¹²_ΛC spectroscopy and decays with FINUDA at DAΦNE

Luigi Benussi Laboratori Nazionali di Frascati - INFN

On behalf of FINUDA Collaboration

IX International Conference on Hypernuclear and Strange Particle Physics 10-14 October 2006 Johannes Gutenberg-Universität Mainz

Talk topics

- ¹² C events selection and spectroscopy results
- Capture rates for ¹²_AC
- Non Mesonic Weak Decay (NMWD) methodology and results
- Conclusions

luigi.benussi@lnf.infn.it

Events selections (1/3)

Topological selection criteria:

Angle of escaping pions θ <80 (0<normin<80) \rightarrow only forwards events (reduced effects of multiple scattering)

Raw $-B_{\Lambda}$ spectrum: Total events: 295887

Quality track selection criteria:

- Track fit (fitemin=0)
- Extrapolated track (extrmin=1)
- Track stops in target (stopmin=1)
- χ^2 on track fitting stermin<100 dev2min<100 resdmin<0.05

Events selections (2/3)

The XDRCKM distribution for the three carbon targets are fitted with 3 gaussian curves. If the small peak at about -0.25 cm are silicum events the must be removed.

cut on |XDRCKM| as much as possible to remove events not "really" ¹², Black vertical lines indicate physical target bounds 0.85 cm. Dotted red lines indicate the cut applied: |XDRCKM| < 0.05 cm

Events outside selected regions do not presents hypernuclear peaks

 π

Target

K

Events selections (3/3)

Raw $-B_{\Lambda}$ spectrum: Total events: 295887

Track selection criteria:

- Track fit (fitemin=0)
- Extrapolated track (extrmin=1)
- Track stops in target (stopmin=1)
- χ^2 on track fitting stermin<100 dev2min<100 resdmin<0.05
- Angle of escaping pions θ <80 (0<normin<80
- |XDRCKM|<0.05

Final number of events 17245

Background Simulations

Below signal region we expect 4 possible source of π -

 $\begin{array}{c|c} & K^-n \to \Lambda \pi^- \\ \hline & K^-NN \to \Sigma^-N \\ \hline & K^-p \to \Sigma^-\pi^+ \\ \hline & K^- \to \mu^- \nu_\mu \text{ (wrong identification of }\mu^-) \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$

Fit of hypernuclear levels

Fit procedure:

- 1) Selected experimental events fit with the 3 MC distribution (excluding signal region)
- 2) Signal region fit using 9 gaussian curves by means of a likelihood function. Same width for all gassians free to vary

¹²C excitation spectrum

 $\sigma = 0.46 \pm 0.02 \rightarrow 0.43\% \Delta p/p \text{ (design 0.35 } \Delta p/p\text{)}$

Peak gauss $\#1 = -11.74 \pm 0.06$ Peak gauss $\#2 = -10.4 \pm 0.1$ Peak gauss $\#7 = -8.8 \pm 0.2$ Peak gauss $\#6 = -7.4 \pm 0.2$ Peak gauss $\#3 = -6.0 \pm 0.1$ Peak gauss $\#4 = -4.1 \pm 0.2$ Peak gauss $\#5 = -2.7 \pm 0.2$ Peak gauss $\#8 = -1.23 \pm 0.07$ Peak gauss $\#9 = -0.07 \pm 0.05$

Excitation Energy Ex = $B_{\Lambda} - B_{\Lambda g.s.}$

¹²_AC Capture rates

To determine μ^+ and π^- efficiencies we generated 30×10⁶ MonteCarlo events with

- -1 hypernuclear peak @ 270 MeV/c with production rate 10⁻³/K⁻_{stop}
- complete background spectrum from K⁻ interaction
- usual K⁺ decays

MC events reconstructed to take care of geometrical acceptance and trigger efficiency

¹²_AC Capture rates

Events selection criteria:

- 0<normin<80
- stermin<200
- dev2min<100
- resdmin<0.1</p>
- Inpxm <0.17cm

width fixed at 0.46 MeV σ Events in G.S.= 374±23 Events in Bound Region =2769±52

. .

¹²C MC

-20

-15

-10

 $-\mathbf{B}$

MC treated as data : background subtraction, fit with width fixed at 0.46 MeV σ

Events in g.s. = 398 ± 20

-5

(Mev)

0

12

5

C12 g.s. Capture Rate

experimental data: N_{μ} , N_{π} , $N(K^+)$, $N(K^-)$ MC determination of $\epsilon_{\pi,}\epsilon_{\mu}$

$$R({}_{\Lambda}^{12}C) = \left[\frac{N_{\pi_{g.s.}}^{12}C}{N_{K^{-}}^{12}C} \frac{N_{K^{+}}^{12}C}{N_{\mu}^{12}C}\right]_{data} \left[\frac{\mathcal{E}_{\mu}}{\mathcal{E}_{\pi}}\right]_{MC}$$

 $R({}^{12}{}_{\Lambda}C) = (0.50 \pm 0.04 \pm 0.11) \times 10^{-3}/K^{-}_{stop})$ THEORY= 0.33 ×10^{-3}, 0.23 ×10^{-3}, 0.12 ×10^{-3}/K^{-}stop

¹² C spectroscopy and decays with FINUDA at DAØNE

¹² C Non Mesonic Weak Decay

In medium-heavy hypernuclei mesonic decays ($\Lambda \rightarrow p\pi^-$; $\Lambda \rightarrow n\pi^\circ$) are suppressed due to Pauli blocking; non-mesonic weak interaction ($\Lambda p \rightarrow np$; $\Lambda n \rightarrow nn$) are then more favored

Pion momentum from ¹² C formation

Pion momentum from ${}^{12}_{\Lambda}C$ formation in coincidence with proton from decay ${}^{12}_{\Lambda}C$: s_{Λ} and p_{Λ} clearly show up with better S/N.

BRANCHING FRACTION in agreement with previous results $\Gamma_{p} \sim (0.38 \pm 0.10)$ in 1s, (0.23 ± 0.06) in 1p

Proton energy spectrum

E.Bauer, Ramos et al., 2006:nucl-th/0602066:

Theoretical calculation of Ep <u>without (top)</u> and <u>with (bottom)</u> FSI effects. Data are from KEK-E508

Thanks to its thin target FINUDA has reduced the $\rm E_p$ low energy threshold. Spectrum shape at 20 \div 40MeV is important for evaluating FSI contribution. More statistics is needed

15

Conclusion

- The ¹²_AC spectroscopy analysis is completed.
- FINUDA spectroscopy resolution is 0.46 MeV corresponding to 0.43% $\Delta p/p$ (design = 0.35% $\Delta p/p$)
- The capture rate of ${}^{12}_{\Lambda}$ C g.s. (1s) is found to be (0.50 \pm 0.04 \pm 0.11) \times 10⁻³/K⁻_{stop}
- Studies on ¹²_AC NMWC on 1s and 1p hypernuclear levels done. More statistics is needed to better evaluate F.S.I. contribution.