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8 I.N.F.N., Gruppo Collegato de L’Aquila, L’Aquila, Italy

Received: 14 June 1998 / Published online: 16 September 1998

Abstract. We present an experiment performed to study the behaviour of the dynamic gravitational in-
teraction at laboratory scale. We used as field generator a mass quadrupole rotating in the range of 460
Hz and we detected the acceleration field with the cryogenic gravitational wave antenna Explorer of the
Rome group. We report the measurements of this interaction as a function of the distance between the
field source and the detector. An upper limit on the parameters of a Yukawa-like potential, modeling an
hypotetic deviation from the Newtonian law of gravity, is derived.

1 Introduction

Precise measurements of weak effects play a crucial role
in metrology and in the determination of the fundamental
constants. In this contest the search for deviation from the
Newtonian potential has produced remarkable improve-
ments in the knowledge of the fundamental constant G in
a wide range of distances, and impressive advances of the
measurement techniques. The hypothesis of a possible de-
viation from the inverse square distance law has focused
the attention of the international scientific community,
also in view of the fact that gravitation itself is, among
all the fundamental interactions, the least understood [1]
[2].

Possible deviations from the 1/r2 behaviour of the
point-like mass interaction can be described by an addi-
tional Yukawa-like potential VY (r):

VY (r) = −αG
M1M2

r
e−r/λ (1)

where the λ parameter represents the typical interaction
distance, and the dimensionless parameter α determines
the strength of the resulting force, that is attractive if
α > 0 [3]. About the nature of this deviation various hy-
potheses have been suggested, that fall in two broad cat-
egories: the deviation is either a function of the chemical
composition of the interacting bodies or it is independent

of it. In the second case we call it a gravitational deviation,
while in the first case it is more correct to talk about a
new, non-gravitational force, and the α constant turns out
to be a function of the baryonic number and the atomic
mass of two interacting bodies [4].

Nearly all experiments currently under way measure
an acceleration (or a force) expressed as the gradient of
the sum of the newtonian potential and of the hypothetic
Yukawian potential [1], obtaining:

F = −G(r)
M1M2

r3 r (2)

with
G(r) = G∞

[
1 + α

(
1 +

r

λ
e−r/λ

)]
(3)

It follows, from the above equation, that any deviation
of G(r) from the constant value

G0 = (6.67259 ± 0.00085) 10−11 N m2 kg−2 (4)

leads to a breakdown of the usual 1
r2 Newtonian behaviour

of the gravitational interaction between two point-like
masses.

We recall that among the physical constants G is the
least precisely known: all other constants are known bet-
ter than 1 · 10−6, while the best value of G [5] has an
uncertainty of about 130 · 10−6. Astronomical data have
provided confirmation that, in the weak field limit and



652 P.Astone et al.: Experimental study of the dynamic Newtonian field with a cryogenic gravitational wave antenna

for interplanetary distances, the Newtonian law of gravi-
tation is obeyed with high accuracy [6,7]. Thus, although
the product of G by the mass M of an astronomical body
may be determined with a precision of 10−6, since the
knowledge of the mass M is affected by a large error, it is
possible that noticeable differences exist between G mea-
sured at astronomical distances and G in the laboratory
[8].

To detect the presence of a new force the most widely
used instruments are torsion balances, like that employed
by Eötvös in his experiment [9] [10].

Instead, the tests of the 1
r2 law at laboratory distances

(from 1 m to 103 m) have been mostly based on the study
of the variation of g with altitude, both in deep boreholes
[11] [12] and in high towers [13,14]. These experiments
led to a better understanding of the relevance of the local
topography in the estimation of the free air gradient, but
showed no compelling evidence for deviations from the 1/r
dependence of the potential [15].

Tests of the distance dependence of the gravitational
force have also been performed using generators of time-
varying gravitational field and mass quadrupole antennas
(such as those developed for the search of gravitational
waves) as detectors. With this method the ambiguities
due to the influence of the surrounding mass distribution
are completely eliminated.

The first attempt was done in 1968 by J. Sinsky at
the University of Maryland [16]. A dynamic gravitational
field was generated by vibrating a cylinder of about 100 kg
at 1600 Hz at distances of the order of two meters from
the room temperature gravitational wave antenna of J.
Weber. He observed an increase of the vibration energy
of the order of 20% above the Brownian noise level of the
detector.

Starting from 1980, the gravitational wave group of
the University of Tokyo carried on several experiments
with room temperature antennas to measure the effect of
the dynamic gravitational field generated by a rotating
quadrupole source [17,18]. These experiments were done
in a frequency range below 100 Hz, covering a distance
range from 0.1 m to 10 m. The accuracy of this kind of
experiment is limited by the antenna brownian motion
whose contribution was decreased with a long integration
time. Assuming for the gravitational force the form 1

r2+δ ,
they obtained for the δ parameter the values δ = (2.1 ±
6.2) ·10−3 in the range (2.6 ÷ 10.7) m, while for the range
(0.1 ÷ 0.3) m they found δ = (−0.7 ± 2.9) · 10−3.

A similar experiment was performed by the gravita-
tional wave group of the Roma University using the cryo-
genic gravitational wave antenna of 2270 kg and 916 Hz
resonance frequency installed at CERN in Geneva [19]
[20]. The main goal of the experiment was to perform
an absolute calibration of the gravitational detector [21].
This antenna, equipped with a resonant capacitive trans-
ducer and a d.c. SQUID amplifier, operated at 2 K reach-
ing in 1989 the goal of a noise temperature of 5 mK for
short burst detection. With this sophisticated detector the
Roma group conceived other experiments. One aimed at
detecting possible deviations from the 1/r dependence of

the Newtonian potential by measuring the antenna sig-
nal due to a dynamical gravitational near field generated
by a rotor with a high quadrupole moment, put at various
distances from the detector. This approach should be con-
sidered as preliminary to a second experiment, i.e. a null
experiment aimed at measuring the field gradient along
the antenna due to a rotating baryonic dipole, a nearly
symmetric rotor made by suitable materials, which makes
the antenna only sensitive to the composition dependent
interaction.

In this paper we present the results obtained by per-
forming the 1/r experiment. In Sects. 2 and 3 we anal-
yse the source-detector interaction, in Sects. 4 and 5 we
give a schematic description of the rotor and the detec-
tor, and we describe the detector response to the dynamic
field, in Sect. 6 we discuss the systematic effects that limit
the experiment accuracy, and in Sect. 7 we report the re-
sults obtained with our experimental apparatus. Finally,
in Sects. 8 and 9, we analyze these data and we derive the
upper limit curve of the coupling parameter α versus the
interaction distance λ.

2 The evaluation
of the dynamical gravitational signal

Here and in the following section we compute the oscil-
lation amplitude of the antenna, which is an aluminium
right cylinder, induced by a gravitational generator, i.e.
an object, of suitable shape as to provide a non zero mass
quadrupole, which rotates with angular frequency ω, cor-
responding to half the resonance frequency of the alu-
minium bar. The motion of the cylinder is analysed in
terms of its normal modes, and, in particular, the first
longitudinal vibrational mode is considered. In order to
simplify the computation we neglect here the perturba-
tion induced by the transducer (see Sect. 3) on the spatial
distribution of the vibrational mode; a corrective term rep-
resenting the direct gravitational excitation of the trans-
ducer will be introduced later.

Let us set the origin of the cartesian coordinate system
at the center of the bar, a cylinder of radius R and length
L.

The acceleration field a(x, t) produced by the genera-
tor at the x = (x1, x2, x3) point of the detector, according
to (2) and (3), is:

a(x, t) = G0∇x

∫
dy ρ(y, t)[Φ(x − y) + αΨ(x − y)] (5)

where ρ(y, t) is the density function of the field generator,

Φ(x) =| x |−1

and
Ψ(x) =| x |−1 e−|x|/λ

is the non-newtonian term. To eliminate the time depen-
dence of function generator density, due to the rotation
around own axis, we perform the coordinates change:

y = δû + R(t)ξ (6)
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δû is the position vector (| û | = 1) of a point of the
generator lying on the rotation axis n̂, at a distance δ from
the centre, ξ is the new integration variable, and R(t) is
the rotation matrix defined as follows:

R(t)ξ = ξ0n̂ + ξ+n̂+eiωt + ξ−n̂−e−iωt (7)

with

ξ0 = n̂ · ξ

ξ± =
1√
2
(ξ1 ± iξ2)

ξ1 = n̂1 · ξ

ξ2 = n̂2 · ξ (8)

n̂± =
1√
2
(n̂1 ∓ in̂2) (9)

where n̂1 and n̂2 and the rotation axis n̂ form an orthog-
onal Cartesian frame.

With the new variable the density ρ(x, t) becomes a
time independent function, ρ(ξ), and the integral expres-
sion (5) takes the more explicit form:

a(x, t) = G0∇x

∫
generator

dξ ρ(ξ) (10)

· [Φ(x − δû − R(t)ξ) + αΨ(x − δû − R(t)ξ]

We now consider the motion of the elastic cylinder due to
the acceleration field. A normal mode with angular fre-
quency ω0 and displacement field given by the eigenfunc-
tion v(x) has amplitude q(t) which satisfies the following
differential equation:

q̈(t) +
ω0

Q0
q̇(t) + ω2

0q(t) = g(t) (11)

where

g(t) =

∫
antenna

dx v(x) · a(x, t)∫
antenna

dx v(x) · v(x)
(12)

and the parameter Qo accounts for the losses. We are in-
terested in the effect of the field on the first longitudinal
vibrational mode of the antenna, whose displacement field
v(x) has the approximate expression:

v(x) =
(
0, 0, sin

πx3

L

)
(13)

This unidimensional approximation is justified by the low
radius-length ratio of the aluminium bar

(
R
L ' 0.1

)
. We

note also that the corresponding approximate eigenfre-
quency ω0 = πvs/L, where vs is the sound velocity, is
very close to the measured value. Under this assumption
the normalization factor of the formula (12) is:

N =
∫

antenna

dx v(x) · v(x) =
πR2L

2
(14)

To compute the integral that appears on the numerator
of (12) we perform a multipole expansion of the accelera-
tion field (11). To this aim we use the inequality:

| ξ |<| x − δû | (15)

which certainly holds since the linear dimension of the
generator is smaller than the distance of the generator to
the nearest point of the detector.

This expansion yield a power series representation of
the acceleration a(x, t) with respect to the variable R(t)ξ.
Because of the time dependence of the vector R(t)ξ, see
(7), each term of the power expansion is a linear combi-
nation of terms oscillating with angular frequencies 0, ω,
2ω, . . ., where ω is the angular frequency of the generator.

Since the generator, rotating at ω, produces an excita-
tion at 2ω, the lowest term of the expansion comes from
the quadrupole moment of the generator, and this yields
for the forcing term g(t) the expression:

g(t) =
1
N

G0
{[

γNe2iωt + γ∗
Ne−2iωt

]
+

[
γY e2iωt + γ∗

Y e−2iωt
]}

(16)

where

γN =
3
2
FNMq (17)

γY =
3
2
αFY Mq (18)

Mq is the quadrupole moment of the rotor defined as:

Mq =
1
2

∫
generator

dξ ρ(ξ)(ξ1 + iξ2)2

Because of the geometric symmetry of the rotating
body, it is easy to realize that Mq can be also expressed as
one half of the difference between the two principal inertial
momenta of the body along the ξ1 and ξ2 axes.

FN and FY are respectively the Newtonian and Yukaw-
ian quadrupole terms. These are two integrals computed
on the detector volume, and they depend both on the dis-
tance δ between the antenna and the generator and on
the orientation of the û versor, i.e. they depend on the
position of the rotor with respect to the detector. In our
present experimental configuration (unlike that reported
in [21]) û is orthogonal both to the rotation axis n̂ of the
generator and to the cylinder axis x3 (Fig. 1), i.e.

û2 = x̂2

û1 = û3 = 0 (19)

Under these conditions FN and FY are given by the fol-
lowing integrals:

FN =
1
2

∫
antenna

dv(x) v(x)

·∇x

(
[x2 − δ − ix3]2

[x2
1 + (x2 − δ)2 + x2

3]5/2

)
(20)

FY =
∫

antenna

dx v(x) · ∇xS(x) e− |x−δû|
λ (21)

with

S(x) =
[x2 − δ − iz]2

[x2
1 + (x2 − δ)2 + x2

3]5/2
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Fig. 1. Model of the rotor-antenna system. ω̃ is the angular
frequency of the rotor and δ the distance between the rotor
and the center of mass of the detector

·
(

1 +
1

λ[x2
1 + (x2 − δ)2 + x2

3]2

+
1

3λ[x2
1 + (x2 − δ)2 + x2

3]3/2

)
(22)

FN and FY have been evaluated numerically for each spe-
cific value both of the distance δ chosen during the exper-
iment and of the parameter λ considered in the analysis
of the data.

3 The detector output

The gravitational wave antenna of the Rome group (Ex-
plorer), installed at CERN, is equipped with a resonant
capacitive transducer [20]. The resonant transducer can be
modelled as an oscillator with frequency νt and reduced
mass mt that is coupled to the bar which, in its first lon-
gitudinal mode, has frequency νb and reduced mass mb.
Since νt is tuned within few hertz of νb, the transducer
and the bar make a system of two coupled oscillators. The
equations of motion for the two oscillators are:{
ẍ + ωb

Qb
ẋ + ω2

bx + µ ωt

Qt
(ẋ − ẏ) + µω2

t (x − y) = fb

mb

ÿ + ωt

Qt
(ẏ − ẋ) + ω2

t (y − x) = ft

mt

(23)

where x is the displacement of the bar end, y the dis-
placement of the transducer, fb and ft indicate the forces
which act respectively on the bar and on the transducer,
µ = mt

mb
, and Qt and Qb are the quality factor of the two

oscillators. As it is well known, these two coupled oscilla-
tors have two vibrational normal modes, whose frequencies
and merit factors ν± and Q± can be determined experi-
mentally with good accuracy.

The a.c. electrical voltage at the output of the trans-
ducer is proportional to the relative displacement of the

transducer to the bar end:

ζ(t) = y(t) − x(t)

Applying the Fourier transform to the above system of
equations, we find

ζ̃ =
1
D

[
f̃b

mb
ω2 +

f̃t

mt
(ω2

b − ω2 + jω
ωb

Qb
)

]
(24)

where x̃, ỹ and ζ̃ are the Fourier transform of x(t), y(t)
and ζ(t), and D the determinant of the system (23). Since
Q ≈ 106 and ω ≈ ωb we express | ζ̃ | using the angular
frequencies ω±, that are directly measured quantities:

| ζ̃± |= |g̃eff |
|D| = (f̃b/mb)ω2

±
|D| + (f̃t/mt)ω2

±
|D|

(
ω2

b

ω2
±

− 1
)

(25)

where D is

D(ω) =
[
ω2

+ − ω2 +
iω+ω

Q+

]
·
[
ω2

− − ω2 +
iω−ω

Q−

]

This equation shows that, in the neighbourhood of
each mode, the frequency response closely approximates
that of a Lorentzian (second order) system. In fact, when
the dynamical gravity field generator rotates with ω̃ '
1
2ω+ or ω̃ ' 1

2ω−, the corresponding response of the me-
chanical system is expressed by (25). The steady state am-
plitude of the mechanical output signal, after a transient
with time constant τ± = 2(Q±/ω±), is therefore

| ζ̃± |'| g̃eff | ω2
±

(ω2∓ − ω2±)[(ω2± − ω2)2 + (ωω±/Q±)2]1/2

(26)
with ω = 2ω̃, with very good approximation since Q± >>

1. The main contribution to | g̃eff | comes from f̃b

mb
; from

(16) we have ∣∣∣∣∣ f̃b

mb

∣∣∣∣∣ =
∣∣∣∣G0

N
(γN + γY )

∣∣∣∣ . (27)

The additional contribution due to f̃t is a small pertur-
bation that we evaluate by representing the transducer as
a point-like mass that oscillates in the x3 direction of the
reference frame introduced in Sect. 2. The perturbation
term is computed in terms of the function r(δ), i.e.

(f̃t/mt)
(

ω2
b

ω2±
− 1

)
= −3

2
GoMq| r(δ) |

that, under our assumption, is

| r(δ) | = 2N

(
ω2

b

ω2±
− 1

) {
1

[δ2 + L2/4]4
+

25
4

· L2/4
[δ2 + L2/4]5

+ 5
L2

4
(L2/4 − 3δ2)
[δ2 + L2/4]6

}1/2

(28)
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The capacitive transducer, biased with a constant elec-
tric field E, converts the mechanical signal ζ(t) into an
electrical one Vt(t):

Vt = γtE
C

C + CP
ζ(t) (29)

where γt is a transducer geometrical factor, C is the active
capacitance of the transducer and CP is its stray capaci-
tance. This voltage is fed to a d.c. SQUID superconducting
amplifier through an electric network that includes a su-
perconducting transformer to match the high output im-
pedence of the transducer to the low input impedance of
the dc SQUID. The electromechanical transfer function W
that links the relative displacement ζ(t) and the voltage
at the SQUID output is

W (ω) = ASQUID
1

| Z(ω) |γtE
C

C + CP

where Z(ω) is the impedance of the RLC electrical cir-
cuit where the signal current generated by the transducer
flows, and ASQUID is the transfer function between this
current and the output voltage of the SQUID. Here we
note that the RLC circuit constitutes a third oscillator
of electrical nature coupled to the two mechanical oscilla-
tors. The perturbation of the mode parameters (Q±, ω±)
is weak, because the resonant frequency of this circuit is
sufficiently higher, and can be neglected in first approx-
imation. However, changes in the operating point of the
SQUID, which are accompanied by variations of its input
inductance, can cause very small variations of the mode
frequencies ν+ and ν−. Due to the high Q values of the
modes (' 106), even frequency variations of a fraction of
a mHz affect the response to a monochromatic excitation.

Finally, the r.m.s. value of the output voltage due to
the monochromatic near field is

Vr.m.s.± =
1√
2
W±ζ± (30)

Thus, the detector output turns out to be a linear function
of geff .

4 The rotor and its performances

The rotor was designed in collaboration with the Depart-
ment of Mechanics of the Politecnico di Torino. The aim of
this collaboration was to set up an experimental configura-
tion in which a body with a large quadrupole moment can
be safely spun up to a frequency range of (450÷ 470) Hz.
It is obvious that the maximum diameter of the body is
limited by the very high angular velocity requested. More-
over, as discussed in Sect. 1, a body with a large difference
between the two principal moments of inertia in the rota-
tion plane is needed in order to have a large quadrupole
moment, but this condition is known to cause stability
problems in specific ranges of the rotation frequency (su-
percritical regions [22,23].

ξ o

ξ

ξ

2

1

Fig. 2. Sketch of the rotor shape

In order to overcome this problem and to maximize
the quadrupole moment, a nearly constant stress bar was
carefully designed. The constant stress bar is a solid body
whose cross section depends on the distance y from the
rotation axis of the bar according to the law

S(y) = S0 exp
(

−ρrω
2rr

2σr

y2

r2
r

)
(31)

where ρr is the material mass density, σr the uniaxial de-
sign stress and rr the maximum radial dimension of the
body.

We chose an isotropic material, the aluminium alloy
2024, and, for a typical rotation frequency of 462 Hz and
an applied uniaxial stress of ' 230 MPa, that is con-
sistent with the condition of safe operation, we obtained
a maximum radius of rr ' 0.25 m The actual shape
of the rotor is shown in Fig. 2. Since the bar is highly
stressed, a three-dimensional computer analysis was per-
formed with Finite Elements Methods (FEM) in order to
evaluate deviations from the theoretical constant stressing
and to derive the main rotor characteristics.

The rotor itself was built by ElettroRava of Torino
(Italy). It is a bar of 13.9 kg with a quadrupole moment
Mq = 6.65 · 10−2 kgm2. The rotor driving system is an
asynchronous electric motor and the rotation of the bar
is monitored by means of an opto-electronic device. We
drive the motor with an electric frequency which is slightly
higher than the rotation frequency (' 1 Hz). As a conse-
quence the main electromagnetic disturbance is 1 Hz far
from our frequency band of interest. When the rotation
frequency regime is achieved, the rotation signal provides
the information required for controlling the motion of the
rotor. This signal is compared with the square wave gen-
erated by the master synthesizer of the system (locked to
a very stable Rb oscillator) whose frequency is set at one
half of the resonance frequencies of the gravitational wave
detector. The phase difference between the rotation signal
and the synthesizer output is the error signal of a control
system by means of which the rotor is phase-locked to the
reference oscillator (see Fig. 3).

The electric motor and the bar are mounted in a stain-
less steel vacuum chamber. For safety reasons (the energy
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Fig. 3. Block diagram of the phase control of the system

stored in the rotor running at 460 Hz is ' 0.6 MJ) the
inner lateral wall of the vacuum chamber is protected with
a steel ring 5 cm thick. On the rotation axis of the system,
between the rotor and the driving system, a single stage
of a turbo molecular pump is mounted which minimizes
the pollution of the vacuum zone where the rotor spins,
due to the lubrication fluid. Before starting the spinning
of the bar the chamber is evacuated by means of a rotary
pump and, when the rotation frequency is in the range
of 460 Hz, the turbo molecular stage insures a vacuum of
1 · 10−4 Pa.

We measured the residual vibrations of the system by
means of a Bruel Kjaer model 4370 accelerometer. The
typical values measured on the top of the vacuum chamber
are 1.4 ms−2 at the rotation frequency and 4 · 10−2 ms−2

at the detection frequency (twice the rotation frequency).
In order to reduce the e.m. and acoustic disturbances

generated by the rotor, we built an auxiliary shield: a cubic
box with a volume of 1 m3 that encloses the whole system.
The shield is made of pure aluminum, 5 mm thick, and its
inner walls are completely covered by a material acting as
an acoustic absorber. All the system stands on a bogie that
can be moved, along two rails, in a direction perpendicular
to the antenna axis.

The spin-up time of the rotor to the final frequency
of 460 Hz is of the order of 20 minutes. When the feed-
back control is operating, after an initial transient of few
seconds, the rotor spins exactly at the frequency of the
master synthesizer. The phase stability is influenced by
several factors and, in particular, it turns out to be sen-
sitive to power line disturbances. Moreover, the electric
motor requires a water refrigeration system, and we ob-
served that the phase stability is improved when, after the
rotor spin-up, the equilibrium temperature of the system
is reached; this requires a time of the order of two hours.

The performance of the rotor system, in particular its
phase and frequency purity, were finally checked experi-
mentally. We drove the rotor at the frequency of 453 Hz,
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Fig. 4. Fast Fourier Transform of the opto signal of the rotor.
The resolution of the spectrum is 24 µHz

-60

-55

-50

-45

-40

-35

-30

-25

-20

10000 20000 30000 40000 50000 60000

R
ot

or
 p

ha
se

  [
de

g]

t ime  [s]

Fig. 5. The phase of the rotation signal ΦR, measured with
respect to the phase signal of the master synthesizer, versus
time, during the same test run. The rotor was started at t = 0.
In the diagram we report only the data after the rotor phase
lock. The slow phase drift in the initial part of the curve is due
to the fact that the rotor is approaching thermal equilibrium

that is close to one half of the resonance frequencies of the
modes.

A square wave obtained from the rotation signal was
sent to a lock-in amplifier driven by the master synthe-
sizer. The lock-in output, sampled at 1 s for 10 hours, was
recorded on magnetic tape and analysed off-line. In Fig. 4,
we show the Fast Fourier Transform (FFT) of this signal
obtained with all the data of this run. We notice that the
peak lies in just one bin of the discrete spectrum, thus
defining an upper limit of 24 µHz (corresponding to the
reciprocal of the observation time) for the spectral width
of the rotor signal. In Fig. 5, we show the corresponding
time evolution of the phase of the rotation signal ΦR, mea-
sured with respect to the phase of the master synthesizer,
measured during in the same test run. Finally we carefully
analyzed the statistical properties of the phase fluctuation
of the rotor. The histogram of the Fig. 6, performed with
the same data, shows a gaussian behaviour of ΦR with a
standard deviation of 6o.
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Table 1. Parameters of the experimental apparatus for the two runs

First run Second run

Quadrupolar moment, Mq 6.65 · 10−2 kgm2 6.65 · 10−2 kgm2

Rotor mass, Mr 13.9 kg 13.9 kg
Detector mass, 2ma 2270 kg 2270 kg
Detector length, L 2.9722 ± 0.0001 m 2.9722 ± 0.0001 m
Detector radius, R 0.3033 ± 0.0001 m 0.3033 ± 0.0001 m
Frequency of the first normal mode, ν− 911.270240 Hz ±15 µHz 907.501625 Hz ±15 µHz
Frequency of the second normal mode, ν+ 937.060 Hz ±1 mHz 923.724290 Hz ±15 µHz
Quality factor of ν−, Q− (1.099 ± 0.003) · 106

Quality factor of ν+, Q+ (5.572 ± 0.006) · 106

Decay time of ν−, τ− (384 ± 1) s
Decay time of ν+, τ+ (1920 ± 2) s
Fundamental frequency of the antenna, νb 913.04 Hz 916.54 Hz
Transducer gap,d 36 µm 65 µm
Transducer effective mass, mt 0.146 kg 0.340 kg
Transducer geometrical factor, γt 0.73 0.89

Fig. 6. Histogram of the rotor phase measurements after
achieving thermal equilibrium

5 The cryogenic detector

A detailed description of the gravitational wave antenna
of the Rome group (Explorer) installed at the CERN lab-
oratory in Geneva has been given in previous papers [19,
20]. We recall here some basic informations on the exper-
imental apparatus.

The antenna is a cylindrical bar (60 cm in diameter
and 297 cm in length) of Al 5056 with mass M=2270 kg
and reduced mass mb = M/2 for the fundamental longitu-
dinal vibrational mode (νb ' 916 Hz at the liquid helium
temperature). The antenna is located inside the vacuum
enclosure of a liquid helium cryostat and is suspended with
a Titanium alloy cable wrapped around the circular sec-
tion containing the center of gravity. The Titanium cable
constitutes the first of a multiple stage system designed
to filter external mechanical disturbances, which provides
220 dB of attenuation at 900 Hz.

The resonant capacitive transducer is located at one
end of the bar. Its resonating part has the shape of a

mushroom which vibrates in its lowest symmetric flexural
mode with reduced mass mt.

We performed two separate run of measurements, with
the Explorer antenna equipped with two different trans-
ducers. In the first run the transducer had mt = 0.15 kg
and the gap between the plates of the transducer capac-
itor was d = 36 µm. In the second run the transducer
was changed in order to reduce its electric and acoustic
losses. In the new configuration the vibrating plate was
heavier, mt = 0.34 kg, and the gap larger d = 63 µm. In
both cases the bias electrical field of the transducer could
be adjusted up to 8 × 106 V/m by means of an external
battery. (We recall that the transducer frequency νt de-
pends on the electrical field in the gap, thereby affecting
the frequencies of the modes ν±.)

In both the runs we biased the transducer at 23 V one
day before starting the measurements. This was done in
order to reduce the effects due to the relaxation processes
of the dielectric polarization in the decoupling capacitor.
During all the measurements we maintained the trans-
ducer connected to the battery through a 10 GΩ resistor.
A summary of all the parameters of the system is given in
Table 1.

The electrical output of the transducer is applied to the
SQUID amplifier through a decoupling capacitor Cd and
an air core superconducting transformer that provides the
required impedance matching between the transducer and
the low input impedance of the amplifier. Since the SQUID
gain depends on the actual operating point of the device,
it is continuously monitored by sending a sine wave signal
to the SQUID, through an auiliary coil, at a frequency
νcal. As shown in Fig. 7, the output signal from the am-
plifier V(t) is sent to lock-in amplifiers which demodulate
it at the mode frequencies (ν+, ν−, νcal). The outputs of
the various lock-in amplifiers (V−, V+, Vcal) are sampled
at time intervals of ∆t = 0.290 s, processed by a 12 bit
analog to digital converter and sent to a VAX 3800 com-
puter for real time analysis and recording on the computer
memory. We also record the Universal Time, provided by
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Fig. 7. Scheme of the gravitational wave detector. The part in the dashed section is cooled at low temperatures

a combination of a radio clock and a Rb frequency stan-
dard. The Rb oscillator also provides a stable reference to
all synthesizers that drive the lock-in amplifiers.

The detector noise is due to two different stochastic
processes: the wide band noise of the electronic amplifier
and the narrow band thermal noise of the detector (the
Brownian motion of the mechanical oscillators). The wide
band electronic noise is basically uncorrelated and its con-
tribution to the output noise can be made negligible by
integrating the data for 1 second. The correlation times
of the thermal fluctuations of the ν± modes are the time
constants τ± = 2Q±/ω±. Therefore, in principle, to re-
duce this noise contribution we should integrate for times
much longer than τ±. However this is not needed, because
the signal generated by the gravitational interaction, with
the transducer biased at 23 volt, with data integration
time of 1 s, and with the rotor set at a distance δ ' 2 m,
is about 500 times larger than the intrinsic noise of the
antenna.

The experimental apparatus of Explorer includes a vi-
bration sensor (the same model of accelerometer used on
the rotor), and a magnetic field sensor (search coil), both
located on the cryostat. These sensors monitor the envi-
ronment of the laboratory and are used to make sure that
external noise produces effects on the antenna output well
below the Explorer intrinsic noise.

During the measurements, in addition to the VAX sys-
tem, we also used a smaller data acquisition system based
on a analog to digital converter controlled by an Apple
personal computer with a lower acquisition rate (10 s).
This system was used to record the outputs of the lock-in
driven at the antenna mode excited by the rotor and the
outputs of the lock-in used to monitor the phase and the

amplitude of the rotation signal of the rotor. In this way,
we can relate the phase fluctuations of the antenna output
to the phase fluctuations of the rotor.

6 Study of the systematic effects

The antenna response to the sinusoidal excitation induced
by the rotor depends critically both on the merit factor
of the excited mode and on the detuning of the driv-
ing frequency with respect to the resonance frequency
of the mode. In particular the high Q value of the an-
tenna corresponds to a very narrow width of the resonance
(' 830µHz): this implies that the resonance frequencies
should be known within a few tens of µHz. We have shown
in the previous section the monochromatic purity of the
signal and its phase stability, here we discuss the limits on
the frequency stability of the detector.

The stability of the mode eigenfrequencies depends,
indeed, on several effects. Beside a very small tempera-
ture effect, they can drift due to slow changes of the bias
voltage of the transducer, and to changes of the operating
point of the SQUID, which, due to the non-linear nature
of this device, induce variations of its input inductance.
The temperature effect is negligible because the bar tem-
perature is very stable: 2.14 ± 0.05K. This is obtained
by maintaining the vacuum chamber, where the detec-
tor is located, completely surrounded by liquid helium in
superfluid regime. As regards the variations of the trans-
ducer bias voltage, the measurements were performed at
23 V, i.e. a value one order of magnitude smaller than
usual, thereby strongly reducing both the dependence of
the mode frequency on this voltage and the coupling be-
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tween the mechanical oscillators and the readout electric
circuit. In fact, in the case of detection of signal bursts,
a high bias voltage is required in order to optimize the
signal to noise ratio of the detector, while for monochro-
matic excitations this condition is irrelevant. The voltage
stability of the battery, used to bias the transducer, was
monitored as a function of the room temperature obtain-
ing a typical value 2.8 10−3 V/oC. This weak dependence,
together with the low value of the transducer bias voltage,
implies that the thermal drift of the battery voltage do not
produce any detectable variation of the ν± frequencies.

Finally, the frequency stability of the antenna reso-
nances was experimentally verified. At the beginning and
at the end of each measurement run, the frequency of the
detector mode ν− (chosen for the experiment in the first
run) was carefully measured by exciting the mode, with
a small piezoelectric ceramic glued on the antenna, and
observing the free decay of the antenna signal through
the lock-in driven at ν−. In particular, by measuring the
phase of the free decay signal we are able to conclude that
the mode frequency ν− = 911.270240 ± 1.5 · 10−5 Hz was
stable within 15 µHz during all the measurements. From
the amplitude measurements of the free decay of the mode
which was repeated systematically during the run, we de-
rived the decay time τ− = 384±1 s and the quality factor
Q− = (1.099 ± 0.003) 106.

We applied the same method during the second run.
This time, we analyzed data taken by forcing the detector
at the higher vibrational mode ν+ = 923.724290±1.5·10−5

Hz and we measured several times during the run τ+ =
1920 ± 2 s corresponding to Q+ = (5.572 ± 0.006) · 106.
Also in this case the frequency stability of the detector
is about 15µHz, but it has to be compared with a mode
bandwidth a factor 5.5 narrower than that of the previous
run.

We also considered the possible effects of the acoustic
and electromagnetic disturbances produced by the rotor,
the motor and the associated instrumentation. We per-
formed tests by driving at the ν± frequency a mechani-
cal vibrator, mechanically coupled to the external vacuum
tank of Explorer, and monitoring its effects by means of
several accelerometers, including one inside the Explorer
vacuum shell. The amplitude of the driving force of the
vibrator was gradually increased until the corresponding
antenna response at ν± became observable.

From these measurements we were able to estimate
the overall acoustic transmission of the cryostat and the
antenna suspension system at the ν± modes, obtaining a
total amplitude attenuation of 220 dB (10−11).

The acoustic effect of the rotor was investigated by
spinning it at a frequency νR slightly different from one
half of that of the ν± modes (2 νR − ν± ' 1 Hz). In
this condition we detected no increase of the antenna out-
put noise level at 2νR, while the acceleration measured
by the auxiliary accelerometer of Explorer was ' 3 10−4

ms−2 and it was independent from νR. This acceleration
was also measured for various distances δ between the ro-
tor and the antenna, observing a decrease of a factor two
in the amplitude with δ increasing from 1.9 m to 3.5 m.

Taking into the account the acoustic transmission of the
system, we conclude that the acoustic disturbance of the
rotor at ν± corresponds to an equivalent acceleration of
the antenna two order of magnitudes lower than that of
the gravitational near field generator.

Moreover, the e.m. background generated by the ro-
tor was carefully analysed. The main e.m. disturbance is
at the frequency of the electric signal driving the motor,
which is 1 Hz higher than the rotation frequency and it
is not a source of concern. Nevertheless, we measured the
e.m. attenuation of the system and the e.m. background
generated by the rotor at ν± using the search coil of Ex-
plorer. In this case too we performed “active” tests using
an external coil to produce a variable magnetic field at
ν±. From the results of the above tests we conclude that
the upper limit for the e.m. background is 2 10−4 of the
gravitational signal at a distance of about 2 m.

7 Experimental results

The cryogenic antenna was excited several times by the
dynamic field generated by the rotor for various values of
the distance δ between the generator and the detector. The
position of the rotor with respect to the antenna center
was measured in two steps. During a stop run of the Ex-
plorer detector, when we had access inside the cryostat, we
measured the antenna orientation and the antenna center
coordinates with respect to a reference system external to
the cryostat. The different values of δ, used in the various
measurements runs, were measured with respect to this
reference system when the Explorer was in operation with
the antenna at 2 K. We expect that, while cooling from
room temperature to the final low temperature, the posi-
tions of the inner containers of the cryostat may change.
This is the main source of error on the definition of the
antenna center, that we estimate to be of the order of
±1 mm.

Once the rotor phase is locked at the chosen mode
frequency, it is possible to obtain from the two output x(t)
and y(t) of the lock-in both the amplitude V =

√
x2 + y2

and the phase ΦD = arctan(y/x) of the oscillations of the
antenna relative to the master synthesizer.

At the beginning of each run we carefully measured the
resonance frequency of the ν± mode and, once the rotor
was running near ν±/2 with a relatively stable phase, we
closed the control loop driven by the master synthesizer.
We then observed the exponential growth of the antenna
signal. After a time of the order of 3τ± the signal reached
a steady state vibration amplitude. We use this value to
compare the experimental observations to the theoretical
predictions.

7.1 The first run of data taking

The first run of measurements was carried out by exciting
the ν− antenna mode.

For each position of the rotor (see Table 2) we recorded
amplitude and phase of the output signal and we com-
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Table 2. Data of the first run

δ ± 5 · 10−4 (m) V (δ) (mV ) ∆Vtot(δ) (mV )

1.9170 128.4 2.0
2.4680 56.1 2.0
2.9660 25.0 2.0
3.4670 13.1 2.0
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Fig. 8. Amplitude of the output signal of Explorer with the ro-
tor set at a distance δ = 1.9710 m and turning at ν−/2 (marked
lines). The two continuous lines are the ±1σ theoretical curves,
computed as described in Appendix 1

puted the mean values of the amplitude over periods of
the order of one time constant: during this span of time
a good phase stability of both the rotor and the detector
was observed. With this technique we can decrease the
statistical error on the amplitude measurements, even if,
to obtain a value with a lower statistical error we should
use all the data taken during long periods of resonant ex-
citation.

We experimentally verified that large changes of the
rotor phase determine, with a delay of the order of τ−,
significant variations of the phase as well as of the ampli-
tude of the output signal.

We inferred that the amplitude changes of the out-
put signal observed over long periods (' 10 hour) were
mainly due to the residual phase fluctuations of the ro-
tor. We checked this statement by computing the output
signal using the data of the rotor phase ΦR taken during
the same period of time. This was done performing the
numerical integration of the final expressions reported in
the Appendix 1 and 2. In Figs. 8 and 9 we notice the good
agreement between the real data and the results of the
numerical computation.

7.2 The second run of data taking

The second run of data taking was performed several
months later, after an antenna warm-up that allowed us to
open the Explorer cryostat and install a new transducer,
with better performance.
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Fig. 9. a Comparison between the theoretical phase (continu-
ous line) and the measured phase (marked line), for a distance
δ = 1.9170 m, b Comparison between the theoretical phase
(continuous line) and the measured phase (marked line), for a
distance δ = 2.9660 m

The new transducer had larger effective mass and
larger gap: this implied that the mode frequencies changed
to new values, but their dependence on the transducer field
was somewhat weaker.

Moreover, the new transducer had lower mechanical
and electric dissipations, thereby providing Q values of
the modes about five times larger than in the previous
run. The most important consequence is that the steady
state signal response to a resonant excitation is increased
by the same factor, with a corresponding improvement on
the relative statistical error of our measurements. Higher
Q values, however, provide no improvement with respect
to the systematic effects due to the coherent acoustic and
e.m. excitation of the detector modes.

However, in the new experimental configuration it was
possible to increase the rotor distance up to 5.9 m, while,
in the first run, data had been taken for a range 1.9 < δ <
3.5 m. The procedure followed in this second run is similar
to the previous one. The transducer was biased again at -
23 V, now corresponding to a lower electric field because of
the larger gap. We performed measurements exciting both
modes, but we shall only report the results obtained at ν+
since during the excitation at ν−, the phase stability of the
rotor and the frequency stability of the detector were not
satisfactory.
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Table 3. Data of the second run

δ ± 5 · 10−4(m) V (δ) (mV ) ∆Vtot(δ) (mV )

1.9170 690.3 4.5
3.2290 110.4 4.4
3.7229 50.3 4.5
4.2241 27.3 4.4
4.7250 16.6 4.6
5.0264 11.9 4.4
5.2261 8.2 4.4
5.9710 2.0 4.5

Also in this case the first data taking was done with
the rotor at a distance δ = 1.971 m from the centre of
the antenna. We checked again the frequency response of
the detector by performing three measurements near the
resonance peak. Then we excited the antenna by spinning
for one night the rotor at half the resonance frequency ν+.
During the data taking with the rotor located in the other
distances we checked only the frequency stability by ob-
serving the phase of the output signal during a free decay.
The results of the measurements are reported in Table 2.
We notice that in this data set the difference between the
phase of the output signal and twice the rotor phase is not
as stable as in the first run and that it changes when the
distance is increased. This is a consequence of the residual
acoustic coupling between the rotor and the detector: it
becomes more relevant at larger distances because the re-
sponse to the gravitational signal decreases more rapidly.

8 The data analysis procedure

As discussed in the previous section, with a longer data
taking and with a suitable data analysis we can reduce
the statistical error by at least one order of magnitude.
However, in order to derive the upper limit curve α(λ) we
have to take into the account also the systematic errors
(∆V/V )syst due to the coherent excitation of the resid-
ual acoustic and e.m. signal. The main contribution to
(∆V/V )syst is due to the residual acoustic transmission of
the cryostat. Using the results of the acoustic transmission
tests described in Sect. 6, we have estimated (∆V/V )syst

in the previous section.
The data analysis is based on a standard χ2 fit, in

which the theoretical excitation and the experimental val-
ues are compared. Since the experimental data are taken
in two runs of different experimental conditions, we define
a χ2 function as the sum of two terms one for each group
of data:

χ2 =
4∑

j=1

(xj − yj(Λ))2

∆x2
j

+
8∑

i=1

(xi − yi(Λ))2

∆x2
i

(32)

where x and ∆x are the data and the corresponding errors.
y is the theoretical function, and the multi dimensional
vector Λ represents, through its components, the parame-
ters characterizing the theoretical behaviour. In this case

we deal with a three-dimensional parameters space: the
coupling constant α and the two parameters N1 and N2,
which are introduced to match the theoretical displace-
ment function to the output voltage of the detector. The
explicit expression of χ2 is given below in terms of the FN

and FY integrals and of the r(δ) term:

χ2 =
4∑

j=1

[
Vj − 1

N1
(FN (δj) + αFY (δj , λ) + r(δj))

]2

∆V 2
tot j

+
8∑

i=1

[
Vi − 1

N2
(FN (δi) + αFY (δi, λ) + r(δi))

]2

∆V 2
tot i

(33)

The minimization of the (33) was performed by using
MINUIT, the routine of the CERN software library [24].
We found the minimum value of α for each fixed value of
λ in order to obtain the α(λ) dependence. We explored
the range of λ from 0.3 m to 11.0 m, improving the step
accuracy of λ in the range 1 ≤ λ ≤ 2.5 m, around the
minimum of the α(λ) function, and in the range 0.3 ≤
λ ≤ 1 m to study the trend at shorter distances.

The minimization results slightly depend on the initial
values assigned to the parameters. We assumed as initial
values of N1 and N2 those obtained by minimizing the χ2

function in the case of a purely Newtonian field (α = 0).
Concerning the initial value of α, we started the mini-
mization using the result of the Ogawa [18] experiment,
α ' 10−2. From the minimization procedure we also ob-
tained the two standard deviation errors (2 σα). In this
way we managed to produce a final curve compatible with
those of the Gibbons and Whiting (GW) diagram [15].

9 Discussion of the results and conclusions

The results of the minimization procedure, i.e. the esti-
mates of α vs. λ, are reported in Table 4. We notice that
for no value of λ we have a corresponding α larger than its
standard deviation σα. We conclude that we did not de-
tect any Yukawian deviation of the Newtonian behaviour
of the gravity interaction.

The upper limit on α(λ) is set by the corresponding
error values. The upper limit function 2σα(λ) is shown in
Fig. 9. We notice that the minimum of this curve is:

2σα < 2 · 10−2 for λ = 2.0 m (34)

that sets our best upper limit for a Yukawian deviation
superposed to the Newtonian field.

This limit, obtained by testing the Newtonian law in
the distance range from 2 to 6 m and in the frequency
range of 900 Hz, could be improved by modifying the
present experimental set-up. The main changes would in-
volve the acoustic filters and the e.m. shielding of Explorer
that determine the systematic error of the gravitational
measurements. However, a radical approach to the reduc-
tion of these effects, will have to wait for a stop run of
the gravitational wave antenna, in order to assemble new
seismo-acoustic filters inside the cryostat.
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Table 4. Values of the coupling parameter α and its error 2σα

as a function of λ

λ (m) α 2σα

0.3 0.022 1.9
0.4 0.0077 0.44
0.5 0.0053 0.19
0.6 0.0041 0.11
0.7 0.0036 0.074
0.8 0.0034 0.057
1.0 0.0032 0.040
1.2 0.0032 0.033
1.3 0.0032 0.031
1.5 0.0033 0.028
1.8 0.0034 0.026
1.9 0.0035 0.026
2.0 0.0036 0.026
2.05 0.0036 0.026
2.1 0.0036 0.026
2.2 0.0037 0.026
2.3 0.0038 0.026
2.4 0.0039 0.026
2.5 0.0039 0.026
3.0 0.0044 0.027
3.5 0.0048 0.028
4.0 0.0053 0.030
4.5 0.0056 0.032
5.0 0.0060 0.034
5.5 0.0067 0.037
6.0 0.0072 0.040
6.5 0.0077 0.042
7.0 0.0082 0.045
7.5 0.0087 0.048
8.0 0.0092 0.052
8.5 0.0097 0.055
9.0 0.010 0.058
9.5 0.011 0.062

10.0 0.011 0.066
11.0 0.012 0.075

Appendix 1

Influence of the forcing phase fluctuations
on the antenna oscillations

The rotor phase γ(t) was measured, as described in the
paragraph 7.1, with an integration time of 30 seconds. In
order to extract information concerning the amplitude of
the forcing term due to the gravitational acceleration, we
derive a dimensionless expression that depends on γ(t)
because we are just interested to the behaviour of the
modulus of the forcing term. This function will be used
to convert the integrated output data of the detector; this
procedure allows us to compensate the effect of the phase
fluctuations of the rotor.

Let us consider a damped harmonic oscillator sub-
jected to a harmonic acceleration whose amplitude a0 is
constant and whose phase is changing with the time:

a(t) = a0e
i(α(t)+ωt) (35)
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Fig. 10. Results of the minimization procedure. The dashed
line represents α versus λ. The full line is the upper limit func-
tion of α obtained by plotting 2σα versus λ. We notice that the
α(λ) curve lies below the one of its corresponding error 2σα

The equation of motion for the harmonic oscillator will
be:

ẍ +
ω0

Q0
ẋ + ω0

2x = a0e
i(α(t)+ωt) (36)

The forcing phase is the sum of two terms: an oscillat-
ing term at the rotation frequency ω, and a function γ(t),
whose analytical expression is unknown. γ(t) was mea-
sured by integrating its value on a characteristic time of
30 seconds for all the run of data taking.

We look for a solution of the position variable x(t) of
the form

x(t) = m(t)x0e
i(φ(t)+ωt) (37)

where x0m(t) is the amplitude, equal to the product of
the dimensionless and time dependent term m(t) and of
the constant term x0 (with dimensions of a length):

x0 = a0
Q0

ωω0
(38)

Substituting the expressions (35) and (37) into (36), and
using the expression (38), we can write the harmonic os-
cillator equation in a form independent of a0.

ÿ(t) +
ω0

Q0
ẏ(t) + ω2

0y(t) = a′(t) (39)

where y(t) = m(t)ei(φ(t)+ωt) and a′(t) = eiωt+iγ(t) are
two dimensionless functions independent of a0. The (39)
is easily solved in Fourier space:

ỹ(p) =
ã′(p)

−p2 + ip ω0
Q0

+ ω2
0

(40)

ã′(p) is derived performing the Complex Fast Fourier
Transform (FFT) of the available data of the rotor phase,
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and ỹ(p) is is obtained by computing numerically the com-
plex ratio (40). Finally, by performing the inverse Complex
FFT of ỹ(p), we derive the function y(t).

Appendix 2

The antenna oscillations phase as a function
of the forcing phase

To solve 39 we apply the Green function method, obtain-
ing

y(t) =
1
ω0

∫ t

−∞
dt′ ei(ωt′+γ(t′))e− (t−t′)

τ sinω0(t − t′) (41)

Since γ(t) � 1 we approximate eiγ(t) ' 1 + iγ(t) and,
using standard trigonometric relations we obtain:

y(t) ' τ

2ω0
sinω0t +

1
ω0

e−t/τ

[
cos ω0t

∫ t

−∞
dt′ γ(t′)et′/τ

× sin2 ω0t
′ − sinω0t

∫ t

−∞
dt′ γ(t′)et′/τ

× sinω0t
′ cos ω0t

′
]

+ i

{
− τ

2ω0
cos ω0t

+
1
ω0

e−t/τ

[
sinω0t

∫ t

−∞
dt′ γ(t′)et′/τ cos2 ω0t

′

− cos ω0t

∫ t

−∞
dt′ γ(t′)et′/τ sinω0t

′ cos ω0t
′
]}

(42)

where we have assumed 2ω0τ � 1 (ω0τ ≈ 106 ÷ 107).
We notice that the function et′/τγ(t′) changes slowly

with time compared with the sin(ω0t
′) term. Thus, the

real and the imaginary part of the (42) become:

<y(t) ' τ

2ω0
sinω0t +

1
2ω0

e−t/τ cos ω0t

∫ t

−∞
dt′ γ(t′)et′/τ

=y(t) ' − τ

2ω0
cos ω0t +

1
2ω0

e−t/τ

× sinω0t

∫ t

−∞
dt′ γ(t′)et′/τ (43)

Defining the factor β as

β =
e−t/τ

τ

∫ t

−∞
dt′ γ(t′)et′/τ (44)

we notice that β � 1 (τ ' 3 · 102 and γ(t) � 1). Then we
can rewrite the real and the imaginary part of y(t) as:

<y(t) =
τ

ω0
sin(ω0t + β)

=y(t) = − τ

ω0
cos(ω0t + β) (45)

Being

φ(t) = arctan
=y(t)
<y(t)

(46)

we get the final expression of the antenna phase:

φ(t) =
π

2
+ ω0t +

e−t/τ

τ

∫ t

−∞
dt′ γ(t′)et′/τ (47)

Using the available data on γ(t) and performing a nu-
merical integration of (47) we derive the corresponding
time evolution of the detector phase.
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