A critical view on the deeply bound K-pp system

V. Magas, A. Ramos (University of Barcelona)E. Oset (University of Valencia)H. Toki (RCNP,Osaka University)

The FINUDA experiment

UNIVERSITAT DE BARCELONA

M. Agnello et al. Phys. Rev. Lett. 94, 212303 (2005)

$$K^{-} {}^{A}Z_{g.s.} \rightarrow (\Lambda p) {}^{A-2}(Z-2)$$

Nuclei: ⁶Li, ⁷Li, ¹²C, ²⁷Al, ⁵¹V

• The invariant mass of the Λp pair is measured, $M_{\Lambda p}$.

- The same elementary reaction as in KEK: $K^- p p \rightarrow \Lambda p$ ($p_{\Lambda} > 300 \text{ MeV/c}$ to eliminate $K^- N \rightarrow \Lambda \pi$)
- A peak for the transition to the g.s. of the daugther nucleus should be observed at: $M_{\Lambda p} = m_K + M(A, Z) M(A 2, Z 2)$

M. Agnello et al. Phys. Rev. Lett. 94, 212303 (2005)

We will give an alternative explanation in terms of more conventional physics \rightarrow FSI interaction of the primary Λ and p (produced after K- absorption) as they cross the daughter nucleus!

i) Invariant-mass distribution of a proton and a π^- for all the events in which these two particles are observed ssian together with a linear background in the invariant-mass range of 1100–1130 MeV/ c^2 . (b) Opening angl A and a proton: solid line, ⁶Li, ⁷Li, and ¹²C; dashed line, ²⁷Al and ⁵¹V. The shaded area ($\cos\theta^{Lab} < -0.8$) is s

JNIVERSITAT DE BARCELONA

Our calculation

Monte Carlo simulation of K⁻ absorption by pp and pn pairs in nuclei

 $K^- pp \to \Lambda p \qquad K^- pn \to \Lambda n$

The K⁻ is absorbed mainly from the lowest atomic orbit for which the energy shift has been measured

The K⁻ is absorbed by two nucleons with momenta randomly chosen within the local Fermi sea: $|\vec{p_1}|, |\vec{p_2}| < k_F(r)$

• Primary Λ and N emitted according to phase space: $\vec{p}_{\Lambda}, \vec{p}_{N}$

- Further collisions of Λ and N as they cross the nucleus according to a probability per unit length σ_{ρ} with $\sigma_{\Lambda} \sim 2\sigma_{N}/3$
- Finally, the invariant Λp mass is reconstructed from the final events

Nuclear density profile and overlap $r^2 |\Psi^{nl}_{K^-}(r)|^2
ho^2(r)$

First (narrow) peak: formation of the g.s. of the daughter nucleus

$$K^{-} \quad {}^{A}Z_{g.s.} \quad \rightarrow \quad (\Lambda p) \quad {}^{A-2}(Z-2)_{g.s.}$$

 $M_{\Lambda p} \sim 2340 - 2345 ~{
m MeV}$ for the light nuclei

How much strength?

Formation probability (FP) x Survival probability (P_s) $|\langle^{A-2}(Z-2)_{g.s.} | (pp)^{-1A} Z_{g.s.} \rangle|^2$ $P = e^{-\int \sigma \rho \, dl}$

In light nuclei: FP ~ | 0.3 - 0.7 |² = 0.1 - 0.5, P_s ~ 0.6 \rightarrow 10 - 30% (ex: ⁷Li (pp)⁻¹ \rightarrow ⁵H)

In heavier nuclei: FP increases but P_s decreases \rightarrow also below 30%

 \rightarrow The largest part of the K- absorption events go into nuclear excitations, mostly to the continuum.

Where is this strength located? Obviously at smaller invariant Λp masses

A peak is generated in our Monte Carlo simulations when the primary Λ and p (produced after K⁻ absorption) undergo quasi-elastic collisions with the nucleus, exciting it to the continuum.

This is the analogue of the quasi-elastic peak (QEP) observed in nuclear inclusive reactions using a variety of different probes: (e,e'), (p,p'), $(\pi,\pi'),...$ (The QEP comes mostly from one collision of the particles exciting the nucleus to the continuum).

 \rightarrow The QEP accounts for the second peak of the FINUDA experiment!

Invariant mass distribution (one-collision) $^{12}{ m C}$

Angular correlations

Allowing up to three collisions

Other nuclei

Other channels

A)
$$K^-pp \to \Sigma^+ n, \ \Sigma^0 p$$

followed by $\Sigma^+(n)_{\text{sea}} \to \Lambda p, \ \Sigma^0(p)_{\text{sea}} \to \Lambda p$

This peaks around 2170 MeV (where there is indeed a small third peak in the experiment) and has a smaller strength than $K^-pp \rightarrow \Lambda p$

B)
$$K^- pp \to \Sigma^0 p$$

followed by $\Sigma^0 \to \Lambda \gamma$, $\sqrt{s} = 2240 - 2300 \text{ MeV}$

→ located in the region of the QEP and all events back-to-back, but strength is small, ~ 10-30% of $K^-pp \rightarrow \Lambda p$ events

Conclusion

We have shown that the Λp invariant mass distribution of the FINUDA experiment is naturally explained in terms of the $K^-pN \rightarrow \Lambda N$ reaction followed by further interaction of the Λ or the N in the daughter nucleus, without the need of invoking exotic mechanisms like the formation of a K⁻pp bound state.

V. K. Magas, E. Oset, A. Ramos and H. Toki, nucl-th/0601013

