

Progress with Brick Manipulator System (BMS)

Inocencio Monteiro & Pierre Mugnier

Progress with Brick Manipulator System (BMS)

- Protection skates, Changeable Sheet Support
 - Skate upgrade for CS holding
 - Linked protection skates
 - Comparison linked/separate skates
 - CSS
- Tests
 - Measurements of friction coefficient for polyethylene skates
 - Tests of "narrow bricks" running on the tray
 - Deformation of the bridge under loading & conclusions
 - Interface between tray/BMS
- Interface between magnet /BMS
- Platform kinematics
- Progress in automatism
- Schedule

CS holding skates

Brick and CS with linked skates

lapp

Linked skates

P. Mugnier LAPP le 16/10/02

P. Mugnier

FRASCATI 29/10/02 6

Comparison linked/separate skates

With separate skates:

- clearance depending on the brick size
- Point of application of brick weight on tray changing for small bricks
- Brick position not known to 1 mm
- Supporting band 12 mm
- Dismounting of CS easier (ungluing only rear skates)
- Gluing thickness equally small everywhere

With linked skates:

- Clearance of the brick with respect to the tray fixed
- Brick weight applied on the tray in a more controlled way
- Brick position known within 1 mm
- Supporting band 10 mm
- Dismounting of CS more difficult (ungluing all skates)
- Gluing thickness variable, can be large on front side

CS plastic support

Measurements of friction coefficient for polyethylene skates on bricks equipped with origami

Properties

- Brick weight: 7.75 kg
- Clearance between tray/brick:
 0.5 =>1mm without chamfer (skate edges were not cut)
- Results
 - □ Friction coefficient: 0.16
 - Friction coefficient measured on a inclined plane: 0.10
- Conclusion
 - A realistic train of bricks has a lot more friction than a brick: train internal friction, side frictions (small clearance case)
 - Increased efforts, but still manageable

Tests of "narrow bricks" running on the tray

Conclusions of the tests with "narrow bricks"

Properties

- Brick weight: 7.75 kg
- Clearance between tray/brick: 3mm (edges of skates not cut)

Results

- POM
 - □ friction coefficient measured on a train of 26 bricks: 0.11
 - □ Friction coefficient measured on a inclined plane: 0.114
- Polyethylene
 - □ friction coefficient measured on a train of 26 bricks: 0.10
 - □ Friction coefficient measured on a inclined plane: 0.096
- Conclusions
 - Coherent results: less friction in case of large clearances
 - Improvement of skates: define chamfered edges for skates to take into account the tray radius

Deformation of the bridge under loading (7 bricks)

Opera

Bridge deformation with respect to the bridge support.

Measurements agree with computation (0.5mm)

P. Mugnier

FRASCATI 29/10/02 12

Interface between tray/BMS

The requirement is an extension of about 20 mm space at the end of the tray

Interface Magnet/BMS

Parameters

- When platform in rear position
 - 200mm/magnet
 - □ 100mm min/cooling tubes!
- Magnet distance/tunnel wall increased 2000 to 2250 (as agreed with the technical coordinator)
 - To be able to use the crane for exchanging "brick baskets" of the loading station.

Platform kinematics

Progress in automatism (Pusher installs 26 bricks on the tray, then VV extracts the third brick)

End of 2002

□ Call for tender of "porticos"

2003

- Fabrication of platforms
- Fabrication of "porticos"
- Preparation of the lift installation in a LAPP laboratory

2004

Tests of the BMS at LAPP

