Strange hadrons in nuclei, first results from FINUDA

Stefano Piano INFN Sez. di Trieste Istituto Nazionale di Fisica Nucleare

Finuda Collaboration

Finuda physics program

The FINUDA Spectrometer

The tracking region and the neutron detector

Positive track momentum coming from the K⁺ vertex and momentum resolution

K⁺ two body decays: reference for spectrometer calibration

Present Results: $\Delta p/p \approx 0.6\%$ FWHM $\Delta M_{H} = \Delta T_{\pi} \sim 1.25$ MeV FWHM

FINUDA GOALS: p_{π} =272 MeV/c and $\Delta p/p \approx 0.38\%$ FWHM $\Delta M_{H} = \Delta T_{\pi} < 0.9$ MeV FWHM

• neglecting the hypernucleus recoil energy : $\Delta M_{H} = \Delta T_{\pi}$

$$\frac{\Delta T_{\pi}}{T_{\pi}} = \frac{\sqrt{p_{\pi}^2 + m_{\pi}^2} + m_{\pi}}{\sqrt{p_{\pi}^2 + m_{\pi}^2}} \cdot \frac{\Delta p_{\pi}}{p_{\pi}}$$

 $-B_{\Lambda}$ (MeV)

-8.4±0.2

-5.9±0.1

-3.8±0.1

-1.6±0.2

0.27±0.06

2.1±0.2

Search for Σ bound states with FINUDA

^{12}C , reconstructed topology of a $\Sigma\text{-hyp}$ event

^{12}C , reconstructed topology of a $\Sigma\text{-hyp}$ event

$$K_{stop}^{-} + {}^{12}C \Longrightarrow \pi^{-} + \Lambda (\pi^{-}, p) + X$$

$$K_{stop}^{-} + {}^{12}C \Longrightarrow \pi^{-} + \Lambda (\pi^{-}, p) + X$$

Search for kaon bound states

- Missing-mass spectroscopy
 - (K⁻_{stop}, n or p) ... KEK-PS E471/E549, **FINUDA**
 - ⁴He(K⁻_{stop}, n)S⁺(3140) ...K⁻ppn ? (169MeV bound)
 - ⁴He(K⁻_{stop}, p)S⁰(3115) ...K⁻pnn ? (193MeV bound)
- Invariant-mass spectroscopy
 - K⁻ absorption at rest in nuclei ... FINUDA

 Λ -p coincidence events

About 5% of the Λ events are associated with a proton.

π -pp Invariant Mass on ⁶Li

π , p and p invariant mass (coincidence π , p, p)

Background: the two proton absorption is the only process emitting a Λ and a proton back-to-back, except for the quasi-free reactions on two protons:

 $K^-pp\to\Lambda+p$

π -pp Invariant Mass on ⁶Li : Evidence for a kaon deeply-bound state (K-pp) $\rightarrow \Lambda p$ or $\Sigma^0 p$

Summary

- FINUDA/DAFNE a unique facility for Λ and Σ hypernuclear studies
- Spectroscopy and Λ hypernuclear decays (mesonic, non-mesonic, rare decays)
- Initial analysis indicates bound $_{\Sigma}B$ states beyond A=4
- We observed back-to-back Λ-p coincidence events in K⁻ absorption at rest, for the first time.
- The Λ-p invariant-mass distribution suggests the existence of a K-pp deeply-bound system.

Candidate for rare decays of ${}^4_{\Lambda}$ He

Direct observation of a Λ hyperon

$$K_{stop}^{-} + {}^{6}Li \Longrightarrow \pi^{-} + \Lambda (\pi^{-}, p) + X$$

Silicon Vertex Detector PID

