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On the Efficiency of the Coincidence Search in
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We discuss the problem of the detection of gravitational waves (gw)
signals with small energy signal to noise ratio (SNR). We consider coin-
cidence experiments between data processed by optimum filters matched
to delta-like bursts. It is shown, by calculation and by simulation, that,
because of the noise, the “event” lists produced by the same signals on
different detectors, using the same filters, overlap only partially — about
30 percent for SNR close to the threshold used for defining the events.
Furthermore, because of the noise, the correlation of the event energy
between identical detectors is weak and cannot be used as a strong dis-
criminator against noise in coincidence search, even for SNR = 10 or
more.

1. INTRODUCTION

In a coincidence experiment with gravitational wave (gw) antennas one
deals with measurements having small signal to noise ratios (SNR) and
the search for coincidences, with very few gw signals expected, is indeed,
for this reason, very difficult because many small signals can be lost in the
noise.

The procedure usually adopted is to apply optimum filters to the
data, in order to extract the small signals as well as possible. An arbitrary
threshold is then applied and the “event” is defined when the filtered signal
exceeds the chosen threshold.
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Each detector provides a list of events for comparison with lists of
events from other detectors. The final step, in the coincidence search, is to
count how many events fall within a given time window and to compare this
number with the number of events obtained accidentally, that is when the
event occurrence times are changed in a random way or by a simple time
shifting. This comparison gives the probability that the found coincidences
might have occurred by chance.

The above statistical analysis is complicated by the small SNR. The
purpose of this note is to study how the small SNR affects the search for
coincidences between two or more identical gw detectors using the same
filter to process the signals, and possibly to find the best strategy to adopt
as regards the choice of the threshold.

We are well aware that this is a simplified representation of the actual
experimental situation, as one should also consider the effects of using dif-
ferent filters (in particular as regards their sampling and optimum times),
the presence of the non-gaussian disturbances that often show up in the
tails of the data distributions, and the different sampling times of the de-
tectors as well as possible differences of orientation between the detectors.
We found, however, that the dispersion of the signal amplitude due to the
noise is a dominant effect, and this result has to be taken into consideration
when searching for coincidences between gravitational wave detectors.

2. THE EFFECT OF THE NOISE ON THE OBSERVED SIGNALS

We report here on the effect of the noise on the observation in the most
simple way. We consider a resonant antenna whose signal is processed by a
lock-in amplifier, which extracts the Fourier components at one resonance
frequency of the detector, producing two signals in quadrature. To each
one of these signals we apply the optimum filter, finally obtaining the two
components

x(1) = n(1) + 5(20), y(n) = m(1),

where n(¢) and m (¢) indicate the noise and s(¢) the signal due to gw bursts.
The signal, in general, appears in both the x and y component, but, for the
purpose of this paper and for simplicity we only consider one component.
The noise is indicated by two different symbols, n(¢) and m(¢), to stress
the fact the two noise processes in the two components are, in general,
independent.

Following the usual procedure we compute the quantity

2= x4yt
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which represents the optimum estimate of the energy innovation, that is,
the variation of the energy status of the detector as due, for example, to
a gw excitation. The mean value of p?, in the absence of signals, is called
the effective temperature Terr of the detector when expressed in units of
Kelvin. In the presence of signals of given amplitude s (representing the
response of the detector to a short burst), the corresponding estimate p>
of the energy innovation is not s but, due to the effect of the noise, a
random variable with a noncentral x> distribution probability with two
degrees of freedom [1,2],

2 2 2 .2
[ s?) = #exp( e )10(2}/,’?), (1)

eff Terr

where [ is the modified Bessel function of order zero.
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Figure 1. Histogram of p* for SNR = 5,10,20 and the expected distribution as obtained
by eq. (1). We notice that, due to the noise, p° covers rather wide intervals in spite of
the relatively large SNR. The relative dispersion of p* increases for decreasing values of

the SNR (the ratio between s> and Terr) and is large even for relatively high values of
SNR.
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Table 1. Average u, standard deviation o and their ratio for signals distributed
according to eq. (1), with various SNR.

SNR u c o/ u

5 6 3.32 0.558
10 11 4.58 0.417
15 16 5.57 0.348
20 21 6.40 0.308
25 26 7.14 0.275

This is shown in Table 1 and in Fig. 1, where we have also reported the
results of a simulation performed according to the above model (in the
simulation Teer = 1).

This figure gives a quantitative feeling of the effect of the noise on the
signal. The nominal SNR is given by s in units of the p° average when only
the noise is present (Tex = 1). Similar results have been experimentally
obtained by the Stanford [3] and Louisiana [4] groups.

3. COINCIDENCE SEARCH

It is evident that if a gw burst, with energy close to the threshold
THR chosen for selecting the events, impinges on two different gw anten-
nas, there is a high chance that no coincidence is observed. This occurs
when, because of the noise, the resulting p°, after optimum filtering, hap-
pens to be below the threshold in one or in both antennas. Our goal here
is to discuss this point on a quantitative basis, in order to investigate the
possible best strategy for coincidence search. We simulate two identical
antennas. Each time we construct the quantity p*> for an applied signal
s(t) (whose square we call SNR and is expressed in units of the gaussian
variance), and verify the condition p> > THR for two subsequent determi-
nation of p°, one for each antenna. The result is shown in Fig. 2 for three
THR values together with the theoretical curves obtained by eq. (2),

0

nc<s2>=Nj f<p2,s2>dp2j £ 57t 2
THR THR

We notice that for SNR = THR the coincidence detection efficiency
is of the order of ¢ = 30% for all the THR values. If we normalize SNR to
THR we obtain the plots of Fig. 3.

We also notice that in order to have a detection efficiency close to
unity we have to choose a threshold of about one half the energy of the
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Figure 2. Number of coincidences with 10,000 trials and the eq. (2) versus s> = SNR,

for the thresholds THR = 5,10, 20.
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Figure 3. The data of Fig. 2 plotted versus the normalized SNR.

signals.*
antennas that have independent noise but is does not take into account

The above result is valid for the coincidences between two different
an additional coincidence loss due to time delays introduced by the noise.

4 On the other hand we have the interesting (though low-probability) case where we
detect coincidences even for SNR < THR. This happens when the noise adds to the

signals in a coherent way.
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However it can be applied also to a single antenna when using two different
optimum filters that have nearly independent noise. For example, this is
the case when the two different algorithms process data with very different
sampling rates, say 1 ms and 100 ms. In this case we expect that the two
filters produce event lists that overlap only partially.’

In the Rome group overlapping rates ranging from a few percent to
twenty or thirty percent were found [5]. Making use of the result shown
in Fig. 3 we justify the small percentage if we assume that, in such a case,
most of the signals (which we consider local disturbances) have a SNR of
the order of or below the threshold THR.

It has sometimes been suggested that only those events should be con-
sidered which are obtained for one antenna from the coincidences obtained
using two different filters, such that the noise in one filter can be consid-
ered nearly independent from the noise in the other filter (both matched
to a delta signal). Then one would search for coincidences with a similar
list of events from a second antenna.® In this case for SNR = THR the
detection efficiency is reduced to 30% x 30%, that is about 9%.

It has also been proposed, as a test to verify if the coincidences be-
tween the events of two antennas (assumed to have the same cross-section)
are really due to the same gravitational wave bursts, that the coincident
events be required to have approximately the same energy. It is clear that,
because of the noise, this might not be so.

We tested this requirement with the following procedure. We have
considered, in two identical simulated antennas, equal signals with SNR >
THR = 5, more precisely signals with SNRi = i (i = 5,6,...,50), 20
signals for each value of i (a total of 920 signals). As usual, we found the
coincidences by requiring that, for each pair of events, both p> > THR.
We have then calculated the correlation coefficient between the energies of
the observed pairs of events in various cases as shown in Tables 2 and 3.

3 Note, in addition, that in this case a signal with duration larger than the sampling
time of one detector and smaller than that of the other one will be taken as a delta
function by the latter but not by the former. The consequence is that the energy

estimates will be different.
We assume that both filters have the same noise, otherwise it is obvious that only
the filter with the lower noise should be used.



Efficiency of the Coincidence Search in GW Experiments 111

Table 2. The last column indicates the probability [2] (in percent) that the
observed correlation be due to chance. The number of coincidences is smaller
than the number of applied signals because of the threshold, THR = 5.

signal energy [number of | number of |energy correlation | probability
interval signals coincidences coefficient (%)
5-50 920 868 0.73 ~ 0
5-15 220 168 0.28 0.3
5-10 120 73 0.14 24

Table 3. We arbitrarily consider 12 randomly selected coincidences in the given
energy interval, as a realistic and very optimistic example of one gw burst per
month, in one year of operation. The last column indicates the probability [2] (in
percent) that the observed correlation be due to chance.

signal energy number of energy correlation probability
interval coincidences coefficient (%)
5-10 12 0.011 97
5-15 12 0.18 60
5-20 12 0.38 23
5-30 12 0.67 2
15-30 12 0.37 24

In Figs. 4 and 5 we show two examples of energy correlation graphs,
obtained from the above simulations, both with a very poor correlation.
We notice, in addition, that the situation in the real case is worse, as
we have to consider that, even if some coincidence due to gw do exist, acci-
dental coincidences will also be present. The worsening of the correlation
due to a number N, of accidental coincidences which add to the number
N. of coincidences due to gw, can be approximately estimated with the
formula
_Ne
re ,
N¢+ N,

Fc+ta =

where 7. is the correlation coefficient for the N. signals alone and r¢+a the
coefficient when we add the N, accidentals.

For example, in the case of Fig. 5, adding 12 accidentals to the 12
coincidences we obtain a correlation coefficient of 0.19, for a probability of
39% that the correlation among the event energies is due to chance. Note
that if we found a total number of N+ N, coincidences over a background
of Na, the Poisson probability to have such a coincidence excess was very




112 Astone, Pallottino and Pizzella

25 . Ty L L e T
i o ’

20
r o

SNR [

2

15
L ° _.-—-""-‘"—-
L ’-’-"o’o o]

10 dnamasee ©
b o ] ] o

5 i L n Y i n " " i 1 L i L i 1 i
6 8 10 12 14 186 18

SNFL‘

Fig. 4. Correlation among the simulated 12 coincidences between two identical an-
tennas, with event energies in the range 5-15. The correlation coefficient is 0.18. The
probability that the correlation be accidental is about 60%.
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Fig. 5. Correlation among the simulated 12 coincidences between two identical anten-
nas, with event energies in the range 15-30. The correlation coefficient is 0.373. The
probability that the correlation be accidental is about 24%.

good, p = 0.0004, but, in spite of that, no clear correlation among the
energies shows up.
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4. COINCIDENCE SEARCH STRATEGY

The number of coincidences has to be compared with the number of
coincidences we expect accidentally. This last quantity depends on the
noise and on the coincidence window. If the noise is gaussian of the type
we have considered here, the number of accidentals increases exponentially
with decreasing energy. We expect that also the number of the possible
gw signals diminishes with increasing energy, although many scenarios can
be imagined.

The simplest one is to imagine that the gw bursts to be detected have
a given SNR. The question is what threshold is convenient to apply for the
definition of event. From Fig. 3 we could deduce that a convenient thresh-
old is THR = SNR/2, providing a detection efficiency close to unity, with
the number of accidentals now proportional to exp(—THR) exp(-=THR) =
exp(—-2THR) = exp(—-SNR). Instead if we take THR = SNR we have a
detection efficiency of about 30%, but the number of accidentals is much
smaller, being proportional to exp(—-2SNR). This second choice is, of
course, in general more convenient.

Suppose now that the gw bursts have an integral energy distribution
of the exponential type, like

N = Ngw exp(—-ySNR),

where y depends on the gw source. For simplicity we consider that all of
them are detected for SNR > THR. The number of accidentals will be

Nace = Noexp(-2-THR).

The probability we can detect an excess of coincidences can be roughly
obtained from the critical ratio

N Now
CR = ——— = == exp[-(y — 1) - THR].
’\/Nacc \/No pl—(y ) ]

Thus, if y < 1 it is convenient to use a larger THR. If y > 1 it is better
to use a smaller THR.

As far as comparing the energies of the coincidence events, this can be
done but it should not be considered of primary importance for deciding
whether a possible coincidence excess is indeed caused by gravitational
waves (or any other common cause) acting on the two antennas, unless
the event energies of the coincidences are sufficiently large and spread over
a wide energy range.
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6. CONCLUSIONS

The strategy for a coincidence search can be outlined in the simple
case that gw signals are expected with a given SNR. In such a case it is
convenient to set the threshold as high as possible, THR = SNR, in order
to reduce the number of accidentals, in spite of the diminished detection
efficiency for the gw signals. The main conclusions we have reached here
can be summarized in the following:

a) it is important to understand that different algorithms applied to
the same experimental data might generate event lists that overlap only
partially. From Fig. 3 we have deduced that, in proximity of the threshold,
an overlapping rate of about ¢ = 30% for real signals should be expected,
independently of the value of the threshold THR chosen for defining the
events. Since the events are generated also by the noise (i.e., Brownian
and electronic noise), in total we expect a number of events

N = Nioise eXp( _THR) + Nsignal
and a number of coincidence events of
Ncoincidence = Nnoise GXP[—Z : THR] + Nsignal &,

where Nyoise 18 equal to the time of measurement divided the coincidence
window. Thus the overlapping event rate might be very small.

b) while some coincidences due to possible gw bursts are lost, if the
SNR is just below the threshold a few percent of the bursts, because of
the noise effect, might give coincidences.

c¢) finally, we have seen that not much credit can be given to a possible
correlation among the event energies, at the present stage of gw research
when, even in the most optimistic case, few coincidences are expected, and
those with energy close to the threshold.
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