

FINUDA: Physics Perspectives

Alessandra Filippi I.N.F.N. Torino

33rd LNF Scientific Committee Meeting, Nov 27 2006

New FINUDA target setup

- Boost side:
 - 2x ⁷Li
 - + mylar degraders
 - 1x ¹³C
 - Must get the most of the kaon boost momentum
 - 1x D₂O
 - Iowest position!
- Antiboost side:
 - Symmetric layout with respect to the median plane
 - 2x ⁶Li
 - 2x ⁹Be

Physics items for FINUDA with the new target setup

- Study of Deeply Bound Kaon-Nuclear states
 - All targets
 - Invariant mass analysis: (K⁻pp), (K⁻pn), (K⁻ppn) aggregates, effects of FSI's
 - Missing mass analysis: study of K⁻ absorption on two nucleons
 - Free deuterons (D₂O)
 - Quasi deuterons inside the nuclei
- Hypernuclear spectroscopy
 - ¹³C, ¹⁶O, ⁹Be, ⁷Li
- Hypernuclear decays
 - Non mesonic decays
 - All targets + ⁶Li (decay of ${}^{5}_{\Lambda}$ He)
 - Rare channels
 - ⁶Li, ⁷Li: hyperfragments (⁴_AHe) decays
- Neutron Rich A-Hypernuclei
 - All targets
- Σ-Hypernuclei searches
 - All targets
- Study of the K+N Charge EXchange reaction
 - ¹³C, ⁷Li, ²H

Search for DBKS: invariant mass method

- In the last run data analysis, two approaches were used, based on two different pattern recognition procedures
 - Reconstruction of events with well defined tracks (4 points each)
 - Approach suitable for high resolution studies (hypernuclear spectroscopy)
 - Clean events can be picked up, full acceptance for DBKS events
 - Physical background contamination under control
 - EXCLUSIVE ANALYSIS
 - Reconstruction of events with tracks with ≥3 points
 - Short tracks included
 - Acceptance improvement (low momentum tracks)
 - Larger available statistics vs higher physical background contributions
 - 8 times more statistics available, as compared with the exclusive analysis method
 - Study for each target feasible
 - Lower resolution for shorter tracks
 - INCLUSIVE ANALYSIS of (π⁻pp) system
- Strategy
 - Use of both methods to observe, if any, similar signals in the invariant mass spectra

Search for DBKS: di-baryon strange aggregates I

- Exclusive analysis ("high resolution tracks")
 - Last data taking: K⁻pp study
 - ~ 200 events on all lighter targets (⁶Li, ⁷Li, ¹²C)
 - Bump observed in the Δp invariant mass spectrum at 2255 MeV, B = 115 MeV, Γ=67 MeV
 - Limited physical background feeding the experimental spectrum
 - New data taking
 - Expected a factor 10 more statistics AT LEAST
 - Possibile to track a dependence of the observations on the target nature
 - If a dependence is detected, the hypothesis of formation of a DBKS could be weakened

- Possibility to study the K⁻pn cluster in the following decay channels (a few tens events only available from the first data taking):
 - K⁻pn →Λ n
 - K⁻pn →Σ⁻p

Search for DBKS: di-baryon strange aggregates II

- Inclusive analysis (shorter tracks included)
 - Last data taking: K⁻pp study
 - Confirmed the presence of a bump below the mass threshold for the unbound K⁻pp system: m=2274 MeV, $\Gamma=56$ MeV (slightly narrower)
 - Good agreement with the first approach
 - 750 events in the bump
 - The structure appears without angular cuts as well
 - LARGER ACCEPTANCE, LARGER PHYSICAL BACKGROUND

Search for DBKS: di-baryon strange aggregates III

- Inclusive analysis
 - Angular correlations: Back-to-back trend with a sensible strenght over the whole interval

- New data taking: K⁻pp study
 - 8x statistics available on each target
 - Selection cuts may be strenghtened:
 - Powerful cut to reject background (FSI reactions occurring inside the nucleus): distance from the K⁻ stopping point and the A decay vertex
 - excellent signal/noise ratio for the Λ selection: ~20
 - Severe reduction of the statistics: factor 4 at least
 - Selections in angular intervals and momentum slices can be made
 - Effects of FSI interactions, dependent on angles and target nature

Search for DBKS: tri-baryon strange aggregate formation on deuteron in ⁶Li

- The ⁶Li nucleus is a well-known α + d cluster
 - Study with the missing mass analysis technique
 - First purpose: to reproduce the ⁴He(K⁻,p) reaction observed by E471, that led to the claim for the S⁰(3115)

 The K⁻ interacts with a deuteron and the observed signal (in coincidence with a fast π⁻) comes from a simple two nucleon absorption reaction New data taking: study of the K⁻ absorption dynamics on several targets, and on free deuterons

Search for DBKS: tri-baryon formation on ⁶Li: ⁴He

Study of the Λd system invariant mass

- Last data taking:
 - Enhancement observed at 3243 MeV, with $\Gamma_{\Lambda d}$ =37 MeV on ⁶Li targets
 - 25 events in the peak, background mainly on its left side $\rightarrow \sim 3\sigma$
 - The kinetic energy spectrum can reproduced only in the hypothesis of ⁶Li(K⁻_{stop}, Ad)nd with a spectator deuteron and the neutron carrying away the whole momentum

- New data taking:
 - 8x more statistics
 - Statistical significance of the bump can increase to 7.2σ
 - Possibility to study the left part of the spectrum with larger detail (physical background contributions)
 - Possibility to detect the neutron in coincidence

Hypernuclear spectroscopy: ⁷_ALi, ⁹_ABe

- ⁷_ΛLi
 - First results obtained with one target in the last data taking, first results ever for 7 Li production in a (K⁻_{stop}, π^{-}) reaction
 - Two close peaks
 - In the bound region: S/N = 1:3
 - Capture rates: 0.04% for each
 - few tens of coincidence proton and neutrons for NMWD measurements
 - Tenfold statistics more expected with 1 fb⁻¹ integrated luminosity

⁹_ΛBe

- The Be nucleus has a particularly symmetric structure and can be understood as formed by a α+α+n cluster
- Excitation spectrum measured with the (π⁺,K⁺) reaction at KEK with 2.2 MeV resolution
- With FINUDA:
 - Expected capture rate of the order of 10⁻⁴/K⁻_{stop}
 - Better resolution on the levels expected
 - The binding energy if ⁹_ABe requires a more refined measurement, existing values are in disagreement
 - Several thousand events expected with 1 fb⁻¹

Hypernuclear spectroscopy: ¹³_AC, ¹⁶_AO

■ ¹³_ΛC

- One neutron more than ¹²C: study differences with last run measurements Excitation spectrum measured by E336 in the (π⁺,K⁺) with 2.2 MeV resolution
- Expected capture rate in (K⁻_{stop}, π⁻) reaction: 10⁻⁴/K⁻_{stop}
- Several thousand events expected in each level

■ ¹⁶_ΛO

- Excitation spectrum measured by E336 in the (π⁺,K⁺) with 2.2 MeV resolution
- Expected capture rate in (K⁻_{stop}, π⁻) reaction: 10⁻³-10⁻⁴/K⁻_{stop}
- ¹⁵O is a rather stable nucleus (¹⁶O is double magic)
- With higher resolution a possible spin-orbit splitting of 1 MeV for the states #3-#4 could be observed

Non Mesonic Weak Decay

- First studies of NMWD in FINUDA with ¹²C targets
 - First experiment detecting neutrons with p < 40 MeV/c
 - Interesting for the study of
 - FSI contributions
 - 2N induced NMWD (20% ?)
 - Shape of the proton momentum spectrum in the g.s. region different from earlier measurements at KEK
- Strategy for the new data taking:
 - Measurement of the proton spectra with high resolution (1%) on several nuclei to test the possible distorting effect of FSI's
 - Useful tool as input for DBKS studies
 - Interplay between different analyses!!

Study of rare decay of hyperfragments

Exclusive non mesonic decay channels can be studied in FINUDA: rare two body decays of s-shell hypernuclei, produced as *hyperfragments* from heavier targets (e.g: hyperhelium from ⁶Li, ⁷Li)

- Very clean signature: two monochromatic deuterons of 570 MeV/c
- Two events observed in the first data taking
- 15 events expected from ⁶Li and ⁷Li targets in the new data taking

Neutron Rich Λ-Hypernuclei on new targets

- Λ Hypernuclei with neutron eccess, more stable than ordinary nuclei because of the presence of the glueing Λ 200
- Produced in two step reactions: Expected capture rate: $O(10^{-5}/K_{stop})$
 - Double charge exchange:
 - $K^- + p \rightarrow \Lambda + \pi^0; \pi^0 + p \rightarrow n + \pi^+$
 - Strangeness exchange & Σ - Λ coupling:
 - $K^- + p \rightarrow \Sigma^- + \pi^+; \Sigma^- + p \leftrightarrow \Lambda + n$
 - Upper limits given for their capture rate
- First FINUDA data taking: fixed upper limits
 - ¹² Be: 2 x10⁻⁵/K⁻ stop
 - New measurements:
 - ⁶_∆H: 2.5 x 10⁻⁵/K⁻_{stop}
 ⁷_∆H: 4.5 x 10⁻⁵/K⁻_{stop}

- New FINUDA data taking: possible to search for
 - ${}^{6}_{\Lambda}$ H on 6 Li targets, ${}^{7}_{\Lambda}$ H on 7 Li targets (more statistics: 450 events each in the ROI)
 - ${}^{9}_{\Lambda}$ He on 9 Be targets (600 events expected)
 - 13 Be on 13 C (100 events expected)
 - 16 C on 16 O (400 events expected for two levels)
 - Σ - Λ Coupling sensitive to the target nuclei

Study of K+N Charge Exchange reactions

- Very few measurements exist, none close to threshold
 - Is the process really featureless?
- The reaction can be observed in FINUDA as a by-product (same trigger)
- Threshold reaction: only possible on selected targets:
 - ⁷Li, ¹³C, ²H (all placed on the boost side)
- In the last data taking: upper limit fixed for ⁷Li
- New data taking expected sensitivities:
 - 0.1 mb/event ⁷Li
 - 0.2 mb/event ¹³C, ²H

 $K^+ + n \rightarrow K_S^0 + p$

Conclusions

- A wide program of physics topics will be addressed by FINUDA in the next data taking
- The collection of 1 fb⁻¹ integrated luminosity will allow
 - To study with better detail possible target related effects, that may shed light on the dynamics of several mechanisms, such as
 - Kaon-nuclear aggregates formation
 - Final State Interaction effects
 - Kaon absorption by many nucleons
 - To study with unprecedented resolution the spectroscopy of several light hypernuclei and hyperfragments and their non-mesonic decay in rare channels as well
 - To study the existence of new, never observed, species of neutron rich hypernuclei (and, possibly, Σ hypernuclei as well)
 - To perform cross section measurements of K⁺ induced reactions close to threshold, never measured before