A POSSIBLE SOLUTION FOR THE WALL MECHANICAL STRUCTURE

(NAPLES, LNF)

Following the discussions during the workshop in December at CERN, we have elaborated a possible solution for the wall-support structure that fulfills the requirements stated at the workshop.

The driving ideas are:

- No material in front and behind the bricks.
- To concentrate the extra-target material at the brick corners.
- To allow "on line" brick removal.
- To hung the structure from the top in order to minimize the supporting material and fulfill the earthquake safety rules.
- To match the required precision in bricks positioning.

Very schematically (see fig 1), the structure consists of square bars (typically 5x5 mm² stainless steel square bars, see A in fig. 1) suspended from above. The bars are hanged to a top structure, which supports the weight, and fastened to a bottom structure, which keeps in place the bars. The two lateral sides are free for the brick access and removal. The bars have a pitch nearly equal to the brick dimension, and are welded to horizontal trays (see B in fig. 1) where bricks can slide individually. The horizontal trays are hollow and made of 0.5-mm stainless steel sheets, preformed with the pressing techniques. The trays have folded edges (see C in fig. 1) which help both in rigidity and brick sliding. The total amount of material around the brick is about 0.6% of the brick weight.

The main advantages of this structure are the following:

- The structure is light (0.6% of the brick weight), so the number of undesired neutrino interactions in the non-active material is reduced. Moreover these interactions can be clearly identified as undesired, if the tracking resolution is adequate, since are concentrated at the junction of two brick gaps.
- The well-localized supporting material makes easier the track following between adjacent bricks (both in longitudinal and transversal directions).
- The extraction from both sides minimizes the number of bricks to be moved (only half row is involved).
- The side extraction simplifies the robot design, making it cheaper, faster and selfguided by the tray edges.
- No movement of the structure during extraction is needed.

The distances between adjacent bricks can be as follows:

- twice the bar thickness (5 mm) + the tracker thickness, in the longitudinal direction;
- 0 mm in the transverse horizontal direction;
- The tray thickness + tolerances for brick insertion, in the transverse vertical dimension

FIG. 1

- A few items need to be additionally studied:
- 1. The main hanging system design in order to fulfill the earthquake safety rules;
- 2. The optimization of the tray design;
- 3. The possible use of the structure for the tracker support.

TAB 1

BRICK SUPPORTING STRUCTURE MATERIALS AND STRESSES IN VERTICAL RODS

Weight = 250 Kg Tension = 50 Kg Force tensioning each rod = 300 Kg

Force = Weight + Tension Mechanical Stress: $\sigma = F/A$ (A, surface area)

Rod section: 4x4	Rod section: 5x5	Rod section: 6x6
$A = 16 \text{ mm}^2$	$A = 25 \text{ mm}^2$	$A = 36 \text{ mm}^2$
$\sigma = 18.8 \text{ Kg/ mm}^2$	$\sigma = 12.0 \text{ Kg/ mm}^2$	$\sigma = 8.3 \text{ Kg/ mm}^2$

Stainless Steel

Rod section: 4x4	Rod section: 5x5	Rod section: 6x6	
AISI 304 $\sigma y = 18$	AISI 304 σy = 18	AISI 304 σy = 18	
Kg/mm ²	Kg/mm ²	Kg/mm ²	
$\sigma y/\sigma = 0.96$	$\sigma y/\sigma = 1.5$	$\sigma y/\sigma = 2.16$	
$\Delta l/l = 9.4 \times 10^{-4}$	$\Delta l/l = 6 \times 10^{-4}$	$\Delta l/l = 4.2 \times 10^{-4}$	
(6 mm over 6 m)	(4 mm over 6 m)	(3 mm over 6 m)	
AISI 410 $\sigma y = 41$	AISI 410 $\sigma y = 41$	AISI 410 $\sigma y = 41$	
Kg/mm ²	Kg/mm ²	Kg/mm ²	
$\sigma y/\sigma = 2.18$	$\sigma y/\sigma = 3.42$	$\sigma y/\sigma = 4.94$	
$\Delta l/l = 9.4 \times 10^{-4}$	$\Delta l/l = 6 \times 10^{-4}$	$\Delta l/l = 4.2 \times 10^{-4}$	
(6 mm over 6 m)	(4 mm over 6 m)	(3 mm over 6 m)	
AISI 420 $\sigma y = 57$	AISI 420 $\sigma y = 57$	AISI 420 $\sigma y = 57$	
Kg/mm ²	Kg/mm ²	Kg/mm ²	
$\sigma y/\sigma = 3.03$	$\sigma y/\sigma = 4.75$	$\sigma y/\sigma = 6.87$	
$\Delta l/l = 9.4 \times 10^{-4}$	$\Delta l/l = 6 \times 10^{-4}$	$\Delta l/l = 4.2 \times 10^{-4}$	
(6 mm over 6 m)	(4 mm over 6 m) (3 mm over 6 m)		

Rod section: 4x4	Rod section: 5x5	Rod section: 6x6
Anticorodal 100 $\sigma y = 27$	Anticorodal 100 $\sigma y = 27$	Anticorodal 100 $\sigma y = 27$
Kg/mm ²	Kg/mm ²	Kg/mm ²
$\sigma y/\sigma = 1.44$	$\sigma y/\sigma = 2.25$	$\sigma y/\sigma = 3.25$
$\Delta l/l = 2.7 \times 10^{-3}$	$\Delta l/l = 1.7 \times 10^{-3}$	$\Delta 1/1 = 1.2 \times 10^{-3}$
(16 mm over 6 m)	(10 mm over 6 m)	(7 mm over 6 m)
Avional 14 $\sigma y = 41$	Avional 14 $\sigma y = 41$	Avional 14 $\sigma y = 41$
Kg/mm ²	Kg/mm ²	Kg/mm ²
$\sigma y/\sigma = 2.18$	$\sigma y/\sigma = 3.42$	$\sigma y/\sigma = 4.94$
$\Delta l/l = 2.7 \times 10^{-3}$	$\Delta l/l = 1.7 \times 10^{-3}$	$\Delta l/l = 1.2 \times 10^{-3}$
(16 mm over 6 m)	(10 mm over 6 m)	(7 mm over 6 m)

Aluminum Alloy

TAB 2 BRICK SUPPORTING STRUCTURE MATERIALS LIST WITH YELDING STRESSES

Stainless Steel

Density: 7900 Kg/m³

Material	бу
AISI 304	17.5 Kg/mm ²
AISI 316	19.5 Kg/mm ²
AISI 410	41.0 Kg/mm ²
AISI 420	47.5 - 57.0 Kg/mm ²
AISI 431	56.5 Kg/mm ²

Aluminum Alloy

Density: 2800 Kg/m³

Material	σy
ANTICORODAL 63	17 - 23 Kg/mm ²
ANTICORODAL 61	24 - 31 Kg/mm ²
ANTICORODAL 100	27 - 34 Kg/mm ²
AVIONAL 22	23 -30 Kg/mm ²
AVIONAL 14	41 - 45 Kg/mm ²
AVIONAL 24	32 - 40 Kg/mm ²
ERGAL 55	49 - 60 Kg/mm ²
ERGAL 65	51 - 60 Kg/mm ²

TAB 3 BRICK SUPPORTING STRUCTURE MASS AND COST

Rod sec	tion: 4x4	Rod section: 5x5		Rod section: 6x6	
Rods:	1.16 m^3	Rods:	1.81 m ³	Rods:	2.61 m^3
Sheets (0.5 m	m): 1.15 m ³	Sheets (0.5	mm): 1.15 m ³	Sheets (0.5	mm): 1.15 m ³
Total:	2.31 m^3	Total:	2.96 m^3	Total:	3.76 m^3

Total material volume

Stainless Steel

Density:	7900 Kg/m ³
Cost :	8-12 CHF/Kg

Rod section: 4x4	Rod section: 5x5	Rod section: 6x6
Total mass (5 supermod.): 18.2 T	Total mass (5 supermod.): 23.4 T	Total mass (5 supermod.): 29.7 T
Mass/wall: 152 Kg	Mass/wall: 195 Kg	Mass/wall: 248 Kg
Mass/brick: 53 g (0.6 %)	Mass/brick: 68 g (0.8 %)	Mass/brick: 86 g (1.0 %)
Total material cost:	Total material cost:	Total material cost:
146.000-218.000 CHF	187.000-281.000 CHF	238.000-356.000 CHF

Aluminum Alloy

Density: Cost :

2800 Kg/m³ 18-24 CHF/Kg

Rod section: 4x4	Rod section: 5x5	Rod section: 6x6
Total mass (5 supermod.):	Total mass (5 supermod.):	Total mass (5 supermod.):
6.5 T	8.3 T	10.5 T
Mass/wall: 54 Kg	Mass/wall: 69 Kg	Mass/wall: 88 Kg
Mass/brick: 19 g	Mass/brick: 24 g	Mass/brick: 30 g
(0.2 %)	(0.3 %)	(0.4 %)
Total material cost:	Total material cost:	Total material cost:
117.000-156.000 CHF	149.000-199.000 CHF	189.000-252.000 CHF