

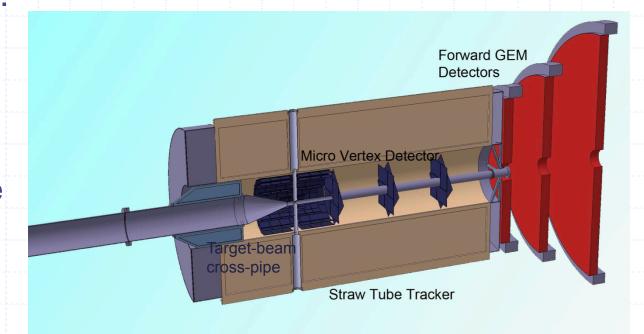
Requirements for the PANDA Tracking system

- Tasks and constraints;
- Figures of merit;
- Benchmark channels.

Paola Gianotti

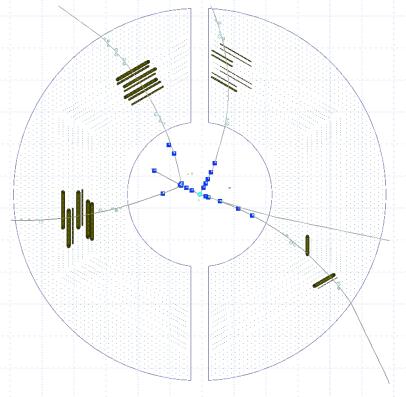
Requirements for the PANDA tracking

- High precision charged particles track measurement.
- High precision momentum measurement from 100 MeV up to 15 GeV.
- Secondary vertex capabilities for hadrons with c- and squark content.
- Help in identifying particle species.


Constraints for the PANDA tracking

- High rate capability: interaction rate up to 2 ·10⁷ annih/s
- Contain the material budget in order to minimize multiple Coulomb scattering and secondary emission;
- Due to the presence of the target-beam cross-pipe the volume is divided in 2 halves.
- Very tight space for services due to high density of detectors

PANDA Tracking system


The tracking of charge particles will be done with a set of different detectors located in the Target and Forward Spectrometers.

Combining the information of different detectors we will fulfill all the requirements.

Detector's parameters definition

Design choices were driven by the physics performance of the detector options resulting by simulation and prototype performance results.

STT+MVD event display

A set of figures of merit have been defined for each subsystem which allows to characterize the performance issues of the detector options.

Specific requirements for the CT

Acceptance

Almost 4π

Minimal Material budget

 $X/X_0 \sim 1.5\%$

Resolving complex events
 High rate capability

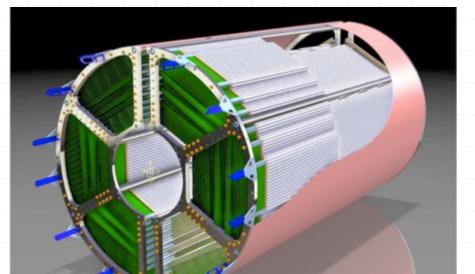
Multiple tracks, secondary vert. 1 ·10⁴ ev cm⁻² s⁻¹

Spatial resolution

 $\sigma_{r_{\infty}} \sim 150 \mu m$ σ_{z} ~ few mm Radiation hardness

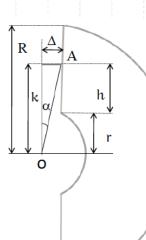
 $0.1 - 1 \text{ C cm}^{-1} \text{ y}^{-1}$

Momentum resolution


 $\delta dp/p \sim 2\%$

Fit tight physical space

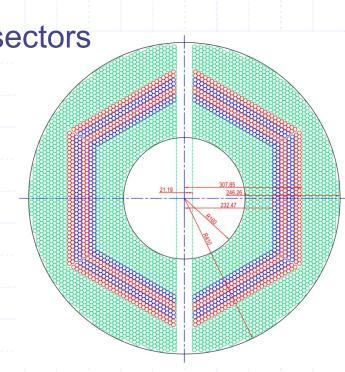
custom design of electronics and services


The Straw Tube Central Tracker

The Central Tracker is a two-halves cylindrical device enclosing the MVD. Straw tubes have been chosen as

active elements.

$$\Delta = 2 \text{ cm}$$
 $R = 42 \text{ cm}$
 $r = 15 \text{ cm}$



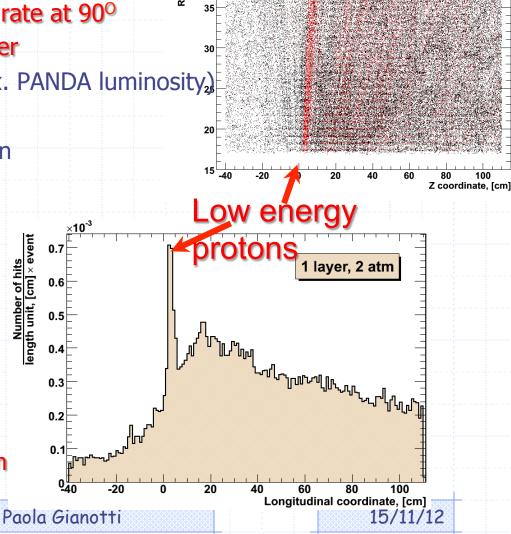
Acceptance loss due to the target pipe, from a rough geometrical calculation: $\frac{2\alpha}{\approx 4.5\%}$

STT Layout

 4636 Straw tubes in 2 semi-barrels around beam/target cross-pipe

23-27 planar layers in 6 hexagonal sectors
 15-19 axial layers (green) // to
 beam axis for x,y determination;
 4 stereo double-layers for z
 reconstruction with ±2.89° skew
 angle (blue / red)

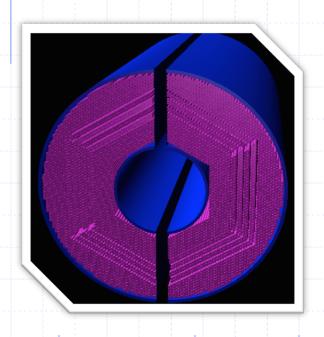
Benchmark Channels

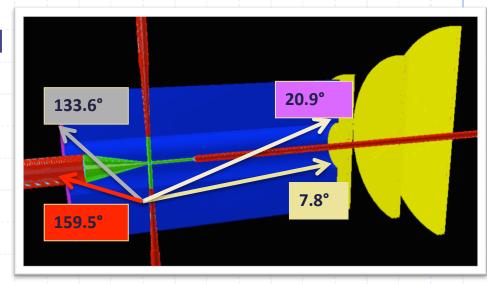

In order to assess the performance of the Central Tracker a list of benchmark channels has been simulated to cover the full range of physics tasks for this detector.

Channel	Final state
$\overline{p}p \rightarrow (n)\pi^+\pi^-$	$(n)\pi^+\pi^-$
$\overline{p}p \rightarrow \Psi(3770) \rightarrow D^+D^-$	$2K4\pi$
$\overline{p}p \to \Lambda \overline{\Lambda}$	$p\pi^-\overline{p}\pi^+$
$\overline{p}p \rightarrow \eta_c \rightarrow \phi \phi$	4K
$\overline{p}p \rightarrow \overline{p}p$	$\overline{p}p$

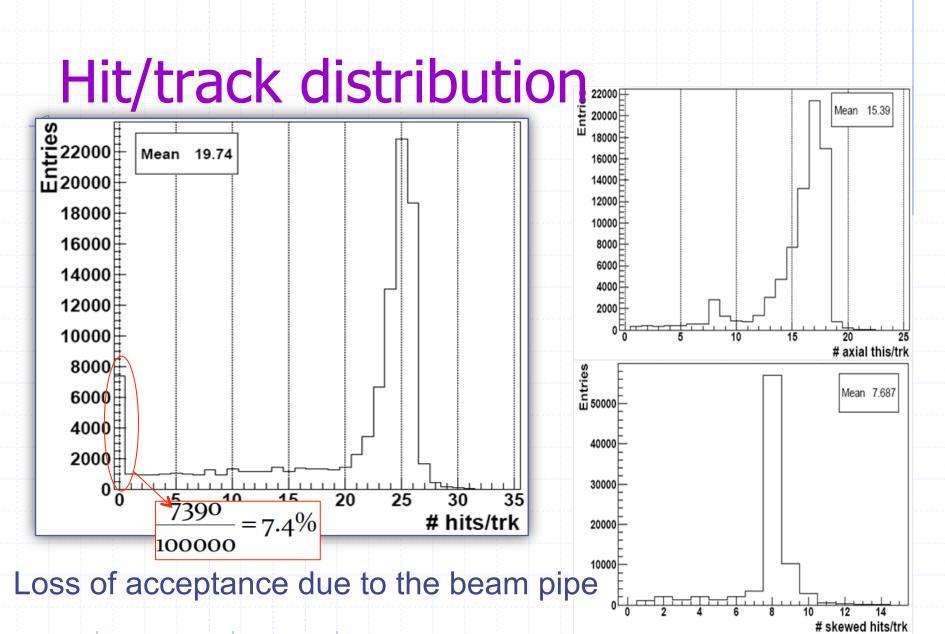
Single track events have also been simulated to test STT performance.

Particle Rates in the CT


- p p elastic scattering provide high rate at 90°
- All numbers for innermost STT layer
- Event rate of 2×10⁷ evts/ sec (max. PANDA luminosity₂)
- Particle rates
 - ~ 5-8 kHz/ cm in forward region
 - ~ 14 kHz/ cm at z = 2±1 cm
 - ~ 800 kHz/ straw
- Energy losses dE per cm
 - Min: ~ 5 keV/cm from mips
 - Mean: ~ 10 keV/cm
 - Max: ~ 45 keV/cm (at θ ~ 90°)
- Charge loads (A=5×10⁴):
 - ~ 0.2 C/cm/year
 - ~ 1.0 C/cm/year at ∆z ~ 2±1cm



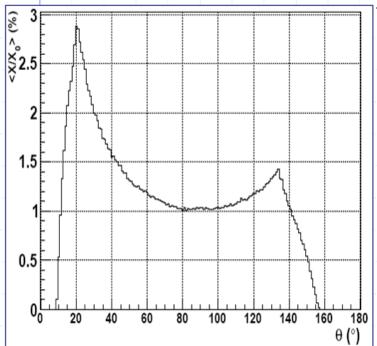
MonteCarlo Design Study


10⁵ μ-single track events, generated at the I.P.

uniformly in $\varphi(0^\circ, 360^\circ)$ and $\cos\theta, \theta \in (7.8^\circ, 159.5^\circ)$

Muon's momentum fixed: 1.5 GeV/c

Paola Gianotti


15/11/12

12

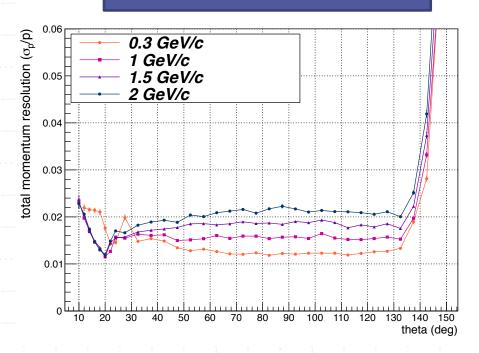
Radiation Length

For each tube: $\langle X/X_{\circ} \rangle = 0.04\%$

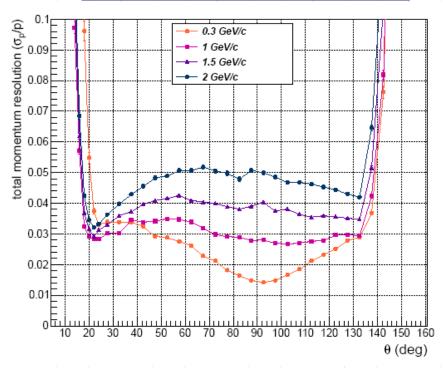
(mean #hits/trk) $\cdot \langle X/X_0 \rangle / \sin \vartheta$

Element	Material	X[mm]	$X_0[cm]$	X/X_0
Film Tube	Mylar, $27 \mu\mathrm{m}$	0.085	28.7	3.0×10^{-4}
Coating	Al, $2\times0.03\mu\mathrm{m}$	2×10^{-4}	8.9	2.2×10^{-6}
Gas	$Ar/CO_2(10\%)$	7.85	6131	1.3×10^{-4}
Wire	$\mathrm{W/Re,20\mu m}$	3×10^{-5}	0.35	8.6×10^{-6}
			\sum_{straw}	4.4×10^{-4}

The numbers for the gas are evaluated at 20° C and 2 atm.


Two protection walls $(0.084\% X/X_0)$ will be placed in and out.

Mean value < 1.5%


Momentum resolution

Muon of different momenta have been simulated.

MVD+STT+GEM

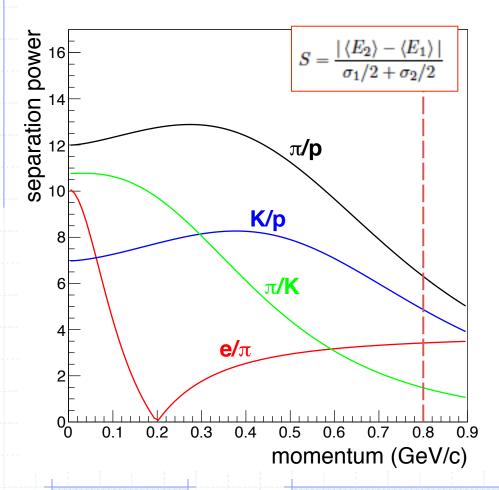
STT alone

dE/dx capability of STT

The use of straw as tracking device is well known. The possibility to perform dE/dx was explored.

Having a mean # of ST of 20/track.

The dE/dx (truncated mean) vs momentum distributes on different bands depending on the mass of the particle.

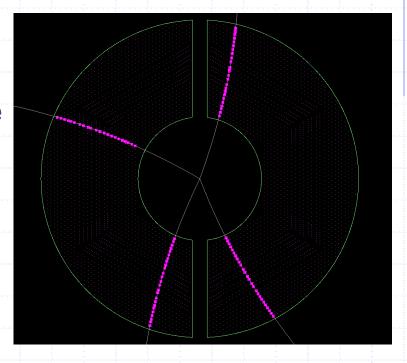

Test: electrons, pions, kaons and protons

()	30		4	श्रह	1			•		_	90 _
() Xp/	25	1.0	1				9.00	200	•	_	80
Я	; - -	1:5	94		g.	7	g H	Ć:	÷	-	70
	20	$\ \cdot\ $	T.					10	4	_	60
	15—]	-3			3				_	50
	-								in is		40
	10			ΨĄ,		N.	ЯЪ,		/		30
	5 7								12		20
		4					ST IN		7		10
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7 ().8 0. (GeV/c	.9	0
10	narti	مام	nu	rity (0/-)	•	1110111	entun	(GeV/C	,	

		frequencies of p.i.d. (%)				
		e	μ	π	K	р
	е	78.9	5.2	5.6	10.1	0.2
part	π	9.0	47.2	40.7	2.9	0.2
	K	22.3	8.0	1.6	65.1	3.0
true	p	0.1	[0.01]	0.1	1.0	98.8

efficiency (%)	true particle	purity (%)
78.9	e	71.5
87.9	П	81.1
65.1	K	82.3
98.8	p	96.7

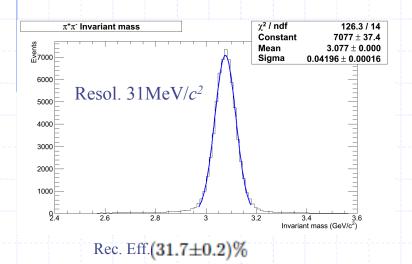
Separation power

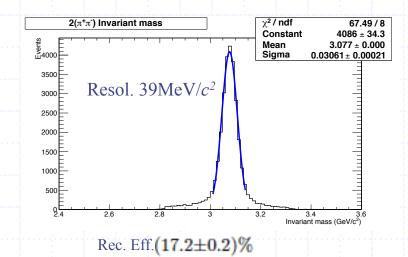

Simulation results show that with an energy resolution ~ 10% we can contribute to PID in the low momentum range (<0.8 GeV/c)

Paola Gianotti

Physics Channels Analysis

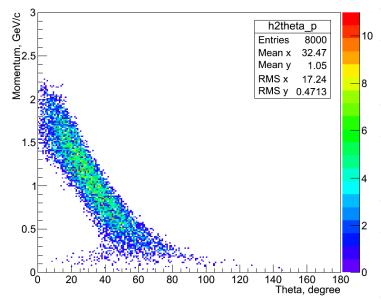
To evaluate vertex, mass resolution and efficiency of the overall tracking system the following channels have been simulated:

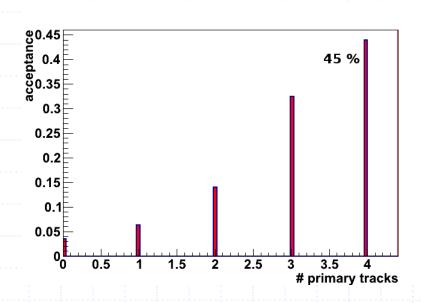

$$\begin{array}{l} \bar{p}p \rightarrow (n)\pi^{+}\pi^{-} \left[n=2,4\right] \\ \bar{p}p \rightarrow \eta_{C} \rightarrow \phi \phi \\ \bar{p}p \rightarrow \Psi(3770) \rightarrow D^{+}D^{-} \end{array}$$

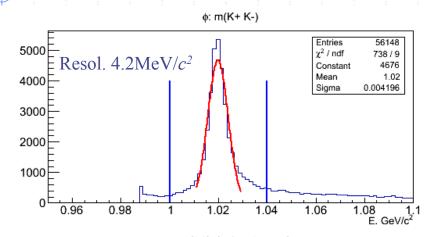


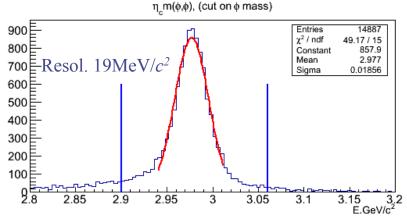
All channels have been simulated adding DPM bkg

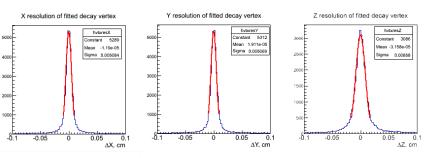
Multi-pion final states


pp→(n) π⁺π⁻ [n=2,4] are the basic channels to test the STT performance. CMS energy 2.954GeV. Simulations has been performed including also DPM background events.



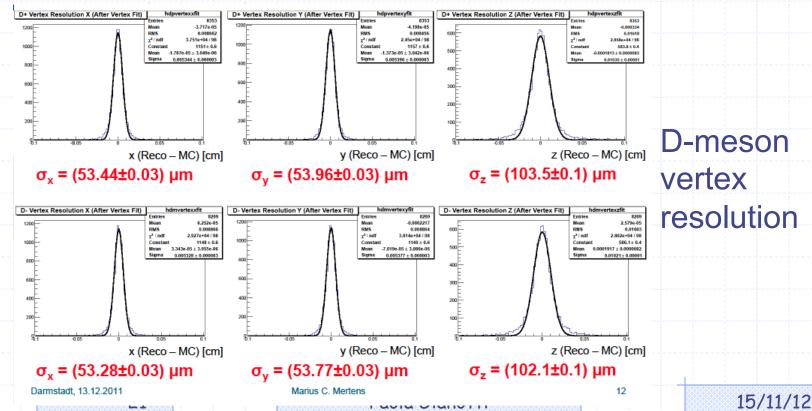

For the study of $\eta_{c to}$ test the central tracker performance, the decay mode with kaons has been chosen.



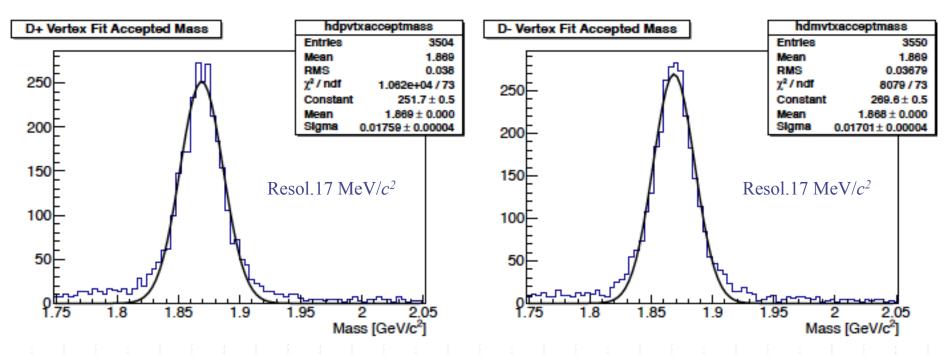


Mass resolution for Φ and η_c for events with DPM bkg. mixing.

The final efficiency for this channel is 11.6%.



Vertex Resol. $51\mu m$ (x,y); $86\mu m$ (z)

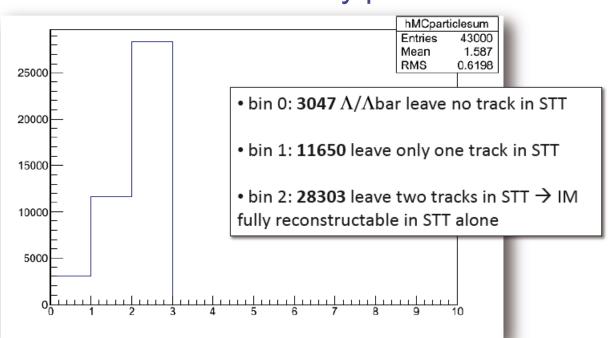

Open charm

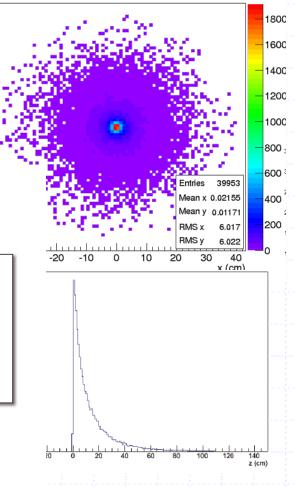
The following channel has been simulated for a beam momentum of 6.5788 GeV/c

 $\bar{p}p \to \Psi(3770) \to D^+D^- \to K^-\pi^+\pi^+ K^+\pi^-\pi^-$

D meson mass resolution

The overall efficiency for this channel is 5.9%, and is the convolution of the acceptance and of the reconstruction efficiency. This reduces to 3.3% when the bkg is added.

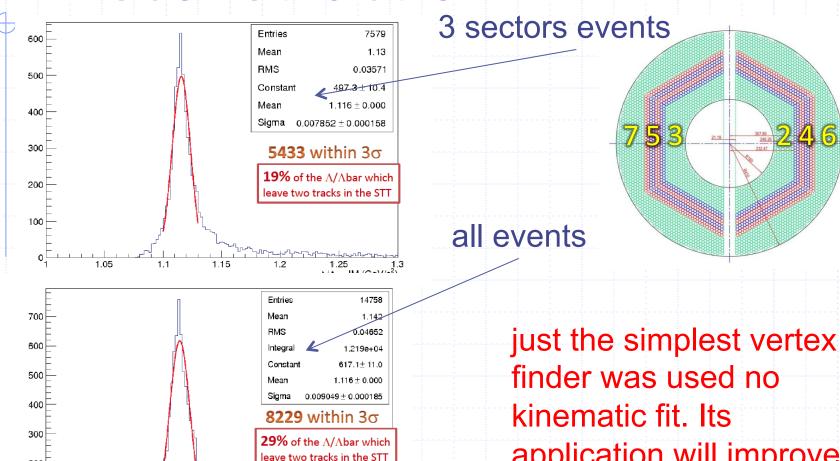

22


Paola Gianotti

15/11/12

ΛΛ Events

The events have been generated with a ph.sp. distribution \rightarrow No forward peaked angular distribution. Λ decay p+ π -



A reconstruction

200

100

24

application will improve results and lower the tail.

ΛΛ_{bar} IM (GeV/c²) S **Paola Gianotti**

15/11/12

Other parameters

Other parameters that have to be considered are:

- Feasibility in the needed time: available infrastructures, manpower, etc...;
- Production and maintenance;
- Integration with other detectors;
- Costs and financing issues for construction and maintenance.

These more general aspects are not entering the TDR, they are subjects of discussion within the PANDA Technical and Financial Boards.