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We discuss the problem of the det ect ion of grav itat ional waves (gw)

signals with small energy signal to noise rat io (SNR) . We consider coin-

cidence experim ent s between data processed by optimum ® lters m at ched

to delta-like bursts. It is shown, by calculat ion and by simulation, that ,

becau se of the noise, the ª event º lists produced by the same signals on

diŒerent det ect ors, using the sam e ® lters, overlap only part ially Ð ab out

30 percent for SNR close to the threshold used for de® ning the event s.

Furthermore, becau se of the noise, the correlat ion of the event energy

between ident ical det ectors is weak and cannot be used as a strong dis-

criminator again st noise in coincidence search , even for SNR = 10 or

m ore.

1. INTRODUCTION

In a coincidence experiment with gravitational wave (gw) antennas one

deals with measurements having small signal to noise ratios (SNR) and

the search for coincidences , with very few gw signals expected, is indeed,

for this reason, very di� cult because many small signals can be lost in the

noise.

The procedure usually adopted is to apply optimum ® lters to the

data, in order to extract the small signals as well as possible. An arbit rary

threshold is then applied and the ª eventº is de® ned when the ® ltered signal

exceeds the chosen threshold.
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Each detector provides a list of events for comparison with list s of

events from other detectors. The ® nal step, in the coincidence search, is to

count how many events fall within a given time window and to compare this

number with the number of events obtained accidentally, that is when the

event occurrence times are changed in a random way or by a simple time

shift ing. This comparison gives the probability that the found coincidences

might have occurred by chance.

The above statistical analysis is complicat ed by the small SNR. The

purpose of this note is to study how the small SNR aŒects the search for

coincidences between two or more ident ical gw detectors using the same

® lter to process the signals, and possibly to ® nd the best strategy to adopt

as regards the choice of the threshold.

We are well aware that this is a simpli® ed representation of the actual

experimental situat ion, as one should also consider the eŒects of using dif-

ferent ® lt ers (in part icular as regards their sampling and optimum times),

the presence of the non-gaussian disturbances that often show up in the

tails of the data distribut ions, and the diŒerent sampling times of the de-

tectors as well as possible diŒerences of orientation between the detectors.

We found, however, that the dispersion of the signal amplit ude due to the

noise is a dominant eŒect, and this result has to be taken into considerat ion

when searching for coincidences between gravitational wave detectors.

2. THE EFFECT OF THE NOISE ON THE OBSERVED SIGNALS

We report here on the eŒect of the noise on the observat ion in the most

simple way. We consider a resonant antenna whose signal is processed by a

lock-in ampli® er, which extracts the Fourier component s at one resonance

frequency of the detector, producing two signals in quadrat ure. To each

one of these signals we apply the optimum ® lter, ® nally obtaining the two

component s

x(t) = n (t) + s (t), y(t) = m (t),

where n ( t) and m (t) indicat e the noise and s (t) the signal due to gw bursts.

The signal, in general, appears in both the x and y component , but, for the

purpose of this paper and for simplicity we only consider one component .

The noise is indicat ed by two diŒerent symbols, n (t) and m ( t), to stress

the fact the two noise processes in the two components are, in general,

independent.

Following the usual procedure we compute the quant ity

r
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= x
2

+ y
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which represents the optimum estimate of the energy innovat ion, that is,

the variat ion of the energy status of the detector as due, for example, to

a gw excitat ion. The mean value of r2 , in the absence of signals, is called

the eŒective temperature TeŒ of the detector when expressed in unit s of

Kelvin. In the presence of signals of given amplitude s (representing the

response of the detector to a short burst), the corresponding estimate r2

of the energy innovation is not s 2 but, due to the eŒect of the noise, a

random variable with a noncent ral x 2 distribut ion probability with two

degrees of freedom [1,2],

f (r
2
, s

2
) =

1

TeŒ

exp ( ±
r2 + s2

TeŒ ) I0( 2 Ö r2s 2

TeŒ ) , (1)

where I0 is the modi® ed Bessel funct ion of order zero.

F ig u r e 1 . Histogram of r2 for SNR = 5,10,20 and the expected distribution as obtained

by eq. (1) . We not ice that , due to the noise, r2 covers rather wide intervals in spite of

the relat ively large SNR. The relat ive dispersion of r2 increases for decreasing values of

the SNR (the rat io between s 2 and Te f f ) and is large even for relat ively high values of

SNR.
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Ta b le 1 . Average m , standard dev iat ion s and their rat io for signals distributed

according to eq. (1) , with various SNR.

SNR m s s/ m

5 6 3.32 0.558

10 11 4.58 0.417

15 16 5.57 0.348

20 21 6.40 0.308

25 26 7.14 0.275

This is shown in Table 1 and in Fig. 1, where we have also reported the

results of a simulat ion performed according to the above model (in the

simulat ion TeŒ = 1).

This ® gure gives a quant itative feeling of the eŒect of the noise on the

signal. The nominal SNR is given by s2 in unit s of the r2 average when only

the noise is present (TeŒ = 1). Similar results have been experimentally

obtained by the Stanford [3] and Louisiana [4] groups.

3. COINCIDENCE SEARCH

It is evident that if a gw burst , with energy close to the threshold

THR chosen for selecting the events, impinges on two diŒerent gw anten-

nas, there is a high chance that no coincidence is observed. This occurs

when, because of the noise, the result ing r2 , after optimum ® ltering, hap-

pens to be below the threshold in one or in both antennas. Our goal here

is to discuss this point on a quant itative basis, in order to invest igate the

possible best strategy for coincidence search. We simulate two ident ical

antennas. Each time we construct the quant ity r2 for an applied signal

s ( t) (whose square we call SNR and is expressed in unit s of the gaussian

variance) , and verify the condit ion r2 ³ THR for two subsequent determi-

nat ion of r2 , one for each antenna. The result is shown in Fig. 2 for three

THR values together with the theoretical curves obtained by eq. (2),

n c (s
2
) = N s ¥

T HR

f (r
2
, s

2
)dr

2 s ¥

T HR

f (r
2
, s

2
)dr

2 . (2)

We notice that for SNR = THR the coincidence detection e� ciency

is of the order of e = 30% for all the THR values. If we normalize SNR to

THR we obtain the plots of Fig. 3.

We also notice that in order to have a detection e� ciency close to

unity we have to choose a threshold of about one half the energy of the



E � c ie n c y of t h e C oin c id e n c e S e ar ch in G W E x p e r im e n t s 1 0 9

F ig u r e 2 . Number of coincidences with 10,000 trials and the eq. (2) versus s 2 = SNR,

for the thresholds THR = 5,10, 20.

F ig u re 3 . The data of Fig. 2 plotted versus the normalized SNR.

signals.4

The above result is valid for the coincidences between two diŒerent

antennas that have independent noise but is does not take into account

an addit ional coincidence loss due to time delays introduced by the noise.

4 On the other hand we have the interest ing (though low-probability) case where we

det ect coincidences even for SNR < T HR. This happens when the noise adds to the

signals in a coherent way.
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However it can be applied also to a single antenna when using two diŒerent

optimum ® lters that have nearly independent noise. For example, this is

the case when the two diŒerent algorit hms process data with very diŒerent

sampling rates, say 1 ms and 100 ms. In this case we expect that the two

® lters produce event lists that overlap only part ially.5

In the Rome group overlapping rates ranging from a few percent to

twenty or thirty percent were found [5]. Making use of the result shown

in Fig. 3 we just ify the small percentage if we assume that , in such a case,

most of the signals (which we consider local disturbances) have a SNR of

the order of or below the threshold THR.

It has sometimes been suggest ed that only those events should be con-

sidered which are obtained for one antenna from the coincidences obtained

using two diŒerent ® lters, such that the noise in one ® lter can be consid-

ered nearly independent from the noise in the other ® lter (both matched

to a delta signal) . Then one would search for coincidences with a similar

list of events from a second antenna.6 In this case for SNR = THR the

detection e� ciency is reduced to 30% £ 30%, that is about 9%.

It has also been proposed, as a test to verify if the coincidences be-

tween the events of two antennas (assumed to have the same cross-section)

are really due to the same gravit ational wave bursts, that the coincident

events be required to have approximately the same energy. It is clear that ,

because of the noise, this might not be so.

We tested this requirement with the following procedure. We have

considered, in two ident ical simulated antennas, equal signals with SNR ³
THR = 5, more precisely signals with SNRi = i (i = 5, 6, . . . , 50) , 20

signals for each value of i (a total of 920 signals) . As usual, we found the

coincidences by requiring that , for each pair of events, both r2 ³ THR.

We have then calculat ed the correlat ion coe� cient between the energies of

the observed pairs of events in various cases as shown in Tables 2 and 3.

5 Note, in addit ion, that in this case a signal with durat ion larger than the sampling

t ime of one det ect or and smaller than that of the other one will be taken as a delta

funct ion by the latter but not by the former. T he consequence is that the energy

est imat es will be diŒerent .
6 We assum e that both ® lters have the same noise, otherw ise it is obvious that only

the ® lter with the lower noise should be used.
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Tab le 2 . T he last column indicat es the probability [2] ( in percent ) that the

observed correlat ion be due to chance. T he number of coincidences is sm aller

than the numb er of applied signals becau se of the threshold, THR = 5.

signal energy number of number of energy correlat ion probability

interval signals coincidences coe� cient (%)

5± 50 920 868 0.73 ¼ 0

5± 15 220 168 0.28 0.3

5± 10 120 73 0.14 24

Ta b le 3 . We arbit rarily consider 12 randomly selected coincidences in the given

energy interval, as a realistic and very optim ist ic exam ple of one gw burst per

m onth, in one year of operat ion. T he last column indicat es the probability [2] ( in

percent ) that the observed correlat ion be due to chance.

signal energy number of energy correlat ion probability

int erval coincidences coe� cient (%)

5± 10 12 0.011 97

5± 15 12 0.18 60

5± 20 12 0.38 23

5± 30 12 0.67 2

15± 30 12 0.37 24

In Figs. 4 and 5 we show two examples of energy correlat ion graphs,

obtained from the above simulat ions, both with a very poor correlat ion.

We notice, in addit ion, that the situat ion in the real case is worse, as

we have to consider that , even if some coincidence due to gw do exist , acci-

dental coincidences will also be present . The worsening of the correlat ion

due to a number Na of accidental coincidences which add to the number

Nc of coincidences due to gw, can be approximat ely estimated with the

formula

r c+ a = r c
N c

Nc + Na

,

where r c is the correlat ion coe� cient for the N c signals alone and r c+ a the

coe� cient when we add the Na accidentals.

For example, in the case of Fig. 5, adding 12 accidentals to the 12

coincidences we obtain a correlat ion coe� cient of 0.19, for a probability of

39% that the correlat ion among the event energies is due to chance. Note

that if we found a total number of N c + Na coincidences over a background

of Na , the Poisson probability to have such a coincidence excess was very
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F ig . 4 . Correlat ion am ong the simulated 12 coincidences between two identical an-

tennas, with event energies in the range 5± 15. The correlat ion coe� cient is 0.18. The

probability that the correlation be accidental is about 60% .

F ig . 5 . Correlat ion among the simulated 12 coincidences between two identical ant en-

nas, with event energies in the range 15± 30. The correlat ion coe� cient is 0.373. The

probability that the correlation be accidental is about 24% .

good, p = 0.0004, but, in spite of that , no clear correlat ion among the

energies shows up.
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4. COINCIDENCE SEARCH STRATEGY

The number of coincidences has to be compared with the number of

coincidences we expect accident ally. This last quant ity depends on the

noise and on the coincidence window. If the noise is gaussian of the type

we have considered here, the number of accidentals increases exponent ially

with decreasing energy. We expect that also the number of the possible

gw signals diminishes with increasing energy, although many scenarios can

be imagined.

The simplest one is to imagine that the gw bursts to be detected have

a given SNR. The quest ion is what threshold is convenient to apply for the

de® nit ion of event. From Fig. 3 we could deduce that a convenient thresh-

old is THR = SNR/ 2, providing a detection e� ciency close to unity, with

the number of accidentals now proport ional to exp( ± THR) exp( ± THR) =

exp( ± 2THR) = exp( ± SNR). Instead if we take THR = SNR we have a

detection e� ciency of about 30%, but the number of accidentals is much

smaller, being proport ional to exp( ± 2SNR). This second choice is, of

course, in general more convenient .

Suppose now that the gw bursts have an integral energy distribut ion

of the exponent ial type, like

Ns = Ngw exp( ± c SNR) ,

where c depends on the gw source. For simplicity we consider that all of

them are detected for SNR ³ THR. The number of accidentals will be

Nac c = N0 exp( ± 2 . THR) .

The probability we can detect an excess of coincidences can be roughly

obtained from the critical ratio

CR =
Ns

Ö Nacc

=
Ngw

Ö N0

exp[ ± (c ± 1) . THR].

Thus, if c < 1 it is convenient to use a larger THR. If c > 1 it is better

to use a smaller THR.

As far as comparing the energies of the coincidence events, this can be

done but it should not be considered of primary importance for deciding

whether a possible coincidence excess is indeed caused by gravit ational

waves (or any other common cause) acting on the two antennas, unless

the event energies of the coincidences are su� ciently large and spread over

a wide energy range.
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6. CONCLUSIONS

The strategy for a coincidence search can be out lined in the simple

case that gw signals are expected with a given SNR. In such a case it is

convenient to set the threshold as high as possible, THR = SNR, in order

to reduce the number of accident als, in spite of the diminished detection

e� ciency for the gw signals. The main conclusions we have reached here

can be summarized in the following:

a) it is important to understand that diŒerent algorit hms applied to

the same experimental data might generate event list s that overlap only

part ially. From Fig. 3 we have deduced that , in proximity of the threshold,

an overlapping rate of about e = 30% for real signals should be expected,

independently of the value of the threshold THR chosen for de® ning the

events. Since the events are generated also by the noise (i.e., Brownian

and electronic noise) , in total we expect a number of events

N = Nn oise exp( ± THR) + Ns ign al

and a number of coincidence event s of

Ncoinc iden ce = Nnoise exp[ ± 2 . THR] + Nsign al e,

where Nnoise is equal to the time of measurement divided the coincidence

window. Thus the overlapping event rate might be very small.

b) while some coincidences due to possible gw bursts are lost , if the

SNR is just below the threshold a few percent of the bursts, because of

the noise eŒect, might give coincidences.

c) ® nally, we have seen that not much credit can be given to a possible

correlat ion among the event energies, at the present stage of gw research

when, even in the most optimist ic case, few coincidences are expected, and

those with energy close to the threshold.
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