (42)
[ St minl Shlmin 1+ (|@0a— wp|/Awpp) A TAwdp 0%(wR/c)|
2TAwdp 0%(9,0R/c) - 39

O a2~

where we can see that the overall bandwidth is set by that of
the resonant antenna. The resulting sensitivity for the pair
AURIGA-VIRGO is ga2=2x10"*° Hz !, assuming, for
AURIGA, w,/Awpp=30 and the present orientation, while
for the NAUTILUS-VIRGO pair, again with the present ori-
entation,ca2=3.5X 10" *° Hz . For the array as a whole,
using Eq.(27), these values giveraz=1.3x10"4° Hz 1.

12 With the bar detectors oriented with=90°, a choice that

) Hz™ 1, (40) maximizes the overall sensitivity, one gets instegid=8

’ X107 50 Hz L,

Although the improvement in sensitivity with respect to
provided that the detuning of the resonance frequencies ithe pair of bars is almost negligible, such a three-detector
small compared with the optimal bandwidth. This last con-detection would be of paramount importance in ruling out
dition is, for instance, matched with a 25% approximation ifspurious effects.
|wa— wp|/Awdpy=1/2. With an effective bandpass20 Hz,
this implies that the two detectors have to be matched within
10 Hz, which appears to be feasible.

However, in order to have both detectors parallel to each Finally, we study the performances of two spherical de-
other and as parallel as possible to the other cryogenic ddectors, which have been recently proposed as possible next-
tectors already in operatidd2], AURIGA and NAUTILUS  generation resonant antennas.

wherew=(w,+ w,)/2 is the mean frequency of the two an-
tennae and where we have takéfw=w,)=1.

For R=400 km, which is the distance of the AURIGA-
NAUTILUS pair, and with an average frequency ot (27
X 920) rad/s,wR/c=7.7, while the expected sensitivity is
[S8] min=1.7X107%° Hz 1, Taking 9=90°, one gets

oT | ~12
=

walAwdp
30

opa2~10" 49(

C. Two spheres

are presently oriented witi=52°. This value gives a sensi-  Equation(38) only involves the detectors’ post-detection
tivity of roughly a factor of 2 worse than that in E¢0)  bandwidth and input noise. We can easily compare the sen-
(Fig. 1). sitivity of a bar to that of a sphere made of the same material,

To reorient the detectors is technically feasible, but it isand with the same resonant frequency[5b4
doubtful whether the factor of 2 is worth the loss of paral- bar oher
lelism with the remaining detectors. [SaTmin~ 11T S I min(Ms/My), (43
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17— 2_..\.1..,,{....},
0.50
= L
&
m

0.0

roy oy My N

] | | | 0 5 10 15 20
-0.50 TR " x= OR/c

0 5 10 15 20

x=0 R/c

FIG. 3. The overall correlation functioﬂEmZ:,ZEZ(m,x) for

FIG. 2. Correlation functiorE (m,x) for the — 2<m=2 modes two spheres as a function of the reduced distate@R/c.

of two spheres as a function of= wR/c, with R the detectors’

distance. The different curves refer to the different modes according

to the legend in the inset. The modes relate to a reference frame oa2~2X 1051(
where thez axis is along the line joining the detectors.

2T 1’2( walAwhp| " -
1 yr 30 '

whereM; andM,, are the physical masses of the sphere and  This figure may improve by changing the sphere material
bar, respectively. For a sphere of diameflermade of the  and/or increasing the sphere diameter. For instance, if one is

same material of the present b&fd 5056), we find able to fabricate two 4-m-diam copper alloy sphe(250
b \-2 M . tong), the above reported sensitivity reaches aboul @ 52
~7X —47>< S Hz -
Sh(@a)~7x10 3 m) (38 000 kg)
o T* )(1 kHz) 3(%) -t Hz L. (44 D. One sphere and one interferometer
50 mKJ\ v, 10’ ' In Fig. 4 we show the correlation function for one inter-

ferometer and a sphere. The function is obtained by sum-

ming up the contribution coming from all the sphere modes.

% the sphere and the interferometer are not at the same site,

then the function depends on the anglbetween one of the

12 interferometer arms and the line joining the two sites. For a
. (45 sphere and an interferometer like VIRGO located at the same

site, the figure gives

Under the same approximation used for E2g), the sensi-
tivity of a sphere pair, for each mode of the sphere, can b
written as

[ﬁ]min[sﬁ]min 1+( | Wa™ ‘Ub|/AwgD)2
2TA w3y E4(m,wR/c)

m

O'Az""

If we consider two colocated spheres, the overall sensitiv-
ity is higher by a factor of/5 with respect to that for a single
mode, since we can add the signals on the five modes of the -
sphere. If the spheres are far apart, Fig. 2 shows that only for 0.7 ¢
the m= =2 modes is the decay of the correlation with dis- 0.6--
tance as slow as that for the bars. For the other modes, the S N
correlation decays much faster, and soxXor5, the overall 0.5F

0.8ttt

sensitivity is higher only by a factor o£v2 with respect to B 0.4+ L
that for a single mode. < s
The expected sensitivity of two colocated 3-m-diam 03¢ i
sphere, made of Al 5056, is 0.2+ 2
T\ 7 w,/Awdp)| " 1 t
Themax10 52(1 yr) ( 30 Hz™?, (49 04— SO AR FENA VATIDEL N7 S0 ¥
. . 0 5 10 15 20
if one takes the weighted average of all the modes. As all the x=@R/c

parameters in Eq45) are the same for the five modes except

for the CO?ﬁiCi?md’Ez(m:wR/C)a the error on the weighted FIG. 4. The total correlation functioA(x)==>_,®%(m,x)
average is given by the same E@5 by replacing for an interferometer and a sphere as a function of the reduced
E?%(m,0R/c) with the sum3;_,E(m,oR/c), which is  distancex=wR/c. Here the functiond(m,x) is the correlation
reported in Fig. 3. For two spheres at the AURIGA andfunction between the interferometer and theh mode of the
NAUTILUS sites, wR/c=7.7, one would get, then, sphere.
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TABLE |. Estimated sensitivities of various detectors arrays. These figures have to be compared with experimental lim-
its already existing. Microwave background measurements
Detectors array oaz (HzZ™ Tag, by the cosmic Background ExploréCOBE) [17] limit Qg
AURIGA-NAUTILUS %1049 2104 to about le, but just at very Iow.freq'ue'ncie(ﬁ;:g10*15 Hz).
present orientation Pulsar timing observqtlon al_sg give limits10 . but again
AURIGA-NAUTILUS 10-49 8105 for very low frequenC|e_$~_10 Hz_) [18]. An estimate fr_om
) ) Earth quadrupole oscillationd9] in the mHz range gives
best orientation Qe<3.
CILIJQFggA-NAUTILUS- 1.3x10°% 107 Direct experimental measgrements on 'ground .in _the kHz
. ) range have been performed in the past with sensitivities sig-
present orientation s - nificantly lower than those indicated in Table I. A pioneering
AURIGA-NAUTILUS- 8x10 6x10 measurement with split bard20] gave a limit of
VIRGO . Qew<3x1C in the kHz range. More recent estimates from
best orientation the background noise of a cryogenic detecf@d]| give
VIRGO and one 38-ton 2.5x10°%° 2x10°° Q< 3X 1P
GW .
sphere Table | then shows that already in the near future experi-
Two 38-ton spheres at 2x107% 2x10°° ments involving resonant mass detectors can provide unprec-
AURIGA and edented upper limits on the GW stochastic background at
NAUTILUS sites kHz frequencies. Future sensitivities of bars-interferometer

and spheres experiments may hope to go near or beyond the
limit put by nucleosynthesis considerations @gy~10"°
and to detect such fundamental cosmic signals.

2T )1’2( walAwd,

~112
-1
1yr 30 ) Hz™*. (47

op2~8X10" 51(
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The coefficient of the expansion in E@) can be written
as a superposition of ingoing and outgoing monochromatic
plane waves,

hij(k,t)=h;; (k)e *e+hir (k)e* ke, (A1)
V. CONCLUSIONS where we have denoted Wy the modulus ofk. Since the
The sensitivities reported in this paper can be expressed imetric has to be a real function, we havg;(k,t)
term _of th.e ratioc) gy (w) of the mass—energy_density per unit = hi*j(— k,t), which implies h;;" (k)= hij_*(— k). We then
logarithmic frequency of the GW stochastic background toassume that the amplitudés; (k) andh;j (k) are Gaussian
the closure density, of the universe. In fact, the spectrum stochastic processes with zero mean and a given power spec-

of the stochastic backgrour{w) can be written a$16] trum and that the integral in Eql) exists[22].
As each plane wave is transverse and traceless, in
16G 72 the coordinate systemx{y,z) where k=Kk(sind cospu,
S(w)= —3 Qo w)pe +sind singu, +cosiu,), we can write
3 + X
8% 1040 () M> _ hi (k)=hi () +hi " (k)
w

+ X _
o =Ail(0.4)(h~ (K)ed+h ™ (K e Ant(6,8),
An experiment involving at least one resonant detector,
bar, or sphere, operating at 1 kHz would then measure (A2)
Qewlw) with an uncertainty

where
A Op2
O'QGWWSXJ.O 6(10—50 s 1 0 0
ei=[0 -1 0
where p,=1.9x 10" 2® kg/m® has been assumed. The sensi- 0 0 O

tivities discussed in Sec. IV can be then recast in terms of
Qewlw) according to Table I. and
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are the two independent polarization tensors in the TT frame
andA;;(0,¢) is the Euler matrix that rotates the axes, from
the TT system, wher&=(0,0Kk), to the &,y,z) frame. It
follows that

o O -
O O O

cosd coSp—sirtg (coS+1)sing cosp —sind cost cosp
h;(k)=h*’+(k) (cog0+1)sing cosp cogo sifp—cosd  —sind cosd sing

—sinf cosd cosp —sind cos sing sirfé
—co09 sin2p cosY cosZp  sind sing
+h="(k)| codcos2p codsin2p —sind cosp |, (A3)
siné sing —sind cosp 0

ie., hi(K)=h="(K) ¢ (6,¢)+h~ " (K) ¢ (8,4), with obvious definitions of theys.
In order to satisfy the reality condition for the transform in Et), we need

hi (0=h"""(=K)¢ " (7= 0,6+ m) +h~" " (=K ¢ (m— 0,+ )
or, as can be easily checked from E43) by substitutingd— 7— 6 and ¢—7— ¢,
hiy () =h"""(=K) g5 (8,0) ™" (= K) i} (6,),

so that only two complex amplitudes are really independent and we call them gimgty andh™ (k).
Assume now that the procesges(k) andh* (k) are uncorrelated, stationary, and isotropic:

(h*(Kh** (k"))y=(h*(k)h*" (k"))=0,
* * (A4)
(h*(k)h*" (k")) =(h*(k)h*" (k")) = (2)3S(k) S(K—K") 8*(Uy, Uy),

where S(k)=S(k|), u, andu,, are the unit vectors parallel fo andk’ and 6(uy ,u,) is the Diracé function on the unit
sphere. This implies that the two-point, two-time correlation function of the GW stochastic backdrpund) h;,(r',t")) is
just a function of the modulus of the distance between the two points and of the modulus of the time difference

2 . ,
<hij(rvt)hlm(r,at’)>:WJ’J’J’ cogke(t—t") L} (K) ¢him(K) + i (K) hra(K) 1S(K) €<~k

_ 1 joo dk KeS(k —ikc(t—t/)jzwd Jw ing de + P (g
“2me | Ak kske | A | sind de[y; (6,6)din(6.6)

+ 97 (0,0) W58, )] eKRIsing sind’ cos g ")+ cosy cos'], (A5)
where we have assumed
r—r'=R(sind’ cosp'u,+singd’ sing’uy,+coso’u,).
By taking ¢’ =0, #' =0, and

8 k?
S(w)=E? S(k),

the angular part of the integral in EGA5) can be performed explicitly and E¢R) is obtained with the following values for
the matricesT®, T, and T

+Z % ><y 0 +Z_ +y _ % ><y 0 0 0 efz
TO= %e>><<y e;z_ +y 0 , Ti=| - 3 ><y e;z 0 , T>=[ 0 O z > (A6)
0 0 €,2e, 0 0 €,2¢, &; &; O

where
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0O O 1 0 0 1 0 0 0 1 0 0 O
g,=[0 -1 0|, e,=[0 0 0], eg=(10 0f, e=(00 0f, g=(00 1f,
0O 0 O 0 0 -1 0 0 O 1 00 01 0
andO is the null 3x3 matrix.
APPENDIX B
By substituting Eq(16) into Eq.(17), we immediately get
T T
Zf dtf dt’ gaa(t,t )RA(t— t)+2 dtf dt’ gap(t,t R (t—t") =1, (B1)
ab=1J-1 J-7
from whi(ih Eqgs.(19b) and (20) readily follow.
The ((A?)?) term which enters the estimation oﬁz can be calculated by using E(.9b) as
(A= > f dtf dt’j dt"f At gap(t, ) gea(t” 1) {(XB(1)XP(t")xS(t")x9(t")). (B2)
a#b,c#d

Then using Eq(13) and the known rule for zero mean Gaussian random varidkiesnw = (xy)(zw) + (xz){yw) + (xw)(y z),
we get

<(A2)2>_<A2>2_ J' dtf dtlf dtnf dt///gab(t t’ )gcd(t” t//l){Ra(tn t)Rb(tm_t )5ac5bd+ Ra(t/// )

a#b c#d
XRO(1"—1") Saadpet A R — RO —t') Syt REU" — ) RO(L" —1") Spe+ RO —t' )RE(t" —1) S,
+ Rgc(t”_t’)Rﬁ(tm_t) 5ad]+A4[ Rgc(t,,_t)Rgd(tm_t,)‘F R:d(tw—t)RgC(t”_t,)]}. (BS)

Assume now that the correlation sigied?(t) is negligible in comparison to the intrinsic noigé(t), as is the case in the real
physical situation. Hence, in E¢B3) we can neglect the terms containiAg and A%, obtaining

~ ~ T T T T
=((A)A)—(A?)2=2 f dtf dt’f dt”J dt”gan(t,t' ) gan(t”,t")RAt" — ) RE(t" — ). (B4)
azb J-T -T -T -7

The problem reduces to a constrained variational problem where, with the help of the standard Lagrangian multiplier tech-
nigue, we minimizezri2 under the constraint of E¢B1). The functional

A(Gap N [f dtf dt'f t"f dt"[Gan(t,t') gan(t",t")RA —HRA(L" —t")]

T T ' rypabyr
H‘ﬁTdtﬁTdt Jan(t,t )Rt t)) (BS)

reaches its minimum when

5A(gab:)\)

=0, 1<a, b=N, anda#b, (B6)
5gab

i.e., when Eq(199 is obeyed.
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