

Search for neutron rich A-hypernuclei with the FINUDA spectrometer

Barbara Dalena (Bari University and INFN Bari, Italy) on behalf of the <u>FINUDA Collaboration</u>

Outline

- \succ The scientific case: Neutron Rich A-Hypernuclei
- \geq Production of NRAH with the FINUDA spectrometer
- Upper Limits of the NRAH production rate results of the first FINUDA data taking
- Expected events for next FINUDA run 2006/2007

> Summary

Neutron rich Λ-hypernuclei

Hypernuclei with a large neutron excess.

Neutron rich Λ-hypernuclei

Hypernuclei with a large neutron excess.

Their existence has been theoretically predicted (L. Majling, NP A 585 (1995) 211c).

Neutron rich A-hypernuclei

Hypernuclei with a large neutron excess.

Their existence has been theoretically predicted (L. Majling, NP A 585 (1995) 211c). The Pauli principle does not apply to the Λ inside the nucleus + *extra* binding energy (Λ "glue-like" role) \Rightarrow a larger number of neutrons can be bound

• Hypernuclear physics:

ΛN interactions at low densities, the role of 3-body forces

• Hypernuclear physics:

ΛN interactions at low densities, the role of 3-body forces

• Neutron drip-line:

response of neutron halo on embedding of Λ hyperon, hypernuclear species with unstable nuclear core

T. Yu. Tretyakova and D. E. Lanskoy, Nucl. Phys. *A* 691: 51c, 2001.

Motivations

• Hypernuclear physics:

 ΛN interactions at low densities, the role of 3-body forces

• Neutron drip-line:

response of neutron halo on embedding of Λ hyperon, hypernuclear species with unstable nuclear core

T. Yu. Tretyakova and D. E. Lanskoy, Nucl. Phys. *A* 691: 51c, 2001.

• Astrophysics:

Feedback with the astrophysics field: phenomena related to *high-density nuclear matter* in neutron stars.

S. Balberg and A. Gal, Nucl. Phys. *A* 625: 435, 1997.

Y. Akaishi et al., Phys. Rev. Lett. 84: 3539,2000

Production of Neutron Rich A-hypernuclei

magnitude less than the measured one of [] (~ 10⁻³).

FINUDA (FIsica NUcleare a DA DNE)

DA \mathcal{P} NE: Double Annular e^+ - $e^ \mathcal{P}$ -factory for Nice Experiments: Beam Energy 510 MeV $L^{\sim} 5 \cdot 10^{31} \text{cm}^{-2} \text{s}^{-1} - 250 \ \mathcal{P}$'s s⁻¹

The decay of the Φ is an intense source of:

- couples of neutral and charged kaons
- collinear and tagged
- monochromatic and low energy (~16 MeV)

The FINUDA detector

Neutron Rich production in FINUDA

ELEMENTARY $K^- + p \rightarrow \pi^0 + \Lambda \; ; \; \pi^0 + p \rightarrow n + \pi^+$

 $\mathbf{K}^{\scriptscriptstyle -} + \mathbf{p} \to \pi^{\scriptscriptstyle +} + \Sigma^{\scriptscriptstyle -} \, ; \ \Sigma^{\scriptscriptstyle -} \mathbf{p} \leftrightarrow \mathbf{\Lambda} \mathbf{n}$

FINUDA data taking 2003-2004:

 π^+ momentum is related to the Λ binding energy (B_{Λ})

	Β _Λ (MeV)	p_{π} (MeV/c)
¹² ^A Be	11.4	262
${}^{6}{}^{\Lambda}H$	4.1	252
$^{7}\Lambda$ H	5.2	246

Event selection:

- Reconstruction of a π⁺ with a momentum value in the hypernucleus bound region
- P.ID. made using dE/dx from OSIM
 and TOF from TOFINO & TOFONE

Background: •K⁻+p \rightarrow Σ^+ + $\pi^ \Sigma^+ \rightarrow \pi^+$ +n (130 < p_{π} < 250 MeV/c) •K⁻+pp \rightarrow Σ^+ +n $\Sigma^+ \rightarrow \pi^+$ +n (100 < p_{π} < 320 MeV/c)

Contaminations:

- μ^+ K⁺ decay (peak@~235MeV/c)
- p Λ/Σ decay

Background reduction

The reconstructed distance between the origin point of π^+ and the K⁻ stopping point it is broader (up to 8mm) for a π^+ coming from Σ^+ decay than for the signal (peaked at less than 1mm).

Final spectra and U.L. evaluation

Expected events for next run

HYPER- NUCLEUS	TARGET	Β _Λ (MeV)	p _π (MeV/c)	PRODUCTION RATE / k _{stop}	EVS ROI	U.L. 90% C.L.
⁶ _A H	⁶ Li	4.1[1]	252	< 2.5×10 ⁻⁵ [3]	430	6.5 × 10 ⁻⁶
${}^{7}{}_{\Lambda}H$	⁷ Li	5.2[2]	245	< 4.5×10 ⁻⁵ [3]	460	6.9 × 10 ⁻⁶
⁹ ∧He	9Be	8.5[2]	257	< 2. 3×10 ⁻⁴ [4]	600	6.7 × 10 ⁻⁶
¹³ ^A Be	¹³ C	11.7[2]	259	(?)	100	1.1 × 10 ⁻⁵
¹⁶ AC	¹⁶ O	7.3(2+)[5]	264	< 6.2×10 ⁻⁵ (0 ⁺)[4] 6×10 ⁻⁸ (2 ⁺)[5] 3×10 ⁻⁸ (0 ⁺)[5]	200	8.2 × 10 ⁻⁶
		13.6(0+)[2]	271		190	8.5 × 10 ⁻⁶

[1] Y. Akaishi et al., PRL 84 (2000) 3539

[2] L. Majling, NPA 585 (1995) 211c

[3] M. Agnello et al. PLB 640 (2006) 145

[4] NPA 602 (1996) 327

[5] T. Yu. Tretyakova and D.E. Lanskoy, Proc. Of Workshop "Recent progress in Strangeness nuclear physics", H. Outa et al. eds., KEK (2003) 80.

Summary

- □ The search of hypernuclei with large neutron excess is a field of interest in modern nuclear physics
- **FINUDA** spectrometer can study **NRAH** states
- □ The first FINUDA data taking established the best published U.L. 90% C.L. value for ${}^{12}_{\Lambda}$ Be and for the first time determined the same values for ${}^{6}_{\Lambda}$ H and ${}^{7}_{\Lambda}$ H.
- □ FINUDA run 2006/2007 will improve its published U.L. values of a factor 4. At the same time we will search for ${}^{9}_{\Lambda}$ He, ${}^{13}_{\Lambda}$ Be and ${}^{16}_{\Lambda}$ C.

Neutron rich A-hypernuclei

- 1953: Discovery of hypernuclei by M. Danysz e J. Pniewski (Philos. Mag. 44: 348, 1953)
- ▶ 1985: Evidence of production of ¹¹Li e
 ¹¹Be (Neutron Rich nuclei) ⇒ Halo phenomena
- 1995: "A hypernuclei may be even better candidates to exhibit large values of N/Z and halo phenomena" L.Majling (Nucl. Phys. A 585: 211c,1995)
- ▶ 2005: "Production of the Neutron-Rich Hypernucleus ${}^{10}{}_{A}Li$ in the (π^{-}, K^{+}) Double Charge-Exchange Reaction" P.K. Saha et al. (Phys. Rev. Lett. 94: 052502, 2005)

40 events of ${}^{10}{}_{\Lambda}Li$

Acceptance

Momentum resolution in our track selection conditions

Distance Selection

- The reconstructed distance between the origin point of π⁺ and the K⁻ stopping point is peaked at less than 1 mm for a π⁺ coming from the signal (red line).
- Green line select ~10% of background vs ~50% of signal ⇒ Noise to signal ratio improved of a factor ~ 5.

Rate /K⁻_{stop} in the ROI

$$\mathbf{R}_{\mathrm{ROI}} = \frac{\mathbf{N}_{\pi^{+}}}{\mathbf{N}_{\mu^{+}}} \cdot \frac{\mathbf{K}_{\mathrm{stop}}^{+}}{\mathbf{K}_{\mathrm{stop}}^{-}} \cdot \frac{\varepsilon_{D}(\mu^{+})}{\varepsilon_{D}(\pi^{+})} \cdot \frac{\varepsilon_{G}(\mu^{+})}{\varepsilon_{G}(\pi^{+})} \cdot \mathbf{BR}(\mathbf{K}_{\mu^{2}})$$

> N_{π} = number of π^+ in the region of interest. > N_{μ} = number of μ^+ . > K_{stop}^+, K_{stop}^- = number of stopped kaons. > $\varepsilon_D(\pi^+) \cong \varepsilon_D(\mu^+)$. > $\varepsilon_G(\pi^+) = \alpha_G(\pi^+) \cdot \varepsilon_T(\pi^+)$, MC/RC. > $\varepsilon_G(\mu^+) = \alpha_G(\mu^+) \cdot \varepsilon_T(\mu^+) \cdot \alpha_T(\mu^+)$, MC/RC. > BR($K_{\mu 2}$) = 0.6343.

Upper Limit (U.L.)

$$\mathbf{U.L.} = \boldsymbol{x} \cdot \boldsymbol{R}_{ROI}$$

✓
$$S = \text{signal}, B = \text{background} : N_{ROI} = S + B.$$

✓ $x = \frac{S}{N_{ROI}}$ maximum fraction of N_{ROI}
that may be ascribed to NRAH
at fixed C.L. (90%).

$$\checkmark S = N_{ROI} - B$$

$$\checkmark \int_{N_{C.L.}}^{\infty} \frac{\mu^{N_{ROI}} e^{-\mu}}{N_{ROI}!} d\mu = C.L.$$

$$\int_{0}^{B_{C.L.}} \frac{\mu^{B} e^{-\mu}}{B!} d\mu = C.L.; \quad B_{C.L.} \geq N_{C.L.}$$

Background estimation

- 1) Different background shapes give good χ^2 [1.2 1.5] (due to big error), but different value of B and S = N-B \Rightarrow Need to incorporate uncertainties in order to use Feldman & Cousins method.
- Any evaluation of S = N-B gives values lower than the maximum not significant signal at 90% C.L.

hypothesis	N _{tot} ROI	S=N-B	R/K ⁻ _{stop} (U.L.)	
1	25	9.64	1.8±0.9×10 ⁻⁵	
2	25	10.54	2.0±0.9×10 ⁻⁵	
U.L. 25		11	2.0±0.4×10 ⁻⁵	