Analysis report on kaon-bound systems and request for run '05

21/10/2004

FINUDA group meeting

Contents

- Improved pattern recognition routine
- Present status of deeply-bound kaonic state search
 - Missing-mass spectroscopy
 - Invariant-mass spectroscopy (K⁻pp)
 - Other results (experiment and theory)
- Request for run '05

Kaonic nuclei search with Λ tagging

Missing-mass spectroscopy

◆Example:

⁵Li +
$$K^- \rightarrow \begin{cases} K^- pppnn + n \\ K^- ppnnn + p \\ monoenergetic \end{cases}$$

◆A kaonic nucleus emits a hyperon in its decay.

Invariant-mass spectroscopy

◆Example:

$$K^-pp \to \Lambda + p$$
 , $K^-ppn \to \Lambda + d(p+n)$

of tracks to analyze in kaon bound state search

• The analysis of searching for kaon bound state requires three- (or four-) particle coincidence:

 Λ and p (and μ^+ from K^+ decay)

• Typically, $\begin{cases}
p_{\Lambda} \sim 500 \,\mathrm{MeV}/c \\
\downarrow \qquad p_{\mathrm{decay \ p}} \sim 500 \,\mathrm{MeV}/c \\
p_{\mathrm{decay \ \pi^{-}}} < 200 \,\mathrm{MeV}/c \text{ (short track)} \\
p_{\mathrm{p}} \sim 500 \,\mathrm{MeV}/c
\end{cases}$

Typical Event (K⁻pp and μ^+ from K⁺)

21/10/2004

Comparison with other analyses

	kaon bound state	: 2 long + 1 short
	hypernuclear spectroscopy	: 1 long
•	hypernuclear weak decay	: 2 long or 1 long + 1 short
	${}^{4}_{\Lambda}$ He rare decay	: 2 long
	neutron-rich hypernucleus	: 1 long
	Σ-hypernucleus	: 1 long + 2 short

Pattern recognition has to be done very carefully.

Wrong recognition -example-

21/10/2004

Present pattern recognition (version 5.11)

- 1. short track: OSIM-DCH1-DCH2
- 2. long track : OSIM-DCH1-DCH2 \rightarrow TRIP \rightarrow ETOF (extrapolation of short track)

Problems:

- Wrong recognition sometimes occurs, particularly in Λ detection (previous page).
- dE/dx of OSIM is not used for P.R.

Solution (Stage 1)

- 1. long track : OSIM←DCH1-DCH2-TRIP→ETOF
- 2. short track: OSIM-DCH1-DCH2

Solution (Stage 2)

- A p-like hit should not be connected a negative tracks. (There's no \overline{p} but π^{-} .)
- long track (–) : OSIM ← DCH1-DCH2-TRIP → ETOF
 Check consistency f
 of dE/dx (π, not p) estimate the charge/momentum
- 2. long track (+) : DCH1-DCH2-TRIP→ETOF
- 3. short track (–) : OSIM-DCH1-DCH2 estimate the charge/momentum
 - short track (+) : OSIM-DCH1-DCH2
- 5. long track (+) : OSIM←DCH1-DCH2-TRIP→ETOF

4.

Result (A mass spectra)

• Problem on Λ detection is almost solved.

Kaonic nuclei search with Λ tagging

Missing-mass spectroscopy

KEK-PS E471 [missing-mass spectroscopy with stopped K⁻]

nucl-ex/0310018

KEK-PS E471 [missing-mass spectroscopy with stopped K⁻]

BNL-AGS E930 [missing-mass spectroscopy with in-flight K⁻]

BNL-AGS E930 [missing-mass spectroscopy with in-flight K⁻]

Back to FINUDA experiment...

- The key of kaon bound state search is to "tag" a hyperon from its decay directly or indirectly.
- FINUDA spectrometer gives us a unique opportunity to detect Λ -decay directly ($\Lambda \rightarrow p + \pi^{-}$).
- Not only missing-mass spectroscopy, but also invariant-mass spectroscopy is available.

Inclusive proton spectra

< 400 MeV/c : Quasi-free hyperon production > 400 MeV/c : non-mesonic absorption process

Negative pion spectrum (simulation)

Pion spectra (proton and pion coincidence)

Very roughly speaking,
< 200 MeV/c : Λ decay and Σ production
> 200 MeV/c : Σ decay and Λ production

Proton spectra (proton and pion coincidence)

Proton spectra (two-proton coincidence)

 Λ momentum distribution

• Λ mass gate (±5 MeV/c²) for Λ identification

• Momentum acceptance \gtrsim 300MeV/c

Back-to-back correlation of $p-\Lambda$

- Back-to-back correlation are seen for every target.
- Very significant for light (Li, C) targets.

Contribution from kaonic nuclei formation via proton-emitting Auger process? ex.⁶Li + $K^- \rightarrow K^- ppnnn + p$ $\downarrow \Lambda + \cdots$

21/10/2004

Origin of back-to-back $p-\Lambda$

Two-nucleon absorption $K^- + "pp" \to \mathbf{Y}^* \mathbf{N} \to p + \Lambda$ $\to p + \Lambda + \gamma(\Sigma^0)$

Via kaon-bound state (K⁻pp) $K^- + ``pp" o \mathbf{X} o p + \Lambda$ $o p + \Lambda + \gamma(\Sigma^0)$

Origin of back-to-back $p-\Lambda$

Two-nucleon absorption

$$K^- + "pp" \to \mathbf{Y}^* \mathbf{N} \to p + \Lambda$$

 $\to p + \Lambda + \gamma(\Sigma^0)$

(ΛΝ):(Σ⁰N)=(9.4±2.6)%:(2.3±1.0)% for ⁴He
[Katz et al.]

B.R. of Σ⁰N decay was estimated as the average of those of Σ⁺N and Σ⁻N.

Two-nucleon absorption

p+∧ decay

- Almost same as the K⁻ + 2p mass (2.37 GeV/c²)
- Reduced because of
 the separation energy
 The Fermi energy

$p+\Sigma^0$ decay

 Shifted due to missing γ energy, which is broadened from that in Σ⁰ CMS (74MeV). counts (Arbitary Unit) MC simulation 1:1 generated 1/4:1 observed 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2 p- Λ invariant mass [GeV/ c^2]

p- Λ invariant mass spectrum

- Assuming the Katz's B.R. (~4:1), the blue peak would be dominant.
- However, this peak is not observed. (x4) 20 counts (Arbitary Unit) counts/(10MeV/c² MC simulation 2 2.2 2.25 2.3 2.35 2.4 35 2.4 2.15 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.05 2.1 2.05 2 p- Λ invariant mass [GeV/ c^{2}] p- Λ invariant mass [GeV/ c^2]

Origin of back-to-back $p-\Lambda$

Two-nucleon absorption

$$K^{-} + ``pp'' \to \mathbf{Y}^{*} \mathbf{N} \to p + \Lambda$$
$$\to p + \Lambda + \gamma(\Sigma^{0})$$

Via kaon-bound state (K⁻pp) $K^- + ``pp" o \mathbf{X} o p + \Lambda$ $o p + \Lambda + \gamma(\Sigma^0)$

Origin of back-to-back $p-\Lambda$

We performed a Monte Carlo simulation with the actual acceptance considered.

Input parameters :

Binding energy (B)
 Width (Γ)
 Lorentzian function

Via kaon-bound state (K⁻pp) $K^- + "pp" o \mathbf{X} o p + \Lambda$ $o p + \Lambda + \gamma(\Sigma^0)$

Results of Monte Carlo simulations

 The resolutions are estimated to be less than 10MeV (in FWHM).

Results of Monte Carlo simulations

 The MC simulation indicates K-pp has a large binding energy and a wide width.

Acceptance function

• Fitted by a 4th degree polynomial.

21/10/2004

Before / after acceptance correction (fit 1)

Contribution from Σ⁰+p decay are seen in low mass region

No other background exists !

 $B = 116^{+11}_{-6} \text{ MeV}$ $\Gamma = 39^{+20}_{-19} \text{ MeV}$ *Very preliminary !!* (systematic error to be added) 21/10/2004

33

Before / after acceptance correction (fit 2)

Contribution from Σ⁰+p decay are seen in low mass region

No other background exists !

 $B = 120^{+7}_{-5} \text{ MeV}$ $\Gamma = 58^{+10}_{-8} \text{ MeV}$ Very preliminary !!(systematic error to be added)

21/10/2004

Theoretical calculations

Comment on production rate

- How many is the "effective" number of stopped kaons inside the light 6 targets ?
- Assuming it's 1×10^8 , the b.r. is ~0.5%.
- Katz's result indicates:
 B.R.(K⁻pp→Σ⁺n per stopped K⁻) ~ 1.0±0.4%
 B.R.(K⁻pp→Σ⁰p per stopped K⁻) ~ 0.5±0.2%

Summary

- Two-body decay of K⁻pp is seen, and mass and width are obtained (almost finalized result).
- Direct observation of kaon bound state (without any background) for the first time !!
- "It is vitally important to experimentally examine the simplest case of ppK⁻, which can provide a gateway toward more complicated and more exotic systems." (Y. Akaishi)

Paper preparation (to be submitted to PRL)

Evidence for a kaon-bound state K^-pp produced in K^- absorption reactions at rest

M. Agnello,^{1,2} G. Beer,³ L. Benussi,⁴ M. Bertani,⁴ S. Bianco,⁴ E. Botta,^{5,2} T. Bressani,^{5,2} L. Busso,^{6,2} D. Calvo,² P. Camerini,^{7,8} P. Cerello,² B. Dalena,^{9,10} F. De Mori,^{5,2} G. D'Erasmo,^{9,10} D. Di Santo,^{9,10} F. L. Fabbri,⁴ D. Faso,^{6,2} A. Feliciello,² A. Filippi,² V. Filippini,¹¹ E. M. Fiore,^{9,10} H. Fujioka,¹² P. Gianotti,⁴ N. Grion,⁸ A. Krasnoperov,¹³ V. Lucherini,⁴ S. Marcello,^{5,2} T. Maruta,¹² N. Mirfakhrai,¹⁴ O. Morra,¹⁵ T. Nagae,¹⁶ A. Olin,¹⁷ H. Outa,¹⁸ E. Pace,⁴ M. Palomba,^{9,10} A. Pantaleo,¹⁰ A. Panzarasa,¹¹ V. Paticchio,¹⁰ S. Piano,^{7,8} F. Pompili,⁴ R. Rui,^{7,8} G. Simonetti,^{9,10} H. So,¹⁹ S. Tomassini,⁴ A. Toyoda,¹⁶ R. Wheadon,² and A. Zenoni^{20,11} (FINUDA collabolation)

We have searched for a deeply-bound kaonic state by using the FINUDA spectrometer installed at the e^+e^- collider DA Φ NE. Almost monochromatic K^- 's produced through the decay of ϕ mesons are used to observe K^- absorption reactions stopped on very thin nuclear targets. Taking this unique advantage, we have succeeded to detect a kaon-bound state K^-pp through its two-body decay into a Λ hyperon and a proton. The binding energy and the width are determined from the invariant mass distribution as 116^{+11}_{-6} MeV and 39^{+20}_{-19} MeV, respectively.

- The estimation of systematic error is under way. (maybe finished by the middle of November)
- We'd like to publish this result as soon as possible, *not after run '05*, because other two experiments will begin data taking in spring 2005.

Topics to study with the data taking '05

proton and Λ coincidence

higher statistics

neutron and \land coincidence

neutron detection with new TOFINO and TOFONE (in order to obtain a better resolution)
K⁻pn bound or not ?

If bound, the invariant mass has a very large width.

If unbound, two peaks (from two-nucleon absorption) appear in the invariant mass spectrum.

•The present analysis indicates the yield of K⁻pn is one order larger than that of K⁻pp. (Difference between inclusive and proton-coincided spectra of Λ momenta.)

 $K^- pp \to \Lambda + p$

isospin dependence

 $K^- pn \to \Lambda + n$

Topics to study with the data taking '05

proton and \land coincidence neutron and \land coincidence

heavier kaonic-fragment search

•Can K⁻ppp, K⁻ppn (or heavier) be produced ?

•invariant-mass spectroscopy of

$$K^-ppp \rightarrow \Lambda + p + p$$

 $K^-ppn \rightarrow \Lambda + d(p+n)$
formation via Auger process
 ${}^{6}\text{Li} + K^- \rightarrow K^-pppnn + n$
 ${}^{7}\text{Li} + K^- \rightarrow K^-pppnn + n$
 ${}^{7}\text{Li} + K^- \rightarrow K^-pppnn + n$
 ${}^{(6}\text{Li} + K^- \rightarrow K^-ppnn + p)$

40

Run request

1. Target

We prefer to select light targets.

- 1 8 x ⁷Li
- ② $6 \times {}^{7}$ Li and $2 \times {}^{6}$ Li
- $\left(\bigcirc 4 \times {}^{7}\text{Li and } 4 \times {}^{6}\text{Li} \right)$
- 2. Magnetic field 1.0 T \rightarrow 0.7 T

to enlarge the momentum acceptance Number of Λ and K⁻pp observed will increase greatly.

$\Delta p/p$ (FWHM) in 0.7T

- Almost same as that in 1.0T.
- No problem for our analysis.

Comparison between B=1.0T and 0.7T

 Increased acceptance for low momentum Λ widens the observable region of K⁻pp.

Change in invariant mass spectra

- Distortion of peak structure will be improved.
- Σ⁰p decay component will be observed clearly in 0.7T.
- The total events will be increased more than 3 times (depending on B, Γ, and decay b.r.).