The search for bound kaonic states in nuclei, experimental status and theoretical predictions

> Stefano Piano (INFN sez. Trieste)

Hadron 07 - LNF - 11/10/2007 - S.Piano – The search for bound kaonic states..

Outline of Talk

- Introduction and theoretical overview
- Overview of experimental methods and "evidences"
- Recent experimental results
 - Study of strange systems with two nucleons
 - Study of strange systems with three nucleons
 - Critical revision of experimental results vs theoretical expectations
- Summary and Conclusions

Introduction – theoretical approach

- General understanding of KN (KA) interaction
 - Small binding energies: 10-30 MeV
 - Large decay widths: 80-100 MeV
 - ... practically impossible to observe
- Recent theoretical developments:

YES! DBKS exist as narrow states, they can be experimentally observed

 NO! nuclear-antikaon interaction provides a shallow and wide potential, the KA states cannot be observed

Introduction – theoretical approach

- General understanding of KN (KA) interaction
 - Small binding energies: 10-30 MeV
 - Large decay widths: 80-100 MeV
 - ... practically impossible to observe
- Recent theoretical developments:

YES! DBKS exist as narrow states, they can be experimentally observed

 NO! nuclear-antikaon interaction provides a shallow and wide potential, the KA states cannot be observed

Akaishi & Yamazaki: What a Deeply Bound Kaon Nuclear State is

- Nuclear bound states formed by a single (double) K^- and few nucleons, S = -1
- Deeply bound due to the strength of the $\overline{K}N$ strongly attractive interaction, I = 0
 - Simplest case: ($\bar{K}N$) bound state: $\Lambda(1405)$
- The presence of $\Lambda(1405)$ prevents a reliable perturbative treatment
- More composite states: can be interpreted as molecules formed by $\Lambda(1405)+xN$
 - covalent bonding K⁻-nucleons, much stronger than the nuclear force
 - The $\Lambda(1405)$ should persist as such in a nuclear system

Hadron 07 - LNF - 11/10/2007 - S.Piano – The search for bound kaonic states..

Introduction – theoretical approach

- General understanding of KN (KA) interaction
 - Small binding energies: 10-30 MeV
 - Large decay widths: 80-100 MeV
 - ... practically impossible to observe
- Recent theoretical developments:

YES! DBKS exist as narrow states, they can be experimentally observed

 NO! nuclear-antikaon interaction provides a shallow and wide potential, the KA states cannot be observed

Oset, Weise, Mares ... the skeptical side I

- Akaishi-Yamazaki use a G-matrix treatment simplifying some absorption effects, and neglecting some couplings $(\pi\Sigma, \pi\Lambda)$
- Common view (Gal, Weise, Schaffner-Bielich, Wychech)
 - K⁻ -nuclear aggregates existence is not denied, but the potential is shallow the expected widths are large.
 ⇒ possible signals only from heavy systems
- Microscopic chiral approach (Ramos, Oset NPA671 (2000) 481):
 - Shallow nuclear potential, weak attractive KN interaction
 - Small binding energy (30-40 MeV) and large width (80-100 MeV)
- Density dependent potential (Mares et al. NPA770 (2006) 84)
 - Sizeable binding energy (100-200 MeV), widths > 50 MeV but only for heavy nuclei

Oset, Weise, Mares ... the skeptical side II

- 3-body Faddeev calculations (Shevchenko et al. PRL98 (2007), 082301)
 - Small binding energy (~50 MeV) and large width (~100 MeV)
- Green function method (Yamagata, Nagahiro, Hirenzaki PRC74 (2006), 014604)
 - Phenomenological optical potential: small structures
 - Chiral unitary optical potential: not observable structures
 - The signals of the kaonic nuclear states formation are very small
- Interpretations of observed signals via FSI
 - Magas et al. PRC74 (2006), 025206
 - Oset, Toki PRC74(2006), 015207

Where to observe DBKS ?

Weise

Akaishi-Yamazaki

Hadron 07 - LNF - 11/10/2007 - S.Piano – The search for bound kaonic states..

Experimental approaches

Missing mass spectroscopy

- Measurement of the momentum of monochromatic recoiling particles in the A(K⁻,N)X reaction

- KEK-PS E471 (K⁻_{stop})
- AGS E930 (K⁻in-flight)
- FINUDA (K-stop)
- KEK-PS E549 (K⁻_{stop})

Invariant mass spectroscopy

- Based on the kaonic nuclear state decaying into YN pairs
 - $(K^{-}pp) \rightarrow \Lambda + p$
 - $(K^{-}ppn) \rightarrow \Lambda + d$
 - Typically:
 - $\begin{array}{ll} & p_{p(\Lambda)} \sim 500 \; \text{MeV/c} \\ & p_{\pi(\Lambda)} < 200 \; \text{MeV/c} \end{array}$

 - $p_{p} \sim 500 \text{ MeV/c}$
- Full event reconstruction desirable (necessary)
- Angular correlation between the emitted pairs necessary (desirable)
 - FOPI (heavy ion collisions)
 - FINUDA (K⁻_{stop})
 OBELIX (p He)

 - KEK-PS E549 (K⁻_{stop})

- Hunting K⁻ bound systems [K⁻NNN] with (semi) inclusive reactions ⁴He(K⁻_{stop}, N) by KEK-PS E-471
 - Peak in the recoiling nucleon momentum at ~ 500 MeV/c, observed in coincidence with a fast π^-
 - Results compatible with the predictions by Akaishi-Yamazaki (but I = 1 !)
 - $^{4}\text{He}(K_{\text{stop}}^{-}, p)$: withdrawn (arXiv:0708.2968v1)
 - ${}^{4}\text{He}(K_{stop}^{-}, n)$: currently under revision
- A further observation: E930@AGS
 - ¹⁶O(K⁻, n)¹⁵_K-O
 ¹⁵_K-O: bound state at ~90 MeV

⇒ Careful about relying on (missing mass) inclusive measurements only !

Hadron 07 - LNF - 11/10/2007 - S.Piano – The search for bound kaonic states.

- Hunting K⁻ bound systems [K⁻NNN] with (semi) inclusive reactions ⁴He(K⁻_{stop}, N) by KEK-PS E-471
 - Peak in the recoiling nucleon momentum at ~ 500 MeV/c, observed in coincidence with a fast π^-
 - Results compatible with the predictions by Akaishi-Yamazaki (but I = 1 !)
 - ${}^{4}\text{He}(K_{\text{stop}}^{-}, p)$: withdrawn (arXiv:0708.2968v1)
 - ${}^{4}\text{He}(K_{stop}, n)$: currently under revision
- A further observation: E930@AGS
 - ¹⁶O(K⁻, n)¹⁵_K-O
 ¹⁵_K-O: bound state at ~90 MeV

⇒ Careful about relying on (missing mass) inclusive measurements only !

Hadron 07 - LNF - 11/10/2007 - S.Piano – The search for bound kaonic states...

⁴He(K⁻_{stop}, p)

- Hunting K⁻ bound systems [K⁻NNN] with (semi) inclusive reactions ⁴He(K⁻_{stop}, N) by KEK-PS E-471
 - Peak in the recoiling nucleon momentum at ~ 500 MeV/c, observed in coincidence with a fast π^-
 - Results compatible with the predictions by Akaishi-Yamazaki (but I = 1 !)
 - $^{4}\text{He}(K_{\text{stop}}^{-}, p)$: withdrawn (arXiv:0708.2968v1)
 - ${}^{4}\text{He}(K_{stop}^{-}, n)$: currently under revision
- A further observation: E930@AGS
 - ¹⁶O(K⁻, n)¹⁵_K-O
 ¹⁵_K-O: bound state at ~90 MeV

⇒ Careful about relying on (missing mass) inclusive measurements only !

- Hunting K⁻ bound systems [K⁻NNN] with (semi) inclusive reactions ⁴He(K⁻_{stop}, N) by KEK-PS E-471
 - Peak in the recoiling nucleon momentum at ~ 500 MeV/c, observed in coincidence with a fast π^-
 - Results compatible with the predictions by Akaishi-Yamazaki (but I = 1 !)
 - ${}^{4}\text{He}(K_{\text{stop}}^{-}, p)$: withdrawn (arXiv:0708.2968v1)
 - ${}^{4}\text{He}(K_{stop}, n)$: currently under revision
- A further observation: E930@AGS
 - ¹⁶O(K⁻, n)¹⁵_K-O
 ¹⁵_K-O: bound state at ~90 MeV

⇒ Careful about relying on (missing mass) inclusive measurements only !

Hadron 07 - LNF - 11/10/2007 - S.Piano – The search for bound kaonic states...

- Hunting K⁻ bound systems [K⁻NNN] with (semi) inclusive reactions ⁴He(K⁻_{stop}, N) by KEK-PS E-471
 - Peak in the recoiling nucleon momentum at ~ 500 MeV/c, observed in coincidence with a fast π^-
 - Results compatible with the predictions by Akaishi-Yamazaki (but I = 1 !)
 - ${}^{4}\text{He}(K_{\text{stop}}, p)$: withdrawn (arXiv:0708.2968v1)
 - ${}^{4}\text{He}(K_{\text{stop}}, n)$: currently under revision
- A further observation: E930@AGS
 - ${}^{16}O(K^{-}_{in-flight}, n){}^{15}_{K}$ -O ${}^{15}_{K}$ -O: bound state at ~90 MeV

⇒ Careful about relying on (missing mass) inclusive measurements only !

Hadron 07 - LNF - 11/10/2007 - S.Piano - The search for bound kaonic states.

⁴He(K⁻_{stop}, p)

See talk of Sato,M.

FINUDA: Study of the ⁶Li(K⁻,p)X reaction

- Study of the proton missing mass:
 - Found peak at about 500 MeV/c
 - Interpretation: the proton peak is simply due to two nucleon absorption reaction:

 $K^{-n}d^{n} \rightarrow \Sigma^{-+p}$

 Nothing exotic: simple reaction mechanism

FINUDA Coll., NPA 775 (2006), 35

 $\frac{1}{1}$

Hadron 07 - LNF - 11/10/2007 - S.Piano - The search for bound kaonic states...

Semi-inclusive p spectra (in coincidence with a fast π^{-})

Hadron 07 - LNF - 11/10/2007 - S.Piano – The search for bound kaonic states

Experimental approaches

- Missing mass spectroscopy
 - Measurement of the momentum of monochromatic recoiling particles in the $A(K^{-},N)X$ reaction
 - KEK-PS E471 (K-stop)
 - AGS E930 (K in-flight)
 - FINUDA (K⁻_{stop})
 - KEK-PS E549 (K-stop)
- Invariant mass spectroscopy
 - Based on the kaonic nuclear state decaying into YN pairs
 - $(K^{-}pp) \rightarrow \Lambda + p$
 - $(K^{-}ppn) \rightarrow \Lambda + d$
 - Typically:
 - p_{A,p} ~ 500 MeV/c

 - $p_{\Lambda,\pi}^{\Lambda,\pi} < 200 \text{ MeV/c}$ $p_{\text{decay p}} \sim 500 \text{ MeV/c}$
 - Full event reconstruction desirable (necessary)
 - Angular correlation between the emitted pairs necessary (desirable)
 - FOPI (heavy ion collisions)
 - FINUDA (K⁻_{stop})
 - OBELIX (p He)
 - KEK-PS E549 (K⁻_{stop})

K-pp invariant mass studies with FINUDA

FINUDA is equipped with a variety of nuclear targets: A = ${}^{6}Li$, ${}^{7}Li$, ${}^{9}Be$, ${}^{12}C$, ${}^{13}C$, ${}^{16}O$, ${}^{27}AI$, ${}^{51}V$

(K-pp) system identification in FINUDA

Hadron 07 - LNF - 11/10/2007 - S.Piano - The search for bound kaonic states...

(Λp) invariant mass: observation of a possible bound state I

- High resolution tracks only ullet
- A bump is observed ٠
 - Two nucleon absorption
 - $K^- + (pp) \rightarrow Y^* N \rightarrow \Lambda p$ peak expected at 2.34 GeV
 - $K^- + (pp) \rightarrow \Sigma^0 p \rightarrow \Lambda \gamma p$ 74 MeV lower distribution, and broadened
 - Kaon nuclear bound state formation

•
$$K^{-}(pp) \rightarrow X \rightarrow \Lambda p$$

 $\rightarrow \Sigma^0 \mathbf{p} \rightarrow \Lambda \gamma \mathbf{p}$

 $B = 115^{+6}_{-5} (stat)^{+3}_{-4} (sys) MeV$ Γ= 67⁺¹⁴-11(stat)⁺²-3(sys) MeV Yield $\approx 0.1\%$ /stopped K⁻

correction

FINUDA Coll., PRL 94(2005)212303

Hadron 07 - LNF - 11/10/2007 - S.Piano – The search for bound kaonic states

A different interpretation of the $M_{p\Lambda}$ bump

- Magas, Oset et al, PRC74 (2006), 0252006
 - The peak is due to a rescattering effect of p and/or Λ , no need for DBKS
 - The bump is a result of the angular cuts applied in the analysis (i.e., a deformation of a flat distribution)
 - 115 MeV as a binding energy is quite too much!
- ...but:
 - The newest analysis shows that the deformation of the spectrum is not due to angular cuts
 - Rescattering alone cannot explain the full spectrum
 - Back-to-back correlation belongs to the data themselves
- ...moreover:
 - A similar bump was observed in a different reaction, p⁴He, where the rescattering effects should be less sizeable

(pp π -) invariant mass: observation of a possible bound state II

Shorter tracks with less resolution included

- Larger acceptance
- Larger background
- Bump confirmed below the mass threshold of the unbound K⁻pp system: m=2274 MeV, $\Gamma=56$ MeV (slightly narrower)
 - · Good agreement with the first result
 - 750 events in the bump (statistics 8x)
 - No angular cuts
- Angular correlations:
 - Back-to-back trend
 - Bump events: strong back-to-back correlation (1 or 2 bins populated)
 - unlikely to be obtained by FSI's

INCLUSIVE ANALYSIS

Angular distributions: a closer look

- All the experimental spectra are corrected for acceptance
- Inclusive analysis: FSI simulation normalized to the data
 - They account for 30% on the whole reaction strength
- Exclusive analysis: at the variance of the theoretical predictions, the experimental distribution is sharply peaked at $\cos(\Theta_{\Lambda p}) = -1$

Hadron 07 - LNF - 11/10/2007 - S.Piano – The search for bound kaonic states.

(Λp) Invariant mass from p annihilation at rest in ⁴He

- Antiproton annihilation at rest: a good environment for the production of strangeness
- OBELIX data: $p^4He \rightarrow 5$ prongs:
 - $\bar{p}^4He \rightarrow (p\pi)p K^0X$
- Study of the (pA) system
 - Experiment not suitable for detection of particles out of a secondary vertex
 - Limited statistics
 - Background due to phase-space and N and Δ resonances (large)
- Signal found in the $(pp\pi^{-})$ channel while is absent in the $(pp\pi^{+})$ channel:
 - Statistical significance 3.7σ
 - Y < 1.5 × 10⁻⁴/stopped p
 - FSI effect?
 - Lower number of residual nucleons
 - No angular cuts

G. Bendiscioli et al., NPA789(2007)222

invariant mass spectrum

M = 2212.1 ± 4.9 MeV B = 169 ± 4.9 MeV Γ= < 24.4 ± 8.0 MeV

Search for a 3-baryon [K-NNN] kaon-nuclear state: invariant mass of the Ad system

- FOPI GSI
 - Ni+Ni @ 1.93 AGeV
 - Use of invariant mass spectroscopy to search for short-lived AX resonances
 - $[K^{-}ppn] \rightarrow \Lambda d^{\dagger}$

 $M = 3159 \pm 20 \text{ MeV} \\ B = 151 \pm 20 \text{ MeV} \\ \Gamma = 100 \pm 50 \text{ MeV}$

- OBELIX p⁴He
 - Hints of a Λd signal at 2.6 σ
 - Fewer statistics
 - Lower background

M = 3190 ± 15 MeV B = 120 ± 15 MeV Γ= < 60 MeV

PRELIMINARY (AND ONLY) RESULTS EXA05

Ad invariant mass

Hadron 07 - LNF - 11/10/2007 - S.Piano – The search for bound kaonic states...

⁻INUDA Coll., PLB 654 (2007) 80

- Ad system invariant mass: EXCLUSIVE ANALYSIS
- Use of ⁶Li target: low background
- ⁶Li is a well known (α+d) cluster
 - Enhancement observed at 3251 MeV, with $\Gamma_{\Lambda d}{=}37$ MeV on $^6{\rm Li}$ targets
 - 25 events in the peak, statistical significance 3.9σ

 The kinetic energy spectrum can be reproduced only in the hypothesis of ⁶Li(K⁻_{stop}, Λd)nd with a spectator deuteron and the neutron carrying away the whole momentum

Hadron 07 - LNF - 11/10/2007 - S.Piano – The search for bound kaonic states..

 The kinetic energy spectrum can be reproduced only in the hypothesis of ⁶Li(K⁻_{stop}, Λd)nd with a spectator deuteron and the neutron carrying away the whole momentum

 6 Li(K⁻_{stop}, Λ d)nd for events under the bump

Hadron 07 - LNF - 11/10/2007 - S.Piano - The search for bound kaonic states..

 The kinetic energy spectrum can be reproduced only in the hypothesis of ⁶Li(K⁻_{stop}, Λd)nd with a spectator deuteron and the neutron carrying away the whole momentum

Hadron 07 - LNF - 11/10/2007 - S.Piano - The search for bound kaonic states..

FINUDA: study of ⁶Li(K⁻, Ad)X (II)

 The kinetic energy spectrum can be reproduced only in the hypothesis of ⁶Li(K⁻_{stop}, Λd)nd with a spectator deuteron and the neutron carrying away the whole momentum

 The kinetic energy spectrum can be reproduced only in the hypothesis of ⁶Li(K⁻_{stop}, Λd)nd with a spectator deuteron and the neutron carrying away the whole momentum

$K_{stop} \ ^{6}Li \rightarrow \Lambda \ dn \ d_{spec}$

 The events in the bump have a very marked back-to-back correlation

E549: Ad correlation from ⁴He(K⁻_{stop}, d)

- $K^{-4}He \rightarrow \Lambda d(n)$
- revealed d p pair back-to-back with π^- coincidence
- discrimination Λ from Σ⁰ (Λγ) event by missing mass
- Λd peak at 3282 MeV/c² just below mass threshold
- interpreted as 3NA process:
 - K⁻ppn (n) → Λ d (n)
- Acceptance: only d p back-to-back, spectra deformed.

Mass, Binding Energy and Width

ppK ⁻	M (MeV)	E _K (MeV)	Г(MeV)	Reference
	2255	115	67	FINUDA EXP
	2212	161	<24	OBELIX EXP
		55-70	95-100	Shevchenko
		48	61	A-Y model
		118	58	Ivanov et al.

New calculation with Skyrme model: see talk of Nishikawa,T.

	M (MeV)	E _K (MeV)	Г(MeV)	Reference
	3251	58	37	FINUDA EXP
ppnK ⁻	3190	120	<60	OBELIX EXP
	3159	151	100	FOPI EXP
		108	20	A-Y model

Hadron 07 - LNF - 11/10/2007 - S.Piano – The search for bound kaonic states..

Summary

- The search for DBKS is a recent field in hadronic physics raising considerable interest from both the theoretical and experimental point of view
- Several theoretical approaches, rather strong disagreement
 - Still under debate!
- Only few and very recent experimental observations of effects connected to the possible existence of strange-nuclear aggregates
 - AGS E930
 - K⁻ on ¹⁶O
 - FINUDA @ LNF
 - K⁻-nuclei interaction at rest
 - FOPI@GSI
 - ion collisions: high temperature regime
 - OBELIX @ CERN
 - Antiproton annihilation at rest on ⁴He

Outlook and Conclusions

- FINUDA @ DAΦNE in the last year has collected ~1 fb⁻¹ of K⁻_{stop} on ⁶Li, ⁷Li, ⁹Be, ¹³C, ¹⁶O, new results coming soon:
 - $-\Lambda p vs A$
 - $-\Lambda d vs A$
 - $\Lambda t (?)$
- Other experiments presently on floor
 - KEK: E549 an extension of E471 (see talk of Sato,M.)
 - GSI, FOPI: study also in p+p collisions at 3.5 AGeV
- New analysis of old data:
 - OBELIX: S=-2 strangeness production in p⁴He (see talk of Panzarasa,A.)
- Future Projects dedicated to the search of K⁻-nuclear aggregates
 - E15 @ J-PARC: study of ³He(K⁻, n) in flight
 - AMADEUS @ LNF: K⁻ on cryogenic ⁴He (see talk of Sirghi, F.C.)
- Increasing theoretical interest in obtaining a reliable physical framework for analysis of recent data is evidenced by the number of recent publications on this topic !

Hadron 07 - LNF - 11/10/2007 - S.Piano – The search for bound kaonic states..