

STT Design and Prototype Tests

November-15, 2012 | Peter Wintz, IKP - FZ Jülich

Review of STT Technical Design Report

Outline Straw Tube Tracker

- Design overview
 - Mechanical setup
 - Readout system
- Prototype systems
- In-beam tests
 - COSY-STT
 - Aging
 - High-rate readout
- Summary

STT Layout

panda

- 4636 straw tubes in 2 separated semi-barrels
- 23-27 planar layers in 6 hexagonal sectors
 - 15-19 axial layers (green) in beam direction
 - 4 stereo double-layers: ±3° skew angle (blue/red)
- STT dimensions
 - R_{inner}/R_{outer}: 150/418 mm, length: ~1500 + 150 mm
 - inner / outer walls (~ 1mm Rohacell/CF)
- $X/X_0 \sim 1.23\%$ (~ $^2/_3$ tube wall + $^1/_3$ gas)
- Time / amplitude readout
 - σ_{rφ} ~ 150 μm, σ_z~ 3.0 mm (isochrone)
 - $\sigma_E / E < 10\%$ for $\pi / K / p$ identification
- σ_p/p ~ 1 2% at B=2 Tesla

STT x-y view

р. З

Straw Tube Materials

Minimised number of materials and material budget (thickness)

- 1) Al-mylar film, d=27µm, Ø=10mm, L=1500mm
- 2) 20µm sense wire (W/Re, gold-plated)
- 3) End plug (ABS thermo-plastic)
- 4) Crimp pin (Cu, gold-plated)
- 5) Gas tube (PVCmed, 150µm wall)
- 6) Cathode spring (Cu/Be, gold-plated)
- 7) Attachment strip (GFK), locator ring (POM)
- X/X₀ = 4.4×10⁻⁴ (2.5g weight) per straw
- Radiation hard (p-beam tested)
- Mechanical precision σ < 50 μm

Film tube End plug Wire Crimp pin Gas tube Electric contact Fixation ring

Element Material		X [mm]	X ₀ [cm]	X/X _o		
Film Tube	Mylar, 27µm	0.085	28.7	3.0× 10 ⁻⁴		
Coating	Al, 2× 0.03μm	2× 10 ⁻⁴	8.9	2.2× 10 ⁻⁶		
Gas (2bar)	Ar/CO ₂ (10%)	7.85	6131	1.3× 10 ⁻⁴		
Wire	W/Re, 20µm	3× 10 ⁻⁵	0.35	8.6× 10 ⁻⁶		
			Σ_{Straw}	4.4× 10 ⁻⁴		

Straw components

Straw Layer Modules

Novel technique, developed for COSY-STT and modified for PANDA-STT

- Pressurized straws (Δp=1bar) are close-packed (< 20µm gap) in planar layers on a reference groove table and glued together (glue dots)
- Strong rigidity: multi-layer straw module is self-supporting
- No stretching from mechanical frame, no straw reinforcements needed
- Lowest weight, precise cylindrical geometry, maximal straw density

Self-Supporting Straw Modules

Pressurized, close-packed straw layers show a strong rigidity ...

Mechanical Frame

- 2 separate semi-barrels with end flanges, connected by spacer bars
- Flanges are mounted to a "Central Support Frame"
- Precision holes at the flanges to fix straw modules
- FEM analysis: 0.03mm max. deflection
- Mechanical frame weight: 2× 9 kg
- 11.6 kg Straw tubes (4636× 2.5g) with
 - strong wire stretching (230kg equiv.)
 - strong tube stretching (3.6t equiv.)

Semi-barrel	components for	FEM analys

Total weight	280 N
Electronics, gas supply	110 N
Straw grounding, boards	20 N
2300 Straw tubes	60 N
6 Connecting bars (4 needed)	30 N
2 End flanges	60 N

Material	Aluminum			
Density	2.7 g/cm ³			
Youngs modulus	70 GPa			
Radiation length (X ₀)	9 cm			
Thermal expansion	24 ppm/°C			

Nov-15, 2012

STT Mechanical Layout

Central Tracker Mechanical System

- "Central Frame" (CF) to support all central components
 - beam pipe + Micro Vertex Detector + STT
- Rail system for insertion of CF in the PANDA target spectrometer

STT Readout

4600 straws in STT

- ~ 10-15 pF straw capacitance, ~ 2 fC sensitivity (threshold ~ $1.2 \times 10^4 \text{ e}^{-}$)
- ~ 800 kHz per straw maximum hit rate (only inner layers)

Drift time readout

- ~ 200 ns drift time range, Ar/CO_2 (10%), 2 bar, 2 Tesla
- ~ 1 ns time resolution required
- Specific energy loss measurement (dE/dx) for particle identification
 - (Indirect) amplitude readout needed to measure charge information
 - Required energy resolution σ(E)/E < 10 % for sufficient π/K/p separation power at low momenta < 800 MeV/c (simulation)
- Readout concept to measure drift time + charge (dE/dx)
 - Hit rates: ~ 800 kHz (max), ~ 400 kHz (avg.)

STT Readout Concept

2 concepts under study to measure drift time (isochrone) + charge (dE/dx)

- Amplitude measurement by FADC and FPGA readout: ΣQ
 - FADC sampling frequency 240 MHz, ~ 4.2ns sampling points
 - Pulse shape analysis realtime by FPGA: LE-time + ∑Q
 - Amplifier-Shaper boards frontend at detector
- Signal height measurement by time-over-threshold (ToT): Q=f(ToT)
 - Amplifier-Shaper-Discriminator (ASIC): LE-time + ToT
 - Time Readout Boards (TRB), TDC in FPGA
 - Option: analog output after 1st amplifier-shaping stage, to ADC
 - ToT method for particle-id (used at ATLAS-TRT, HADES-MDC)
 - New ASIC chip design, optimised for PANDA-STT (AGH Krakov)
- Frontend electronic design: radiation-hard and low power consumption

Prototype Productions

- STT semi-barrel (1:1) for developing assembly technique
- Mechanical frame structure (Alu) with rail system
- 3× Small-scale straw setups for readout & in-beam tests
 - 128 Straws in 8 axial layers, 1500mm length, \emptyset =10mm
 - 400 Straws, 8 axial + 8 stereo layers
 - 32 Straws for aging studies
- STT detector in COSY-TOF experiment
 - "Global" test system for PANDA-STT
 - Same straw design & materials, close-packed layers
 - Test of mechanical precision and spatial resolution
 - Operated in evacuated time-of-flight barrel (25m³)
- Straw readout prototypes
 - ASIC (T, ToT) + TRB for time-over-threshold method
 - **Preamplifier + FADC** for amplitude readout

STT Mechanical Prototype

Semi-barrel, length 1.2 m, final radial dimensions, reduced mech. frame

STT prototype, one semi-barrel

Hexagon sector, mounting brackets to fix modules in mechanical frame

A STT sector consists of 6 straw modules: 2 inner axial + 2 stereo + 2 outer axial

Peter Wintz

Central Frame Prototype

- Central Frame to support beam pipe + MVD + STT
- STT support frame prototype
- Rail system for insertion

Peter Wintz

Prototype In-Beam Tests

- STT detector in COSY-TOF experiment at external COSY beam line
- Aging tests with straw prototype and p-beam at COSY
 - Gas mixture and straw materials, radiation hardness
- Readout tests with straw prototype systems in proton beam
 - Energy resolution of $\sigma(E) \sim 8\pm 1\%$ measured with amplitude readout
 - Setup of new ASIC readout for ToT started, optimisation of parameters
- High-rate readout tests (1-2 MHz per straw)
 - Different beam momenta, range 0.6 3 GeV/c
 - Ongoing, at least 2 beam times per year foreseen (COSY p/d-beam)

Testsystem COSY-STT

2704 straw tubes

- Al-mylar: d=32µm, ∅=10mm, L=1050mm
- 13 planar double-layers, skewed by $i \times 60^{\circ}$
- Embedded in CF-rohacell sandwich frames
- Ar/CO_2 (20%) at p=1.2bar
- Time readout (isochrones)

Operated in vacuum since 4 years now

- Gas leakage stays on permeation level
- No real leakage (no dissolving glue, brittle materials,..)
- Strong confidence in all straw materials and assembly techniques for PANDA-STT

COSY-STT Spatial Resolution

- Isochrone radius drift time calibration r(t)
- Global parametr. (2700 straws) by 4th order polynomial
- Track reconstruction by χ^2 fit to isochrones
- Spatial resolution by residual distribution
 - $\sigma_{r\Phi} = 138 \mu m$ (average, range 190 100 μm)
 - Ar/CO2 (20%) at 1.25 bar pressure

COSY-STT Tracking Results

- Physics: hyperon production, (pol.) p-beam on IH₂-target, p_b~3GeV/c
- Reconstructed $pp \rightarrow pp$ elastic scattering events
 - resolutions: $\sigma \sim 110 \ \mu m$ vertex, 4.5 MeV missing energy
- Example of reconstructed pp → pKΛ event with delayed decay Λ → pπ⁻ (black circle)

DATA

Aging Studies

Parasitic test setup behind COSY-TOF spectrometer

- 32 straws, L=1m, 3 diff. gas mixtures, HV current monitored per 2 straws
- p-beam, 3 GeV/c, 10 days, ~ 2.3×10⁶ s⁻¹ cm⁻² (by SciFiber Hodo)
 - Straw rate: ~ 2×10⁶ s⁻¹ per 1-2 cm wire (~ 140× PANDA-straw rates)
- Measurement of gas gain (loss) by signal amplitude height from ⁵⁵Fe-source

3 Straw signals on scope, time structure by COSY-beam extraction

Straw no	Gas mixture @ 1.65 bar	I _{max} (μΑ)	ΣQ (C/cm) in 199h	Aging ∆G/G₀		
1 – 8		1.4	0.72	03%		
9 – 16	$A1/CO_2 (10\%)$	1.1	0.58	07%		
17 – 20)) Ar/CO (30%)	2.3	1.23	no		
21 – 24	AI/CO ₂ (30%)	1.5	0.79	no		
25 – 32	Ar/C ₂ H ₆ (10%)	1.7	0.87	no		

Aging Results And Strategy

- Results:
 - No loss seen for Ar/CO₂ (30%) and Ar/Ethane (10%)
 - Small gas gain drop (<7%) seen for Ar/CO₂ (10%) in some straws
 - Localized, correlated with beam intensity
 - Charge load was ~ 0.6 1.2 C/ cm, equiv. to ~ 5 years PANDA-STT
- Strategy:
 - Ar/CO₂ preferred gas mixture: highly tolerant to highest irradiation
 - Charge loads for STT@PANDA: ~ 0.2 C/cm/year (~1 C/cm at z~2±1cm)
 - No aging expected with Ar/CO₂ at mod. gas gains for 99.7% of STT during >5 years of PANDA operation at full luminosity
 - Small aging caused by low energy protons from elastic scattering may start around z=2±1cm (0.3% of STT) after 2 years
 - Technique developed to replace single faulty straws in modules, saves cost / time

Mitglied der Helmholtz-Gemeinschaft

Energy-Loss Measurements

- Proton beam with different momenta
 - Range 0.6 2.9 GeV/c
- 2 straw setups with different readout systems
 - Ar/CO₂ (10%) at p=2bar
 - Orientations of setups to beam varied
- Readout with current amplifier + FADC
 - FPGA (time, ampl.) + raw mode readout
 - Sampling rate 240MHz (~4.17ns)
- Readout with Ampl-Shap-Discr (ASIC)+TRB
 - First tests with beam
 - Tuning of ASIC parameters

2 straw setups, proton beam coming from the back

First Results of Energy-Loss Measurements

- FADC-readout, dE/dx resolutions (30% truncation)
 - σ_{dE/E} = 9.3% (2.9 GeV/c), 8.1% (1.0 GeV/c), 7.0%(0.6 GeV/c)
 - Up to 19 straw hits per track
 - Lower beam intensity so far, ~ 100 kHz/cm
- PANDA-STT: 25 straw layers
 - $\sigma_{dE/E} = 7.0$ % feasible
- Dedicated high-rate beam tests started this year

ASIC Prototype For ToT-Measurement

M. Idzik, D. Przyborowski , AGH - Kraków

Nov-15, 2012

Mitglied der Helmholtz-Gemeinschaft

ToT-Prototype Results

- 2012: 1st ASIC prototype, readout boards + DAQ successfully running
- Task: optimisation of ASIC parameters (software control!)
 - Verify signal shape, ion tail cancellation, baseline stability
 - Variable amplifier gain and peaking time
 - Additional analog output (FADC, on scope)
- At different beam momenta (ToT-resolutions)
- At high beam intensities

						Pan	da FE configurator <	@dkl13>								\odot	0
	Ch1_thr	Ch2_thr	Ch3_thr	Ch3_thr	Baseline	on/off	PreAmp gain	PreAmp T	Rp	Ср	Тр	Tail cancel.	Rt1	Ct1	Rt2	Ct2	BLH
A	1240 🗘	1278 🗘	1311 🗘	1282 🗘 m'	V 1200 🗘		1 ~	100 ~	10 ~	10	~ [11] ~	TC_on ~	19 ~	13,5 ~	11 ~	1,65 ~	0
в	1300 🗘	1215 🗘	1353 🗘	1326 🗘 m'	v 1200 🗘		1 ~	100 ~	10 ~	10	~ [11] ~	TC_on V	19 ~	13,5 ~	11 ~	1,65 ~	0
с	1300 🗘	1251 🗘	1216 🗘	1267 🗘 m'	v 1200 🗘		1 ~	100 ~	10 ~	10	~] [11] ~	TC_on V	19 ~	13,5 ~)[11] ~	1,65 ~	0
D	1208 🗘	1248 🗘	1215 🗘	1267 🗘 m'	v 1200 🌲		1 ~	100 ~	10 ~	10	~ [11] ~	TC_on V	19 ~	13,5 ~	11 ~	1,65 ~	0
E	1267 🗘	1215 🗘	1215 🗘	1295 🗘 m'	v 1200 🗘		1 ~	100 ~	10 ~	10	~ [11] ~	TC_on V	19 ~	13,5 ~	11 ~	1,65 ~	0
F	1215 🗘	1267 🗘	1309 🗘	1200 🗘 m'	v 1200 🗘		1 ~	100 ~	10 ~	10	~ 11 ~	TC_on V	19 ~	13,5 -	11 ~	1,65 ~	0
G	1222 🗘	1218 🗘	1225 🗘	1291 💭 m'	v 1200 💭		1 ~	100 ~	10 ~	10	 11 	TC_on V	19 ~	13,5 ~	11 ~	1,65 ~	0
н	1259 🗘	1265 🗘	1305 🗘	[1215) m'	v 1200 🗘		1 ~	100 ~	10 ~	10	~ [11] ~	TC_on V	19 ~	[13,5] ~	11 ~	1,65 ~	0
lt setti e Re	ings store	echo 010100 echo 010101 ASIC H: echo 111101 =======	0001111010 0001111010 1101101111	011010000000 011010000000 011010000000 11001010101011	Log 00 >/dev/ttyUSE 00 >/dev/ttyUSE 11 >/dev/ttyUSE	30 30 30										Send I Exit	

Mitglied der Helmholtz-Gemeinschaft

ToT + FADC Measurements Ongoing

- Beam times (2-3 days) in Sep-2012 (and Dec-2012)
 - 0.9 + 2 GeV/c beam momentum
 - proton intensities: 2×10⁴ and 2×10⁶ / cm²
 - Straws operated in gas gain range $2..10 \times 10^4$
- Both readouts in parallel
- Beam tests ongoing
- Planned 2× per year

Summary

- Mechanical STT construction technique clear
 - Materials, design and assembly techniques verified
 - 2 (main) laboratories: Frascati and Jülich
- Readout systems needs (few) more iterations
 - High-rate tests ongoing
 - Steady access to beam test at COSY
- Iteration of electronic readout design limited by budget situation (so far)