Search for kaon-bound states at the FINUDA experiment

Hiroyuki Fujioka (on behalf of FINUDA collaboration)

The FINUDA experiment mainly aims to study the Λ -hypernuclear spectroscopy and its decay processes with the $(K^{-}_{\text{stop}}, \pi^{-})$ reaction, where the negative kaon is abundantly provided by the e^+e^- collider DA Φ NE as a decay particle of a $\phi(1020)$ meson. The kaon has the momentum as slow as $\sim 127 \,\mathrm{MeV}/c$ and can be stopped in a very thin nuclear target (0.2 mg/cm^2) , which enables us to have a good momentum resolution for emitted particles from the reaction vertex. The FINUDA spectrometer covers a solid angle larger than 2π sr, which allows us to detect multi-particles. These features also have advantages to look for a deeply-bound kaonic state formed in the stopped $K^$ reactions; the most important is to detect a Λ hyperon through the $\Lambda \to p + \pi^-$ decay. We chose 5 kinds of targets (6 Li, 7 Li, 12 C, 27 Al and 51 V) in the first run (2003–2004). We have succeeded to observe a deeply-bound K^-pp state through the decay into $\Lambda + p$. The Λ and proton clearly showed back-to-back angular correlations for various targets, which suggests the K^-pp system is produced as a fragment in the stopped K^- reaction. The binding energy and the width were obtained from the invariant mass of the $\Lambda + p$ system. In this talk, I will discuss the detail of this decay mode and the prospects in the coming run in 2006.