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In this paper we discuss how the standard optimal Wiener filter theory can be applied, within a linear
approximation, to the detection of an isotropic stochastic gravitational-wave background with two or more
detectors. We apply then the method to the AURIGA-NAUTILUS pair of ultralow temperature bar detectors,
soon to operate in coincidence in Italy, obtaining an estimate for the sensitivity to the background spectral
density of'10249 Hz21, that converts to an energy density per unit logarithmic frequency of'8310253rc ,
with rc'1.9310226 kg/m3 the closure density of the Universe. We also show that by adding the VIRGO
interferometric detector under construction in Italy to the array, and by properly reorienting the detectors, one
can reach a sensitivity of'6310253rc . We then calculate that the pair formed by VIRGO and one large
mass spherical detector properly located in one of the nearby available sites in Italy can reach a sensitivity of
'2310253rc while a pair of such spherical detectors at the same sites of AURIGA and NAUTILUS can
achieve sensitivities of'2310263rc . @S0556-2821~97!01004-7#

PACS number~s!: 04.80.Nn, 95.55.Ym, 98.80.Es

I. INTRODUCTION

Resonant-mass gravitational-wave~GW! detectors are po-
tentially interesting for the observation of an isotropic sto-
chastic background of GWs, as recently suggested by esti-
mations @1# based on cosmological string models. These
models predict for that background an almost frequency-
independent GW spectral densitySh(v) that would put all
the detectors under development on a comparable level of
sensitivity.

An experiment aimed at detecting a stochastic back-
ground of GWs implies a correlation technique between the
outputs of two or more detectors, possibly distant to each
other to avoid spurious correlation of the detector noises. A
suboptimal method has been discussed by Michelson@2#
with reference to a generic detector, and a quasioptimal
method based on maximum likelihood estimation has been
discussed@3# and applied to interferometric detectors. Also a
linearized quasioptimal method has been more recently dis-
cussed again in connection with an interferometer pair@4#.

Here we first discuss the linearized quasioptimal estima-
tion method that can be obtained in a straightforward manner
from the standard Wiener theory for optimal filtering. We
show that it gives the same results as those of Ref.@3# for an
array of detectors and, when applied to just a pair, of Ref.
@4#, but in a more straightforward way. We then use the
method to discuss the potential sensitivity of the pair of

ultralow temperature resonant detectors AURIGA and
NAUTILUS, which have been tested at two sites@5# at
R'400 km apart in Italy.

We then extend the calculation to the AURIGA-
NAUTILUS-VIRGO @6# array that will operate in Italy.

We finally discuss a possible experimental detection strat-
egy for spherical detectors and estimate the potential sensi-
tivity of the pair formed by VIRGO and one spherical detec-
tor and of an array of two of such detectors.

II. ISOTROPIC GW STOCHASTIC BACKGROUND

Isotropic stochastic background of GWs has been widely
discussed by many authors@7#. Here, we just summarize
some of the results reported and give some useful details
omitted in the literature. We assume that the metric tensor
perturbation can be written as

hi j ~r ,t !5
1

~2p!3
E E E hi j ~k,t !e

ik•rd3k. ~1!

Under the assumption that the background is isotropic and
stationary, the two-point two-time autocorrelation of the
metric tensor̂ hi j ~r ,t)hkl~r 8,t8!&, where the angular brackets
indicate an ensemble average, can be written as~see Appen-
dix A!
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^hi j ~r ,t !hkl~r 8,t8!&5
1

2p E
2`

`

dv S~v!e2 iv~ t2t8!

3@a0~vR/c!Ti jkl
0 1a1~vR/c!Ti jkl

1

1a2~vR/c!Ti jkl
2 #. ~2!

The functionsa0(x), a1(x), anda2(x) in the above equa-
tion are given by

a0~x![
15

8 Fsinxx S 12
5

x2
1

9

x4D1
cosx

x2 S 22
9

x2D G ,
a1~x![

15

8 Fsinxx S 211
1

x2
1

3

x4D2
cosx

x2 S 21
3

x2D G , ~3!

a2~x![
15

8 Fsinxx S 6x22 12

x4D2
cosx

x2 S 22
12

x2D G ,
while the componentsT i jkl

n of the matricesTn are given
again in Appendix A.

Note that, sinceT 1111
0 51 and T 1111

1 5T 1111
2 50, and

since limx→0a0(x)51, Eqs.~2! and ~3! give

^h11~r ,t !h11~r ,t8!&5
1

2p E
2`

`

dv S~v!e2 iv~ t2t8!, ~4!

which is a standard normalization in the context of signal
analysis.

The antenna pattern of any GW detector, in the approxi-
mation of detector size that is small compared with the gravi-
tational wavelength, can be described@8# by a symmetric
traceless tensorD. By this, we mean that the effective metric
perturbation sensed by the detector ish(t)5( i j51

3 Di j hji (t),
with hi j (t) the incoming wave. The explicit expression for
the componentsDi j of D, for the lowest longitudinal mode of
a cylindrical GW antenna, isDi j5ninj2d i j /3, wheren, with
componentsni , is the unit vector parallel to its axis. The
lowest five degenerate quadrupole modes of a spherical
detector have, instead, the following coupling tensors@9#
Dm (m522,...,12): D05~)/6!~2exz

1 2exy
1 !, D1521

2eyz
3 ,

D21521
2exz

3 , D251
2exy

1 , andD22521
2exy

3 , where the tensors
eab

3,1 are defined in Appendix A.
Finally, for an interferometric antenna with its arms in the

direction of the unit vectorsn and m, we have
Di j5(ninj2mimj )/2.

The cross correlationRh
ab(t2t8)[^ha(t)hb(t8)& between

the effective metric perturbation signalsha(t) and hb(t)
sensed by two detectorsa andb located atr and r 8, due to
the stochastic GW background, can be written as

Rh
ab~ t2t8!5

1

2p E
2`

`

dv S~v!e2 iv~ t2t8!@V0a0~vR/c!

1V1a1~vR/c!1V2a2~vR/c!#, ~5!

whereVa[( i jkl51
3 D i j

a D lk
b T i jkl

a are three constants that only
depend on the nature of the detectors, their locations, and
their relative orientations.

Let us now take two resonant bars. The force acting on
antenna a placed inra is

Fa~ t !5
1

2
mal a

d2ha~ t !

dt2
, ~6!

wherema is the effective mass~1/2 of the physical massM !
and l a is the effective length@for a cylinder l a5(4/p2)L,
with L the physical length of the cylinder#. For two parallel
oriented bars~the orientation that always maximizes the cor-
relation!, we get

^Fa~ t !Fb~ t8!&5mambl al b
1

2p

3E
2`

`

S~v!v4e2 iv~ t2t8!Q~q,vR/c!dv,

~7!

where

Q~q,x!5
a0~x!

8
@714 cos~2q!15 cos~4q!#

1
a1~x!

2
@112 cos~2q!1cos~4q!#

1
a2~x!

2
@12cos~4q!#; ~8!

here,q is the angle between the direction of the detector axis
~the same direction for both! and the straight line joining the
sites where the detectors are located. The behavior of the
functionQ(q,x) is reported in Fig. 1 withq as a parameter.

It is worth pointing out that, if the detectors have both to
be horizontal and still be exactly parallel,q can only be
q590°. However, as in the following sections we will focus
on observatories whereR!R% , with R% the radius of the
Earth, it is also worth noticing that in that case, whatever the
value ofq, the detectors can be made approximately parallel
within an angled'R/R% .

For two spheres, each of the five degenerate quadrupole
mode of the sphere acts as an independent detector@9#. We
can write the GW force acting on themth mode as

Fa
m~ t !5

1

2
mal a

d2hm
a ~ t !

dt2
, ~9!

where now the effective mass and length refer to the mode
~ma is the physical mass of the sphere andl a'0.3 of the
diameter of the sphere@10#! andhm

a (t) is obtained by con-
traction with the proper tensorDm. The cross correlation
among the forces acting on the five modes of the two spheres
separated by a distanceR, assuming that all the modes are
defined with respect to the same coordinate system, is then

^Fa
m~ t !Fb

m8~ t8!&5Fmal ambl b
1

2p E
2`

`

e2 iv~ t2t8!

3S~v!v4J~m,vR/c!dvGdmm8, ~10!

where
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J~m,x!5H 3
2 @a0~x!1a1~x!#, m50,

a2~x!, m561,

1
2 @a0~x!2a1~x!#, m562.

~11!

Note that for any value ofm, J(m,x) has the same limit of
3/4 for R→0, and thus the sum over the five modes of two
colocated spheres gives the usual 15/4 factor coming from
the solid-angle average of the energy emitted by a GW
source. Figure 2 reports the behavior ofJ(m,x) as a func-
tion of the dimensionless quantityx5vR/c. The correlation
of them50,61 modes decays faster than them562; there-
fore, in a correlation experiment with two noncolocated
spheres (vR/c>5) we have only these two modes relevant
for the detection of the GW stochastic background.

III. LINEARIZED ESTIMATION METHOD

The stochastic force resulting from the GW background
adds just an extra contribution to the Gaussian noise of a
single detector. As a consequence, a measurement with a
single detector has to rely on ana priori estimate of the
detector noise that has to be subtracted from the data, a pro-
cedure whose accuracy is always highly questionable.

A much safer method is obviously to cross correlate the
outputs of two or more detectors with no common source of
noise. Correlation of noise sources, such as electromagnetic
interference, seismic noise, etc., is expected to decay with
the distance between the detectors. Cross correlation between
detectors located far apart is then the most advisable proce-
dure to estimate the background.

The Wiener theory of optimal estimation can be applied
both to deterministic signals and to stochastic processes bur-
ied in detector noise. In this section we show that through a
suitable small-signal linearization, a Wiener-like method can
be applied to a cross-correlation estimate of the amplitude of
a stochastic background signal of known power spectrum
driving a set of noisy detectors.

Assume then that the power spectrum of the GW back-
groundS(v) in Eq. ~2! can be written asS(v)5A2S̃(v),
whereS̃(v) is a known function ofv, while the amplitudeA
is unknown and has to be estimated.S̃(v) can be a flat
function ofv, as suggested by some recent string theory@1#,
or the power lawS̃(v)}v2g, which is predicted by the stan-
dard inflationary cosmology@7#. The output data streams of a
set ofN detectors can then be written

xa~ t !5ha~ t !1Asa~ t !, 1<a<N, ~12!

whereha(t) are stochastic processes that describe the noise
in each detector andsa(t) is the signal due to the stochastic
GW background.

The statistical properties of the Gaussian processes in Eq.
~2! can be summarized as

^ha~ t !&5^sa~ t !&50,

^ha~ t !hb~ t8!&5Rn
a~ t2t8!dab ,

~13!
^sa~ t !sb~ t8!&5Rs

ab~ t2t8!,

^na~ t !sb~ t8!&50, 1<a,b,<N.

The correlationRs
ab(t2t8) among the GW signals avail-

able at the output of the detectors is

Rs
ab~ t2t8!5E

0

`

dt9Ha~ t9!

3E
0

`

dt-Hb~ t-!R̃h
ab~ t2t82t91t-!,

~14!

whereR̃h
ab(t2t8) is related toS̃(v) by the same Eq.~5! that

relatesRh
ab(t2t8) to S(v). The response functionsHa(t) of

theath detector translate the input signalha(t) into the out-
put signal

Asa~ t !5E
0

`

Ha~ t8!ha~ t2t8!dt8. ~15!

We now look for an optimal estimator of the spectrum
amplitude by writing down the most general bilinear combi-
nation of the outputs ofN detectors:

Â25 (
a,b51

N E
2T

T

dtE
2T

T

dt8gab~ t,t8!xa~ t !xb~ t8!, ~16!

where the ‘‘filter’’ functions gab(t,t8) have to be chosen
such thatÂ2 is an unbiased estimator,

^Â2&5A2, ~17!

and that its variances
Â2
2

[^(Â2)2&2^Â2&2 is minimal.
These requests lead in general to a nonlinear problem.

However, we show in Appendix B that if

Asa~ t !!na~ t !, ~18!

which is likely to be the case for actual detectors, then the
problem can be linearized, andgab(t,t8) obeys the integral
equation

2E
2T

T

dt9E
2T

T

dt-gab~ t9,t-!Rn
a~ t2t9!Rn

b~ t82t-!

52
l

2
Rs
ab~ t2t8! ~19a!

for aÞb, while

gab~ t2t8!50 for a5b. ~19b!

The Lagrange multiplierl/2 in Eq.~19a! is obtained from

(
a,b51

N E
2T

T

dtE
2T

T

dt8gab~ t,t8!Rs
ab~ t82t !51, ~20!

and we can also show that

s
Â2
2

[2
l

2
. ~21!

Equation ~19a! can be solved numerically. However,
much of the information about the solution can be obtained

55 1743GRAVITATIONAL-WAVE STOCHASTIC BACKGROUND . . .



by assuming thatgab(t,t8) decays rapidly as a function of
ut2t8u. To be more specific, if the optimal bandwidths of the
detectors are of order 1/t and if the light travel time is'R/c,
it is then reasonable to assume thatgab(t,t8)→0 if
$ut2t8u2R/c%/t@1 and then choose to integrate on a time
2T@2t1R/c. If this is the case, we can takeT'` in Eq.
~19a! and solve it in terms of Fourier transforms:

gab~v!'2
l

2

Ss
ab~v!

2Sn
a~v!Sn

b~v!
, ~22!

where

gab~ t,t8!'gab~ t2t8!5
1

2p E
2`

`

gab~v!eiv~ t2t8!dv, ~23!

and where we have definedSn
a(v) andSs

ab(v) as the Fou-
rier transforms ofRn

a(t2t8) andRs
ab(t2t8), respectively.

To evaluate the variance of the estimate, we can then
substitute this solution in Eq.~20!:

s
Â2
22

5 (
aÞb

1

~2p!2
E

2`

1`E
2`

1`

dv dv8
Ss
ab~v!Ss

ab~v8!

2Sn
a~v!Sn

b~v!
E

2T

T E
2T

T

dt dt8 exp$ i @~ t2t8!~v2v8!#%

5 (
aÞb

T

2p E
2`

1`E
2`

1`

dv dv8
Ss
ab~v!Ss

ab~v8!

Sn
a~v!Sn

b~v!

sin@~v2v8!T#

~v2v8!T
dT~v2v8!, ~24!

where

dT~v![
1

2p E
2T

T

eivtdt5
1

p

sin~Tv!

v

is a finite-time approximation to the Diracd function, which
reduces tod~v! in the limit T→`. If we assume again that
the observation timeT is large enough to have null correla-
tion functions forut2t8u.T, thendT(v) is a sharply peaked
function in a very small frequency range compared to the
scales on which the functionsSs

ab(v) andSn
a(v) change. In

this case, then, Eq.~24! gives

s Â2>F (
a,b

T

p E
2`

1`

dv
@Ss

ab~v!#2

Sn
a~v!Sn

b~v!G21/2

. ~25!

In Eq. ~25! we have also changed from the sum overaÞb
to that overa,b, which contains half the terms. Note then
that, if we define

sab5F Tp E
2`

1`

dv
@Ss

ab~v!#2

Sn
a~v!Sn

b~v!G21/2

, ~26!

which is the uncertainty of the estimate that only uses the
data from detectorsa andb, Eq. ~25! becomes

1

s
Â2
2 5 (

a,b

1

sab
2 . ~27!

The result in Eq.~25! can be further clarified: Let us
call Ha(v) the transfer function of theath detector, i.e.,
the Fourier transform of the response functionHa(t) appear-
ing in Eq. ~15!. Then clearlySs

ab(v)5S̃h
ab(v)uHa(v)u2u Hb

(v)u2, whereS̃h
ab(v) is the Fourier transform ofR̃h

ab(t2t8)
in Eq. ~15!. By defining the equivalent input detector noise
asSa

h(v)5Sa
n(v)/uHa(v)u2, Eq. ~25! can be rewritten as

s
Â2
2

5F (
a,b

T

p E
2`

`

dv
@S̃h

ab~v!#2

Sh
a~v!Sh

b~v!G
21

~28!

or, by using Eq.~2! and the definition ofS̃(v),

s
Â2
2

5F (
a,b

T

p E
2`

`

dv
$S̃~v!@V0a0~vR/c!1V1a1~vR/c!1V2a2~vR/c!#%2

Sh
a~v!Sh

b~v! G21

. ~29!

Note that Eq.~27! agrees with the results of Ref.@3#, which have been derived with a different approach.
The weight functiongab(t2t8), which is just the optimal bilinear filter for the search of the stochastic background, can be

explicitly evaluated by solving Eq.~19a! in the Fourier space:

gab~v!5s
Â2
2 S̃~v!@V0a0~vR/c!1V1a1~vR/c!1V2a2~vR/c!#

Sh
a~v!Sh

b~v!
. ~30!
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The filter depends on the shape of power spectrumS̃(v), but
the dependence should be very weak for any detector array
that includes resonant detectors. In fact, such detectors have
comparatively narrow bands, and so ifSh

a(v) is its equiva-
lent noise input spectrum, thenSh

a(v) grows very rapidly
outside the post-detection band centered at some center fre-
quencyv0 in the kHz range. As a consequence, the template
in Eq. ~30! decreases rapidly outside the same band. In this
limit, S̃(v) can be approximated by a constant
S̃(v)'S̃(v0).
If, instead, the array includes only wide bandwidth detec-

tors, a set of filters withS̃(v)}v2g should be constructed
and the data processed with the different choices ofg pre-
dicted by different cosmological models. The filters that
maximize the signal-to-noise ratioA2/s Â2 give then an esti-
mate ofg.

IV. IMPLICATIONS FOR AURIGA, NAUTILUS, VIRGO,
AND LARGE MASS SPHERICAL DETECTORS

In this section, we use Eq.~29! to discuss the sensitivity
of the AURIGA and NAUTILUS pair~soon to be operated
in coordinate coincidence! to the GW stochastic background.
We also discuss the expected performance of the AURIGA-
NAUTILUS-VIRGO array and the sensitivity of arrays in-
cluding one or more large mass spheres.

Let us consider the simplest model for a resonant antenna,
in close analogy with the viewpoint suggested by Giffard
@11#. The ath antenna is considered as a simple harmonic
oscillator of massma and lengthl a with resonant angular
frequencyva and decay timeta , excited by the force. The
position xa(t) of the oscillator mass is read by a suitable
position transducer. The transfer function from the input
force to the output displacement is

Ha~v!5
l a
2ma

v2

va
22v21 iv/ta

. ~31!

Within this model the oscillator is driven into random motion
by the sum of the Brownian noise force and the back-action
noise force of the position transducer. The position trans-
ducer also contributes with an additive position noisex n

a(t).
Both the total noise forcef n

a(t) and the additive displace-
ment noisex n

a(t) are assumed to have white spectra with
valuesSf

a andSx
a, respectively.Sf

a andSx
a can be param-

etrized as

Sf
a[Na\kn

a , Sx
a[

Na\

kn
a , ~32!

whereNa represents the noise quantum number, which has to
be Na>1/2, andkn

a5ASfa/Sxa is a noise ‘‘stiffness.’’ These
quantities have an immediate physical meaning because they
directly relate to the antenna burst sensitivityhmin

a and post-
detection bandwidthDvPD

a , respectively. Here,hmin
a is de-

fined as the amplitude of the burst, of center frequency'va
and duration'1/va , which gives a signal-to-noise ratio of
1. The relation ofNa andk n

a to hmin
a andDvPD

a is

hmin
a '

1

l a
S 2Na\

mava
D 1/2, DvPD

a '
kn
a

mava
. ~33!

The total noise at the antenna output is given by the sum of
a narrow band and a wide band contribution:

Sn
a~v!5Sx

a1
Sf
a

ma
2

1

~va
22v2!21~v/ta!

2 . ~34!

This noise can be referred to the antenna input, as if it were
a spectrum, dividingSn

a(v) by the squared antenna transfer
function. The resulting noise spectrum is shaped as the in-
verse of a Lorentzian function and can be written as

Sh
a~v!5

~2hmin
a !2

DvPD

@~v̂a
22v2!21~vDvPD

a !2#

v4 , ~35!

where

v̂a
45va

4S 11
~kn

a!2

4ma
2va

4D'va
4

is the frequency at which the noise reaches a minimum and
which coincides in practice with the resonance frequency of
the antenna.

Sh
a(v) reaches its minimum value atv'v̂a :

@Sh
a~v!#min'Sh

a~va!'
~2hmin

a !2

va
2 DvPD

a '
8kBT*

mal a
2va

3Qa
, ~36!

whereQa5vata andT* is the temperature of the antenna.

A. Two bars

Let us consider the case of two bars. Using the physical
lengthLa and massMa , Eq. ~36! gives, for a single bar,

Sh
a~va!'1.3310245S La3mD 22S Ma

2300 kgD
21S T*

50 mKD S 1 kHz

na
D 3S Qa

107D
21

Hz21. ~37!

To evaluate the sensitivity of a pair of bars to the stochastic background, we substitute Eq.~35! in Eq. ~28!, obtaining

s
Â2
2

'F Tp E
2`

` va
2vb

2

DvPD
a DvPD

b ~4hmin
a hmin

b !2
v8S̃2~v!Q2~q,vR/c!dv

@~va
22v2!21~vDvPD

a !2#@~vb
22v2!21~vDvPD

b !2#G
21

. ~38!
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To carry out our calculations, we now assume that the
detectors are parallel and that they have the same sensitivity
and the same post-detection bandwidth, but to take into ac-
count the real physical situation, we allow for slightly differ-
ent resonant frequencies. For (va /DvPD

a )2@1, the integral
in Eq. ~38! can be approximated by

s Â2'F @Sh
a#min@Sh

b#min

2TDvPD
a

11~ uva2vbu/DvPD
a !2

Q2~q,v̄R/c! G1/2, ~39!

wherev̄[(va1vb)/2 is the mean frequency of the two an-
tennae and where we have takenS̃(v5va)51.

For R5400 km, which is the distance of the AURIGA-
NAUTILUS pair, and with an average frequency ofv̄>(2p
3920) rad/s,v̄R/c>7.7, while the expected sensitivity is
[Sh

a] min'1.7310245 Hz21. Takingq590°, one gets

s Â2'10249S 2T

1 yrD
21/2S va /DvPD

a

30 D 21/2

Hz21, ~40!

provided that the detuning of the resonance frequencies is
small compared with the optimal bandwidth. This last con-
dition is, for instance, matched with a 25% approximation if
uva2vbu/DvPD

a <1/2. With an effective bandpass.20 Hz,
this implies that the two detectors have to be matched within
10 Hz, which appears to be feasible.

However, in order to have both detectors parallel to each
other and as parallel as possible to the other cryogenic de-
tectors already in operation@12#, AURIGA and NAUTILUS
are presently oriented withq>52°. This value gives a sensi-
tivity of roughly a factor of 2 worse than that in Eq.~40!
~Fig. 1!.

To reorient the detectors is technically feasible, but it is
doubtful whether the factor of 2 is worth the loss of paral-
lelism with the remaining detectors.

B. Two bars and one interferometer

We now discuss the potential sensitivity of the AURIGA-
NAUTILUS-VIRGO array, assuming for VIRGO the
planned position~lat510° 308 E, long543° 408 N! and ori-
entation~one arm at 26°, the other at 296°!. There are many
noise sources in an interferometric antenna that have been
carefully estimated@13#. However, the resulting total noise
power spectrum in the frequency range of interest here, i.e.,
around 1 kHz, is dominated by the shot-noise contribution:

Sh
VIRGO~v!'Sh0

VIRGOS v

v0
D 2, 400 Hz,v/2p,4000 Hz,

~41!

where, from the published curves of the expected noise spec-
trum @13#, one can estimateSh0

VIRGO>1.6310245 Hz21 if v0
is taken asv052p920 rad/s. This gives a noise value close to
the minimum value of the input noise of AURIGA or
NAUTILUS.

One can apply Eq.~5! to the pairs AURIGA-VIRGO and
NAUTILUS-VIRGO, which have intersite distances of
'220 km and'260 km, respectively, corresponding to
vaR/c>4.2 andvaR/c>5 at a frequency of 920 Hz. The
correlation value corresponding to the AURIGA-VIRGO
pair turns out to be'2 greater than that for NAUTILUS-
VIRGO.

The sensitivity to the stochastic background for each bar-
interferometer pair and for 1 yr of integration is obtained by
substituting Eqs.~40! and~35! in Eq. ~28! and by integrating:

s Â2>S @Sh
a#minSh0

VIRGO

TDvPD
a

1

Q2~vR/c! D 1/2, ~42!

where we can see that the overall bandwidth is set by that of
the resonant antenna. The resulting sensitivity for the pair
AURIGA-VIRGO is s Â2>2310249 Hz21, assuming, for
AURIGA, va/DvPD530 and the present orientation, while
for the NAUTILUS-VIRGO pair, again with the present ori-
entation,s Â2>3.5310249 Hz21. For the array as a whole,
using Eq. ~27!, these values gives Â2>1.3310249 Hz21.
With the bar detectors oriented withq590°, a choice that
maximizes the overall sensitivity, one gets insteads Â2>8
310250 Hz21.

Although the improvement in sensitivity with respect to
the pair of bars is almost negligible, such a three-detector
detection would be of paramount importance in ruling out
spurious effects.

C. Two spheres

Finally, we study the performances of two spherical de-
tectors, which have been recently proposed as possible next-
generation resonant antennas.

Equation~38! only involves the detectors’ post-detection
bandwidth and input noise. We can easily compare the sen-
sitivity of a bar to that of a sphere made of the same material,
and with the same resonant frequency, as@14#

@Sh
bar#min'1.17@Sh

sphere#min~Ms /Mb!, ~43!

FIG. 1. Correlation functionQ(u,x) for two parallel bar detec-
tors as a function of the reduced distancex5vR/c, with R the
detector distance. The different curves are parametrized by the
value of the angleu between the detector axis and the line joining
the detector sites. The flattest curve corresponds tou50; the curve
of maximum oscillation is foru5p/2. The dotted line corresponds
to u51 rad, which is the orientation of the AURIGA-NAUTILUS
pair.
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whereMs andMb are the physical masses of the sphere and
bar, respectively. For a sphere of diameterD, made of the
same material of the present bars~Al 5056!, we find

Sh
a~va!'73102473S D

3 mD 22S Ms

38 000 kgD
21

3S T*

50 mKD S 1 kHz

va
D 3S Qa

107D
21

Hz21. ~44!

Under the same approximation used for Eq.~38!, the sensi-
tivity of a sphere pair, for each mode of the sphere, can be
written as

s
Â2
m

'F @Sh
a#min@Sh

b#min

2TDvPD
a

11~ uva2vbu/DvPD
a !2

J2~m,v̄R/c! G1/2. ~45!

If we consider two colocated spheres, the overall sensitiv-
ity is higher by a factor ofA5 with respect to that for a single
mode, since we can add the signals on the five modes of the
sphere. If the spheres are far apart, Fig. 2 shows that only for
them562 modes is the decay of the correlation with dis-
tance as slow as that for the bars. For the other modes, the
correlation decays much faster, and so forx.5, the overall
sensitivity is higher only by a factor of'& with respect to
that for a single mode.

The expected sensitivity of two colocated 3-m-diam
sphere, made of Al 5056, is

s Â2'4310252S 2T

1 yrD
21/2S va /DvPD

a

30 D 21/2

Hz21, ~46!

if one takes the weighted average of all the modes. As all the
parameters in Eq.~45! are the same for the five modes except
for the coefficientsJ2(m,v̄R/c), the error on the weighted
average is given by the same Eq.~45! by replacing
J2(m,v̄R/c) with the sum ( m51

5 J(m,v̄R/c), which is
reported in Fig. 3. For two spheres at the AURIGA and
NAUTILUS sites,v̄R/c>7.7, one would get, then,

s Â2'2310251S 2T

1 yrD
21/2S va /DvPD

a

30 D 21/2

Hz21.

This figure may improve by changing the sphere material
and/or increasing the sphere diameter. For instance, if one is
able to fabricate two 4-m-diam copper alloy spheres~250
tons!, the above reported sensitivity reaches about 4310252

Hz21.

D. One sphere and one interferometer

In Fig. 4 we show the correlation function for one inter-
ferometer and a sphere. The function is obtained by sum-
ming up the contribution coming from all the sphere modes.
If the sphere and the interferometer are not at the same site,
then the function depends on the angleu between one of the
interferometer arms and the line joining the two sites. For a
sphere and an interferometer like VIRGO located at the same
site, the figure gives

FIG. 2. Correlation functionJ(m,x) for the22<m<2 modes
of two spheres as a function ofx5vR/c, with R the detectors’
distance. The different curves refer to the different modes according
to the legend in the inset. The modes relate to a reference frame
where thez axis is along the line joining the detectors.

FIG. 3. The overall correlation functionA(m522
2 J2(m,x) for

two spheres as a function of the reduced distancex5vR/c.

FIG. 4. The total correlation functionA(x)5A(m51
5 F2(m,x)

for an interferometer and a sphere as a function of the reduced
distancex5vR/c. Here the functionF(m,x) is the correlation
function between the interferometer and themth mode of the
sphere.
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s Â2'8310251S 2T

1 yrD
21/2S va /DvPD

a

30 D 21/2

Hz21. ~47!

As the site of VIRGO is fixed, one can try the exercise
to locate a sphere in one of the three major laboratories
available close to VIRGO. Those are the AURIGA and
NAUTILUS sites and the large underground laboratory of
Gran Sasso@15#. For these laboratories,v̄R/c andu take the
valuesv̄R/c>4.2, u>4°, v̄R/c>5, u>68.7°, andv̄R/c>
5.3, u>90°, respectively. WithT51 yr andva /DvPD

a 530,
these figures give sensitivities that are, respectively,s Â2

'2.5310250 Hz21 for the AURIGA site,s Â2'5310250

Hz21 for that of NAUTILUS, ands Â2'6310250 Hz21 for
the Gran Sasso Laboratory.

V. CONCLUSIONS

The sensitivities reported in this paper can be expressed in
term of the ratioVGW~v! of the mass-energy density per unit
logarithmic frequency of the GW stochastic background to
the closure densityrc of the universe. In fact, the spectrum
of the stochastic backgroundS(v) can be written as@16#

S~v!5
16Gp2

v3 VGW~v!rc

>8310246VGW~v!S 2p31 kHz

v D 3.
An experiment involving at least one resonant detector,

bar, or sphere, operating at 1 kHz would then measure
VGW~v! with an uncertainty

sVGW
'831026S s Â2

10250D ,
whererc51.9310226 kg/m3 has been assumed. The sensi-
tivities discussed in Sec. IV can be then recast in terms of
VGW~v! according to Table I.

These figures have to be compared with experimental lim-
its already existing. Microwave background measurements
by the cosmic Background Explorer~COBE! @17# limit VGW
to about 1028, but just at very low frequencies~,10215 Hz!.
Pulsar timing observation also give limits,1029, but again
for very low frequencies~'1028 Hz! @18#. An estimate from
Earth quadrupole oscillations@19# in the mHz range gives
VGW,3.

Direct experimental measurements on ground in the kHz
range have been performed in the past with sensitivities sig-
nificantly lower than those indicated in Table I. A pioneering
measurement with split bars@20# gave a limit of
VGW,33103 in the kHz range. More recent estimates from
the background noise of a cryogenic detector@21# give
VGW,33102.

Table I then shows that already in the near future experi-
ments involving resonant mass detectors can provide unprec-
edented upper limits on the GW stochastic background at
kHz frequencies. Future sensitivities of bars-interferometer
and spheres experiments may hope to go near or beyond the
limit put by nucleosynthesis considerations atVGW'1025

and to detect such fundamental cosmic signals.
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APPENDIX A

The coefficient of the expansion in Eq.~1! can be written
as a superposition of ingoing and outgoing monochromatic
plane waves,

hi j ~k,t !5hi j
→~k!e2 ikct1hi j

←~k!e1 ikct, ~A1!

where we have denoted byk the modulus ofk¢ . Since the
metric has to be a real function, we havehi j (k,t)
5hi j* (2k,t), which implies hi j

→(k)5hi j
←* (2k). We then

assume that the amplitudesh i j
→~k! andh i j

←~k! are Gaussian
stochastic processes with zero mean and a given power spec-
trum and that the integral in Eq.~1! exists@22#.

As each plane wave is transverse and traceless, in
the coordinate system (x,y,z) where k5k~sinu cosfux
1sinu sinfuy1cosuuz!, we can write

hi j
→~k!5hi j

→1

~k!1hi j
→3

~k!

5Aik~u,f!~h→
1
~k!ekm

1 1h→
3
~k!ekm

3 !Amj
21~u,f!,

~A2!

where

ei j
15S 1 0 0

0 21 0

0 0 0
D

and

TABLE I. Estimated sensitivities of various detectors arrays.

Detectors array s Â2 ~Hz21! sVGW

AURIGA-NAUTILUS
present orientation

2310249 231024

AURIGA-NAUTILUS
best orientation

10249 831025

AURIGA-NAUTILUS-
VIRGO
present orientation

1.3310249 1024

AURIGA-NAUTILUS-
VIRGO
best orientation

8310250 631025

VIRGO and one 38-ton
sphere

2.5310250 231025

Two 38-ton spheres at
AURIGA and
NAUTILUS sites

2310251 231026
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ei j
35S 0 1 0

1 0 0

0 0 0
D are the two independent polarization tensors in the TT frame

andAi j (u,f) is the Euler matrix that rotates the axes, from
the TT system, wherek5(0,0,k), to the (x,y,z) frame. It
follows that

hi j
→~k!5h→

1
~k!S cos2u cos2f2sin2f ~cos2u11!sinf cosf 2sinu cosu cosf

~cos2u11!sinf cosf cos2u sin2f2cos2f 2sinu cosu sinf

2sinu cosu cosf 2sinu cosu sinf sin2u
D

1h→
3
~k!S 2cosu sin2f cosu cos2f sinu sinf

cosu cos2f cosu sin2f 2sinu cosf

sinu sinf 2sinu cosf 0
D , ~A3!

i.e., hi j
→(k)5h→

1
(k)c i j

1(u,f)1h→
3
(k)c i j

3(u,f), with obvious definitions of thec’s.
In order to satisfy the reality condition for the transform in Eq.~1!, we need

hi j
←~k!5h→

1* ~2k!c i j
1* ~p2u,f1p!1h→

3* ~2k!c i j
3~p2u,f1p!

or, as can be easily checked from Eq.~A3! by substitutingu→p2u andf→p2f,

hi j
←~k!5h→

1* ~2k!c i j
1~u,f!2h→

3* ~2k!c i j
3~u,f!,

so that only two complex amplitudes are really independent and we call them simplyh1~k! andh3~k!.
Assume now that the processesh1~k! andh3~k! are uncorrelated, stationary, and isotropic:

^h1~k!h3* ~k8!&5^h1~k!h3* ~k8!&50,
~A4!

^h1~k!h1* ~k8!&5^h3~k!h3* ~k8!&5~2p!3S~k!d~k2k8!d2~uk,uk8!,

whereS(k)[S~uku!, uk anduk8 are the unit vectors parallel tok andk8 andd2(uk ,uk8) is the Diracd function on the unit
sphere. This implies that the two-point, two-time correlation function of the GW stochastic background^hi j ~r ,t)hlm~r 8,t8!& is
just a function of the modulus of the distance between the two points and of the modulus of the time difference

^hi j ~r ,t !hlm~r 8,t8!&5
2

~2p!3
E E E cos@kc~ t2t8!#$@c i j

1~k!c lm
1 ~k!1c i j

3~k!c lm
3 ~k!#S~k!eik~r2r8!%d3k

5
1

~2p!3
E

2`

`

dk k2S~k!e2 ikc~ t2t8!E
0

2p

dfE
0

p

sinu du@c i j
1~u,f!c lm

1 ~u,f!

1c i j
3~u,f!c lm

3 ~u,f!#eikR@sinu sinu8 cos~f2f8!1cosu cosu8#, ~A5!

where we have assumed

r2r 8[R~sinu8 cosf8ux1sinu8 sinf8uy1cosu8uz!.

By takingf850, u850, and

S~v!5
8

15p

k2

c
S~k!,

the angular part of the integral in Eq.~A5! can be performed explicitly and Eq.~2! is obtained with the following values for
the matricesT0, T1, andT2:

T05S exz
1 1

2exy
3 0

1
2exy

3 exz
1 2exy

1 0

0 0 exy
1 22exz

1
D , T15S exz

1 2exy
1

2 1
2exy

3 0

2 1
2exy

3 exz
1 0

0 0 exy
1 22exz

1
D , T25S 0 0 exz

3

0 0 eyz
3

exz
3 eyz

3 0
D , ~A6!

where
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exy
1 5S 1 0 0

0 21 0

0 0 0
D , exz

1 5S 1 0 0

0 0 0

0 0 21
D , exy

3 5S 0 1 0

1 0 0

0 0 0
D , exz

3 5S 0 0 1

0 0 0

1 0 0
D , eyz

3 5S 0 0 0

0 0 1

0 1 0
D ,

and0 is the null 333 matrix.

APPENDIX B

By substituting Eq.~16! into Eq. ~17!, we immediately get

(
a51

N E
2T

T

dtE
2T

T

dt8gaa~ t,t8!Rn
a~ t2t8!1 (

a,b51

N E
2T

T

dtE
2T

T

dt8gab~ t,t8!Rs
ab~ t2t8!51, ~B1!

from which Eqs.~19b! and ~20! readily follow.
The ^(Â2)2& term which enters the estimation ofs

Â2
2
can be calculated by using Eq.~19b! as

^~Â2!2&5 (
aÞb,cÞd

E
2T

T

dtE
2T

T

dt8E
2T

T

dt9E
2T

T

dt-gab~ t,t8!gcd~ t9,t-!^xa~ t !xb~ t8!xc~ t9!xd~ t-!&. ~B2!

Then using Eq.~13! and the known rule for zero mean Gaussian random variables^xyzw&5^xy&^zw&1^xz&^yw&1^xw&^yz&,
we get

^~Â2!2&2^Â2&25 (
aÞb,cÞd

E
2T

T

dtE
2T

T

dt8E
2T

T

dt9E
2T

T

dt-gab~ t,t8!gcd~ t9,t-!$Rn
a~ t92t !Rn

b~ t-2t8!dacdbd1Rn
a~ t-2t !

3Rn
b~ t92t8!daddbc1A2@Rs

ac~ t92t !Rn
b~ t-2t8!dbd1Rs

ad~ t-2t !Rn
b~ t92t8!dbc1Rs

bd~ t-2t8!Rn
a~ t92t !dac

1Rs
bc~ t92t8!Rn

a~ t-2t !dad#1A4@Rs
ac~ t92t !Rs

bd~ t-2t8!1Rs
ad~ t-2t !Rs

bc~ t92t8!#%. ~B3!

Assume now that the correlation signalAsa(t) is negligible in comparison to the intrinsic noiseha(t), as is the case in the real
physical situation. Hence, in Eq.~B3! we can neglect the terms containingA2 andA4, obtaining

s
Â2
2

5^~Â2!2&2^Â2&2'2(
aÞb

E
2T

T

dtE
2T

T

dt8E
2T

T

dt9E
2T

T

dt-gab~ t,t8!gab~ t9,t-!Rn
a~ t92t !Rn

b~ t-2t8!. ~B4!

The problem reduces to a constrained variational problem where, with the help of the standard Lagrangian multiplier tech-
nique, we minimizes

Â2
2
under the constraint of Eq.~B1!. The functional

L~gab ,l![ (
aÞb

H 2E
2T

T

dtE
2T

T

dt8E
2T

T

dt9E
2T

T

dt-@gab~ t,t8!gab~ t9,t-!Rn
a~ t92t !Rn

b~ t-2t8!#

1lE
2T

T

dtE
2T

T

dt8gab~ t,t8!Rs
ab~ t82t !J ~B5!

reaches its minimum when

dL~gab ,l!

dgab
50, 1<a, b<N, and aÞb, ~B6!

i.e., when Eq.~19a! is obeyed.
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