

FINUDA: Hypernuclar Factory

HYP 2006

October 10 – October 14, Mainz, Germany

XI International Conference on Hypernuclear and Strange Particle Physics

- The **FINUDA** experiment
 - the physics program
 - the apparatus
 - next data taking
- The scientific results
 - hypernuclear spectroscopy
 - hypernuclear decays
 - search for neutron-rich hypernuclei
 - Sigma-hypernuclei
 - Kaon deeply-bound nuclear states

INFNPaola Gianotti For the FINUDA collaboration

The FINUDA Collaboration

- Bari University and I.N.F.N. Bari
- Brescia University and I.N.F.N. Pavia
- KEK
- L.N.F. / I.N.F.N. Frascati
- Pavia University and I.N.F.N. Pavia
- RIKEN
- 💌 Seoul National University
- Teheran Shahid Beheshty University
- Torino University and I.N.F.N. Torino
- Torino Polytechnic and I.N.F.N. Torino
- Trieste University and I.N.F.N. TriesteTRIUMF

FINUDA @ DAΦNE

FINUDA @ DAΦNE

FINUDA @ DA PNE

FINUDA first data taking

Luminosity monitor Bhabha events

K + / K - identification

only two

measured points

on ISIM

1 cm

K stop calculation

GEANE tracking

K⁺/K⁻ stopping points

Due to the beam-crossing angle 12.5 mrad the Φ is produced in flight and the kaons do not have all the same momentum

Hypernuclear spectroscopy

Hypernuclei are produced following Φ decay via strangeness exchange reaction

FINUDA, being a high acceptance magnetic $\frac{1}{2}$ spectrometer, can detect all the particles produced and following K^- interaction with the target

Not only hypernuclear systems can be studied

The hypernuclear event

Momentum resolution

FINUDA is a composite detector \Rightarrow alignment procedure is crucial

- straight cosmic rays, collected during and after data taking, are used
- Iterative procedure

FINUDA Experiment

Raw spectrum of negative pions coming out the ¹²C targets. Hypernuclear peaks are visible already without any background subtraction

Background reactions: *π* - spectrum

¹²C excitation spectrum

Excitation Energy Ex = $B_{\Lambda} - B_{\Lambda q.s.}$

FINUDA fit with 7 peaks is more precise (better \chi^2) and more similar to theoretical calculation

⁷Li Spectroscopy

Vanadium spectroscopy

Vanadium spectroscopy

Aluminum spectroscopy

¹²_A C Non Mesonic Weak Decay

In medium-heavy hypernuclei mesonic decays ($\Lambda \rightarrow p \pi^-$; $\Lambda \rightarrow n \pi^0$) are suppressed due to Pauli blocking non-mesonic weak interaction ($\Lambda p \rightarrow n p$; $\Lambda n \rightarrow n n$) are then more favored

BRANCHING FRACTION in agreement with previous results $\Gamma_{\rm p} \sim (0.38 \pm 0.10)$ in 1s, (0.23 ± 0.06) in 1p

Proton energy spectrum

E.Bauer, Ramos et al., 2006:nucl-th/0602066:

Theoretical calculation of Ep <u>without</u> (top) and <u>with (bottom)</u> FSI effects. Data are from KEK-E508)

Proton energy spectra in <u>coincidence</u> with a π - from hypernucleus formation in the S $_{\Lambda}$, p $_{\Lambda}$ region.

Thanks to its thin target FINUDA has reduced the Ep low energy ^{z^{*}} theshold. Spectrum shape at 20-40MeV is important for evaluating FSI contribution.

Neutron-rich hypernuclei

Hypernuclei with a large neutron excess have been theoretically predicted (L. Majling, NPA 585 (1995) 211c).

The Pauli principle does not apply to the Λ inside the nucleus + *extra* binding energy (Λ "*glue-like*" role) \Rightarrow a larger number of neutrons can be bound with respect to ordinary nuclei.

• Hypernuclear physics:

 ΛN interactions at low densities, the role of 3-body forces

• Neutron drip-line:

response of neutron halo on embedding of Λ hyperon, hypernuclear species with unstable nuclear core

T. Yu. Tretyakova and D. E. Lanskoy, Nucl. Phys. A 691: 51c, 2001.

• Astrophysics:

Feedback with the astrophysics field: phenomena related to *highdensity nuclear matter* in neutron stars.

S. Balberg and A. Gal, Nucl. Phys. A 625: 435, 1997.

Neutron-rich hypernuclei

Two production mechanisms:

Sigma hypernuclei

The strong $\Sigma N \rightarrow \Lambda N$ conversion reaction in nuclear matter is broad as few tens of MeV. To detect a Σ -bound state, the Σ width must be less than the separation between two adjacent Σ hypernuclear levels.

$$\frac{K}{stop} + A \rightarrow \Sigma B + \pi^{\pm}_{prompt}$$
$$\Sigma + N \rightarrow \Lambda + N$$

The momentum of the π^{\pm} produced with the Σ is between 150 -200 MeV/c. To increase acceptance lower resolutions tracks are used

The Λ is reconstructed via its decay products

¹²C Sigma hypernuclei

Deeply Bound Kaonic States

Targets' setup for next data-taking

- Choice: 2x ⁶Li, 2x ⁷Li, 1x D₂O, 2x ⁹Be, 1x ¹³C
- We focused on medium-light target to allow a wider spectrum of analyses
 - Hypernucelar spectroscopy
 - Hypernuclei decay modes
 - Bound kaonic states
 - Rare hypernuclear decay

Target's thickness evaluated taking into account the narrower (1.8 mm) TOFINO: ⁷Li, ⁶Li as in the previous run (+cover) ⁹Be: 2 mm $D_2O: 3 mm + cover$ (e.g. 100 µm mylar)

NMWD: yield estimation for next data taking (1 fb⁻¹)

Target	np (π coinc.)	nn (π coinc.)	nnp/nnn (π coinc.)	
⁶ Li (2T)	1200	800	120/80	
⁷ Li (2T)	1200	800	120/80	
⁹ Be (2T)	800	600	80/60	
¹³ C (1T)	300	200	no	
¹⁶ O(1T)	300	200	no	

- Such statistics are adequate to improve our analyses on
 - Neutron Rich Hypernuclei
 - Spectroscopy of p-shell Hypernuclei
 - Mesonic decays

Expected events for NRH

Hypernuc leus	Target	Β _Λ (MeV)	ρ _π (MeV/c)	Production rate / k ⁻ stop	Events	U.L. 90% C.L.
⁶ ∧H	⁶ Li	4.1 ^[1]	252	< 2.5×10 ^{-5 [3]}	430	6.5 × 10 ⁻⁶
⁷ ∧H	⁷ Li	5.2 ^[2]	245	< 4.5×10 ^{-5 [3]}	460	6.9 × 10 ⁻⁶
⁹ ∧He	⁹ Be	8.5 ^[2]	257	< 2. 3×10 ⁻⁴ [4]	600	6.7 × 10 ⁻⁶
¹³ _л Ве	¹³ C	11.7 ^[2]	259	(?)	100	1.1 × 10 ⁻⁵
¹⁶ ^C	¹⁶ O	7.3(2+) ^[5]	264	< 6.2×10 ⁻⁵ (0 ⁺) ^[4]	200	8.2 × 10 ⁻⁶
		13.6(0+)[2]	271	6×10 ⁻⁸ (2 ⁺) ^[5] 3×10 ⁻⁸ (0 ⁺) ^[5]	190	8.5 × 10 ⁻⁶

[1] Y. Akaishi et al., PRL 84 (2000) 3539
[2] L. Majling, NPA 585 (1995) 211c
[3] M. Agnello et al. PLB 640 (2006) 145

[4] NPA 602 (1996) 327

[5] T. Yu. Tretyakova and D.E. Lanskoy, Proc. Of Workshop "Recent progress in Strangeness nuclear physics", H. Outa et al. eds., KEK (2003) 80.

- Data analysis of first data taking period carried out successfully (30 × 10⁶ events on tape)
- Results on spectroscopy are competitive with world published data
- Observation of K⁻-Nucleons bound states

- Upper limit for the NRH production:
 better than published for ¹²Be
 measured for the first time for ⁶H and ⁷H
- Hints on NMWD possibilities and other rare decays

Future plans

- Next data-taking starting now (~ 1fb⁻¹ → statistics x 5) focused on light-medium targets (⁶Li, ⁷Li, ⁹Be, ¹⁶O)
- New internal TOF system (KEK) to improve Trigger capabilities
- Increased 4 DAQ rate by a factor to stand higher DAFNE luminosity

Improvement of the reconstruction program

- geometrical alignment
- detector calibration
- pattern recognition strategy
- ✓ selection criteria