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We extend the analysis of Chiba et al. [Phys. Rev. D 75, 124014 (2007)] of Solar System constraints on

fðRÞ gravity to a class of nonminimally coupled (NMC) theories of gravity. These generalize fðRÞ theories
by replacing the action functional of general relativity with a more general form involving two functions

f1ðRÞ and f2ðRÞ of the Ricci scalar curvature R. While the function f1ðRÞ is a nonlinear term in the action,

analogous to fðRÞ gravity, the function f2ðRÞ yields a NMC between the matter Lagrangian density Lm

and the scalar curvature. The developed method allows for obtaining constraints on the admissible classes

of functions f1ðRÞ and f2ðRÞ, by requiring that predictions of NMC gravity are compatible with Solar

System tests of gravity. Then we consider a NMC model which accounts for the observed accelerated

expansion of the Universe and we show that such a model cannot be constrained by the present method.
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I. INTRODUCTION

One of the greatest challenges of contemporary physics
is to make sense of the fact that, at Solar System level,
there is no evidence that an extension of general relativity
(GR) is required to account for all observed gravitational
phenomena (see Ref. [1] for a recent account), even
though, from the theoretical point of view, GR is not a
fully satisfactory theory. Indeed, GR exhibits singularities
and is incompatible with quantummechanics; furthermore,
in order to account for the cosmological data, new states
such as dark matter and dark energy are required.

As a possible alternative to this standard scenario, it is
equally plausible that GR is actually an effective version of
a more general theory of gravity. More recently, a great
deal of interest has been dedicated to the so-called fðRÞ
theories [2]; these can be further generalized by consider-
ing that matter and curvature are nonminimally coupled
[3], an idea that gives rise to many interesting features and
has spanned several studies: these include the impact on
stellar observables [4], the so-called energy conditions [5],
the equivalence with multi-scalar-tensor theories [6], the
possibility to account for galactic [7] and cluster [8] dark

matter, cosmological perturbations [9], a mechanism

for mimicking a cosmological constant at astrophysical

scales [10], postinflationary reheating [11] or the current

accelerated expansion of the Universe [12], the dynamical

impact of the choice of the Lagrangian density of matter

[13,14], gravitational collapse [15], its Newtonian limit

[16] and existence of closed timelike curves [17].
In this work, we study whether a nonminimally coupled

theory of gravity can be assessed using Solar System

observables. It follows an analogous analysis, performed

by Chiba, Smith and Erickcek [18] for generic fðRÞ theories.
In Ref. [18] the authors find a set of conditions that, when

satisfied by the function fðRÞ, lead to the prediction that the
value of the parametrized post-Newtonian (PPN) parameter

� is given by � ¼ 1=2, which is not in agreement with Solar

System tests of gravity. Hence, the analysis of Ref. [18] can

be considered as a tool to rule out fðRÞ theories that satisfy a
suitable set of conditions. Particularly, it turns out that the

1=Rn (n > 0) gravity theory, proposed by Carroll et al. [19]
to account for the observed accelerated expansion of the

Universe, is ruled out by this analysis.
In the present paper we consider a class of NMC theories

of gravity where the action functional of GR is replaced

with a more general form involving two functions f1ðRÞ
and f2ðRÞ of the Ricci scalar curvature R. The function

f1ðRÞ has a role analogous to fðRÞ gravity, and the function
f2ðRÞ yields a nonminimal coupling between the matter

Lagrangian density Lm and the scalar curvature. When

f2ðRÞ ¼ 0, NMC gravity reduces to fðRÞ gravity.
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We extend the analysis of Ref. [18] in order to develop
a general framework for the study of Solar System
constraints to NMC gravity. Then we apply the results of
our analysis to a couple of case studies. Particularly, we
consider the NMCmodel proposed by Bertolami et al. [12]
to account for the observed accelerated expansion of the
Universe. This model posits an inverse power-law NMC
f2ðRÞ / 1=Rn term in the action functional, and can be
considered as a natural extension of 1=Rn (n > 0) gravity
to a nonminimally coupled case. We show that, differently
from pure 1=Rn gravity, the NMC model of Ref. [12]
cannot be constrained or excluded by the method devel-
oped in this work. Hence such a NMC model remains, in
this respect, a viable theory of gravity.

The manuscript is organized as follows: in Secs. II and
III we present our model and the assumptions adopted to
ascertain the effect of the NMC in the Solar System.
In Secs. IV and V, we carry out the suitable linearization
of the relevant equations and derive the conditions required
for applying the long range limit. Sections VI, VII, and
VIII then address the solutions to the obtained set of
equations. Section IX tackles the compatibility of the
model under scrutiny with the various assumptions used
to assess its impact at Solar System scales. Finally, we
present our conclusions. Appendix A accounts for some
technical aspects used to obtain the solution for linearized
field equations, while Appendix B discusses a correction to
the numerical values considered in Ref. [12].

II. NONMINIMALLY COUPLED GRAVITY

In the present work we consider gravitational theories
with an action functional of the form [3],

S ¼
Z �

1

2
f1ðRÞ þ ½1þ f2ðRÞ�Lm

� ffiffiffiffiffiffiffi�g
p

d4x; (1)

where fiðRÞ (i ¼ 1, 2) are functions of the Ricci scalar
curvature R, Lm is the Lagrangian density of matter and g
is the metric determinant. The standard Einstein-Hilbert
action is recovered by taking

f1ðRÞ ¼ 2�ðR� 2�Þ; f2ðRÞ ¼ 0; (2)

where � ¼ c4=16�GN and� is the cosmological constant.
Here, GN is Newton’s gravitational constant: as we will
show, an effective gravitational constantG arises due to the
composite effect of f1ðRÞ and f2ðRÞ.

The variation of the action functional with respect to the
metric g�� yields the field equations

ðf1R þ 2f2RLmÞR�� � 1

2
f1g��

¼ ð1þ f2ÞT�� þ ðr�r� � g��hÞðf1R þ 2f2RLmÞ;
(3)

where fiR � dfi=dR. In the following we assume that
matter behaves as dust, i.e. a perfect fluid with negligible
pressure and an energy-momentum tensor described by

T�� ¼ �u�u�; u�u
� ¼ �1; (4)

where � ¼ �ðr; tÞ is the matter density and u� is the

four-velocity. The trace of the energy-momentum tensor
is T ¼ ��. We use Lm ¼ �� for the Lagrangian density
of matter (see Ref. [13] for a discussion).

III. ASSUMPTIONS ON THE METRIC AND
ON FUNCTIONS f1ðRÞ AND f2ðRÞ

We now seek the metric that describes the spacetime
around a spherical body such as the Sun in the weak-field
limit of NMC gravity. Such a metric will be regarded as a
perturbation of a background spacetime around which we
linearize the field equations. We take the background
metric to be a flat Friedmann-Robertson-Walker (FRW)
metric

ds2 ¼ �dt2 þ a2ðtÞðdr2 þ r2d�2Þ; (5)

with scale factor aðtÞ [we set aðtÞ ¼ 1 at the present time].
Such a FRW metric solves the field equations (3) for a
spatially uniform cosmological dust energy-momentum
tensor, Tcos

�� , the trace of which is ��cosðtÞ. We denote

the Ricci scalar curvature of the background spacetime
by R0 ¼ R0ðtÞ.
We assume that the spacetime around a spherical star

is written (in spherical coordinates) by the following
perturbation of the background metric:

ds2 ¼ �½1þ 2�ðr; tÞ�dt2
þ a2ðtÞð½1þ 2�ðr; tÞ�dr2 þ r2d�2Þ; (6)

where j�ðr; tÞj � 1 and j�ðr; tÞj � 1. The Ricci curva-
ture of the perturbed spacetime is expressed as the sum

Rðr; tÞ ¼ R0ðtÞ þ R1ðr; tÞ: (7)

As expected, we will show that the time scale of variations
in �, � and R1 is much longer than the one of Solar
System dynamics, such that

�ðr;tÞ’�ðrÞ; �ðr;tÞ’�ðrÞ; R1ðr;tÞ’R1ðrÞ: (8)

Following Ref. [18], in the linearization of the field equa-
tions, both around and inside the star, we assume that

jR1ðr; tÞj � R0ðtÞ: (9)

Such an assumption implies that the scalar curvature R of
the perturbed spacetime remains close to the cosmological
value R0 inside the star. In fðRÞ theories this condition is
satisfied, for instance, by the model proposed in Ref. [19],
where

ORFEU BERTOLAMI, RICCARDO MARCH, AND JORGE PÁRAMOS PHYSICAL REVIEW D 88, 064019 (2013)
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f1ðRÞ ¼ 2�

�
R��4

R

�
; f2ðRÞ ¼ 0; (10)

as shown in Refs. [18,20]. Such a behavior for the curva-
ture differs from the usual scenario of GR, where the above
condition breaks down inside the body, since the mass
density of the star is larger than the cosmological mass
density. This issue will play a central role in the application
of the framework here developed to the NMC model
proposed in Ref. [12]. Naturally, the validity of condition
Eq. (9) will depend on the particular choice of f1ðRÞ and
f2ðRÞ, and thus can be used to constrain these functions.

We consider that all derivatives of functions f1ðRÞ
and f2ðRÞ exist at the present value of R0ðtÞ. Since we
assume that jR1j � R0, we can Taylor expand fiðRÞ
around R ¼ R0 to evaluate fiðR0 þ R1Þ and fiRðR0 þ R1Þ,
for i ¼ 1, 2. Neglecting terms nonlinear in R1, we get��������fiðR0Þ þ dfi

dR
ðR0ÞR1

�������� �
�������� 1

k!

dkfi

dRk
ðR0ÞRk

1

��������;

��������fiRðR0Þ þ dfiR
dR

ðR0ÞR1

�������� �
�������� 1

k!

dkfiR
dRk

ðR0ÞRk
1

��������;

(11)

for all k > 1 and i ¼ 1, 2. Following Ref. [18], we
introduce the useful notation (for i ¼ 1, 2),

fi0�fiðR0Þ; fiR0�
dfi

dR
ðR0Þ; fiRR0�

d2fi

dR2
ðR0Þ: (12)

IV. LINEARIZATION OF THE TRACE
OF THE FIELD EQUATIONS

The trace of the field equations (3) is given by

ðf1R þ 2f2RLmÞR� 2f1 þ 3hðf1R þ 2f2RLmÞ
¼ ð1þ f2ÞT: (13)

The energy-momentum tensor is decomposed in the
following way:

T�� ¼ Tcos
�� þ Ts

��; � ¼ �cos þ �s; (14)

where �cos ¼ �cosðtÞ is the cosmological matter density
and �s ¼ �sðrÞ is the stellar matter density. The traces of
the energy-momentum tensor contributions are denoted by
Tcos and Ts, respectively. We denote by RS the radius of the
star and assume that both the function �sðrÞ and its deriva-
tive are continuous across the surface of the star, such that

�sðRSÞ ¼ d�s

dr
ðRSÞ ¼ 0: (15)

We also writeLcos
m ¼ ��cos andLs

m ¼ ��s, so thatLm ¼
Lcos

m þLs
m. As a consequence of our definitions, we have

that �ðr; tÞ ¼ �cosðtÞ þ �sðrÞ inside the star.
The background curvature R0 solves the trace Eq. (13)

with matter source given by Tcos:

ðf1R0 þ 2f2R0L
cos
m ÞR0 � 2f10 þ 3hðf1R0 þ 2f2R0L

cos
m Þ

¼ ð1þ f20ÞTcos: (16)

We now linearize Eq. (13) using the first-order Taylor
expansions of the functions fiðRÞ and fiRðRÞ around R ¼
R0 � 0. Since R ¼ R0 þ R1, using condition Eq. (9), we
neglect OðR2

1Þ contributions, but keep the cross term R0R1.
Moreover, using the fact that R0 solves Eq. (16), we
eliminate in the linearized trace equation terms that are
independent of R1, with the exception of those containing
the matter source Ts ¼ Ls

m. The application of the above
procedure yields

½�f1R0 þ f2R0Lm þ ðf1RR0 þ 2f2RR0LmÞR0�R1

þ 3h½ðf1RR0 þ 2f2RR0LmÞR1�
¼ ð1þ f20ÞTs � 2f2R0L

s
mR0 � 6hðf2R0Ls

mÞ: (17)

In order to compute the term

h½ðf1RR0 þ 2f2RR0LmÞR1�; (18)

we consider the approximation R1ðr; tÞ ’ R1ðrÞ, that will
be verified later, obtaining

hðf1RR0R1Þ ¼ f1RR0hR1 þ R1hf1RR0; (19)

and

hðf2RR0LmR1Þ ¼ �f2RR0�
coshR1 � R1hðf2RR0�cosÞ

� f2RR0hð�sR1Þ � �sR1hf2RR0: (20)

By definition,

hR1ðrÞ ¼ grr
d2R1

dr2
� g���r

��

dR1

dr
;

hð�sðrÞR1ðrÞÞ ¼ grr
d2ð�sR1Þ

dr2
� g���r

��

dð�sR1Þ
dr

;

(21)

where ��
�� are the Christoffel symbols of the metric

Eq. (6). Neglecting terms in Eq. (17) that involve products
of R1 or its spatial derivatives with �, � and their spatial
derivatives [since such products turn out to be of order
oð1=c2Þ], we may approximate

hR1 ’ r2R1; hð�sR1Þ ’ r2ð�sR1Þ; (22)

where r2 denotes the three-dimensional flat space
Laplacian. Taking into account that f2RR0 ¼ f2RR0ðtÞ, it

follows that

hðf2RR0LmR1Þ ’ �R1½�shf2RR0 þhðf2RR0�cosÞ�
þ r2ðf2RR0LmR1Þ: (23)

Collecting these results, we thus find

h½ðf1RR0 þ 2f2RR0LmÞR1�
’ ½hðf1RR0 � 2f2RR0�

cosÞ � 2�shf2RR0�R1

þr2½ðf1RR0 þ 2f2RR0LmÞR1�: (24)
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The same steps are also applied to the term

hðf2R0Ls
mÞ ¼ �f2R0h�s � �shf2R0; (25)

found in Eq. (17); substituting the obtained expressions into Eq. (17), we obtain

3r2½ðf1RR0 þ 2f2RR0LmÞR1� þ ð�f1R0 þ f2R0LmÞR1 þ ðf1RR0 þ 2f2RR0LmÞR0R1 þ 3½hðf1RR0 � 2f2RR0�
cosÞ � 2�shf2RR0�R1

¼ �ð1þ f20Þ�s þ 2f2R0�
sR0 þ 6�shf2R0 þ 6f2R0r2�s: (26)

We define the potential

Uðr; tÞ ¼ ½f1RR0ðtÞ þ 2f2RR0ðtÞLmðr; tÞ�R1ðrÞ; (27)

and the mass parameter

m2 ¼ 1

3

2
4 f1R0 � f2R0Lm

f1RR0 þ 2f2RR0Lm

� R0 � 3hðf1RR0 � 2f2RR0�
cosÞ � 6�shf2RR0

f1RR0 þ 2f2RR0Lm

3
5; (28)

assuming that f1RR0 þ 2f2RR0Lm � 0. Note that m ¼ mðtÞ
outside the spherical body, where �s ¼ 0 and Lm ¼
��cosðtÞ. For f2ðRÞ ¼ 0, the mass formula presented in
Ref. [18] for fðRÞ theories is recovered. A negative mass
squared m2 < 0 could generically produce a gravitational
instability, as the solution of Eq. (32) would lead to radial
oscillations of the potential U with wavelength and
frequency �jmj�1.

In the remainder of this study, we will assume that
jmrj � 1 within the Solar System, so that the contribution
of any mass parameter is negligible and any putative
oscillations evolve with a wavelength and period much
larger than the typical time scale of Solar System dynamics.

Using the expressions for U and m2, the equation for
R1 can be written as

r2U�m2U ¼ � 1

3
ð1þ f20Þ�s þ 2

3
f2R0�

sR0

þ 2�shf2R0 þ 2f2R0r2�s: (29)

The assumption jmrj � 1 at Solar System scales signals
a long-range extra force due to the nontrivial functions
fiðRÞ. If the mass parameter is negative, this implies that
the time scale of oscillations is much larger than the one
ruling Solar System dynamics.

V. SOLUTION FOR R1

Outside the star, Eq. (29) reads �s ¼ 0 and we obtain

r2U ¼ m2ðtÞU; (30)

so that U behaves as a Yukawa potential with a character-
istic length 1=mðtÞ evolving on a cosmological time scale,

U� e�mr

r
� 1

r
; (31)

or, if m2 is negative, as an oscillating potential with
strength �1=r. The approximation U� 1=r stems from

the assumption that jmrj � 1 within the Solar System: we
may thus drop the mass term m2U in Eq. (29) outside the
spherical body. Moreover, standard approximation proper-
ties of solutions of differential equations permit us to
neglect this mass term also inside the spherical body, where
the mass m2 depends both on r and t, whenever jmrj � 1.
Equation (29) then becomes

r2U ¼ �ðtÞ�sðrÞ þ 2f2R0r2�s; (32)

with the definition

�ðtÞ ¼ � 1

3
ð1þ f20Þ þ

2

3
f2R0R0 þ 2hf2R0: (33)

Outside the spherical body, �s ¼ 0 and we may use the
divergence theorem to obtain

Uðr; tÞ ¼ ��ðtÞ
4�

MS

r
; (34)

where MS is the total gravitational mass of the spherical
body. Using Eq. (27), this implies that

R1ðr; tÞ ¼ �ðtÞ
4�ð2f2RR0�cos � f1RR0Þ

MS

r
: (35)

For f2ðRÞ ¼ 0, this expression reduces to the solution for
R1 found in Ref. [18]. Notice that, although R1 depends on
time through R0ðtÞ and �cosðtÞ, the time scale of its varia-
tion (comparable to the current Hubble time being much
bigger than the one of Solar System dynamics) ensures the
approximation R1ðr; tÞ ’ R1ðrÞ.
Inside the spherical body, Eq. (32) implies that

d

dr
ðU� 2f2R0�

sÞ ¼ �ðtÞ
4�

MðrÞ
r2

; (36)

where MðrÞ is the gravitational mass inside a sphere of
radius r, defined as
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MðrÞ � 4�
Z r

0
�sð	Þ	2d	; MS ¼ MðRSÞ: (37)

Since the potential U must be continuous, it is profitable to
rewrite this equation in terms of the dimensionless variable
x � r=RS and dimensionless function

y � UðxÞ
Uðx ¼ 1Þ ¼ � 4�RSUðxÞ

�ðtÞMS

; (38)

so that Eq. (36) becomes

d

dx

�
yþ 8�f2R0

�ðtÞ
RS

MS

�s

�
¼ �MðxÞ

MSx
2
: (39)

In order to derive yðxÞ from the above, we require prior
knowledge of the density profile inside the spherical body,
�s; to do so, we assume that the latter may be expanded as a
Taylor series,

�s ¼ �s
0

X
i¼0

aix
i; (40)

where �s
0 � 105 kg=m3 is the central density and a0 ¼ 1.

We thus get

MðrÞ ¼ 4��s
0R

3
S

X
i¼0

ai
iþ 3

xiþ3; (41)

so that

MS ¼ 4��s
0R

3
S

X
i¼0

ai
iþ 3

; (42)

and Eq. (39) may be integrated between x and x ¼ 1 to
obtain

y ¼
P

i¼0
ai
iþ2P

i¼0
ai
iþ3

�
P

i¼0 aix
i
h

2f2
R0

�ðtÞR2
S

þ x2

ðiþ2Þðiþ3Þ
i

P
i¼0

ai
iþ3

: (43)

Using Eqs. (43) and (27), we thus obtain

R1

R0

¼ �

4�½2f2RR0ð�cos þ �sÞ � f1RR0�
MS

R0RS

y: (44)

Equation (44) must be used to check if the perturbative
approach jR1j � R0 is valid within the spherical body.
Outside it, it suffices to compare Eq. (35) with the expres-
sion for R0 found from a cosmological solution of NMC
gravity.

The condition jR1j � R0 implies that the Ricci curva-
ture R ¼ R0 þ R1 of the perturbed spacetime is close to the
cosmological value R0 at Solar System scales, and also
inside the spherical body, even though the metric Eq. (6) of
the perturbed spacetime is fairly close to the Minkowski
metric.

In theories where f2ðRÞ ¼ 0, such a condition is satis-
fied for jmrj � 1, with r varying from Solar System scales
to the star interior, and f1R0=f

1
RR0 � R0 [2,18]. However,

such theories yield the value � ¼ 1=2 which does not
satisfy Solar System tests of gravity. Theories which do

not satisfy the condition jR1j � R0 inside the spherical
body are characterized by a large mass m, such that
jmrj � 1 at Solar System scales [2]. For f2ðRÞ ¼ 0, this
could render viable, due to decoupling, a minimally
coupled model of gravity; for GR, the condition jR1j �
R0 is not satisfied in the star interior. In this study, we
consider this issue for f2ðRÞ � 0.

VI. LINEARIZATION OF THE FIELD EQUATIONS

In this section we linearize the field equations (3). We
denote by ½R0��� the components of the Ricci tensor in the
considered background metric. The tensor ½R0��� solves the
field equations (3) with matter source given by Tcos�

� :

ð½R0��� �r�r� þ 

�
�hÞðf1R0 þ 2f2R0L

cos
m Þ

� 1

2
f10


�
� ¼ ð1þ f20ÞTcos�

� : (45)

We now linearize Eqs. (3) using the first-order Taylor
expansions of the functions fiðRÞ and fiRðRÞ around
R ¼ R0, for i ¼ 1, 2. Using Eq. (45) and neglecting time
derivatives of the background metric, we obtain the follow-
ing system of equations in R

�
� :

ðf1R0 þ 2f2R0L
cos
m ÞðR�

� � ½R0��� Þ þ 2f2R0L
s
mR

�
�

þ ðf1RR0 þ 2f2RR0LmÞR1R
�
� � f2R0R1T

�
�

� 1

2
f1R0R1


�
� � f1RR0ðr�r� � 


�
�hÞR1

� 2f2RR0ðr�r� � 

�
�hÞðLmR1Þ

¼ ð1þ f20ÞTs�
� þ 2f2R0ðr�r� � 


�
�hÞLs

m: (46)

The R0
0 component is thus given by

R0
0 ¼ � 1

1þ 2�

�
1

a2
r2�� 3

�
H2 þ dH

dt

��

’ �r2�þ 3

�
H2 þ dH

dt

�
; (47)

while Rrr reads

Rrr ¼ a2
1þ 2�

1þ 2�

�
3H2 þ dH

dt

�

� 1

1þ 2�

d2�

dr2
þ 1

ð1þ 2�Þ2
�
d�

dr

�
2

þ 2

r

1

1þ 2�

d�

dr
þ 1

ð1þ 2�Þð1þ 2�Þ
d�

dr

d�

dr

’ �d2�

dr2
þ 2

r

d�

dr
þ 3H2 þ dH

dt
: (48)

By neglecting the terms involving functions� and� in the
previous expressions we get the corresponding components
of the tensor ½R0��� .
We can simplify Eqs. (46) by neglecting terms involving

the product of R1, �, � and their derivatives with H and
dH=dt. Moreover, following Ref. [18], we neglect terms
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that are nonlinear functions of the metric perturbations �
and�, and we neglect terms involving products of R1 by�
and �. Such approximations permit us to replace the
d’Alembert operatorhwith the flat space Laplace operator
r2. The 00 and rr components of Eqs. (46) then become,
respectively,

ðf1R0þ2f2R0LmÞ
�
r2�þ1

2
R1

�
�r2½ðf1RR0þ2f2RR0LmÞR1�¼ ð1þf20Þ�s�2f2R0r2�s;

(49)

and

ðf1R0 þ 2f2R0LmÞ
�
�d2�

dr2
þ 2

r

d�

dr

�
� 1

2
f1R0R1

þ 2

r
f1RR0

dR1

dr
þ 4

r
f2RR0

@ðLmR1Þ
@r

¼ 4

r
f2R0

d�s

dr
: (50)

In the next sections we shall compute the solutions � and
� of these equations.

VII. SOLUTION FOR �

Using Eqs. (32), (33), and (49) becomes

ðf1R0 þ 2f2R0LmÞ
�
r2�þ 1

2
R1

�

¼ 2

3
ð1þ f20 þ f2R0R0 þ 3hf2R0Þ�s: (51)

We assume that f1R0 þ 2f2R0Lm � 0 and, following

Ref. [18], decompose � as the sum of two functions,
� ¼ �0 þ�1, such that

r2�0 ¼ 2

3

1þ f20 þ f2R0R0 þ 3hf2R0
f1R0 þ 2f2R0Lm

�s;

r2�1 ¼ � 1

2
R1:

(52)

Using Eq. (15), integration through the divergence theorem
yields for the function �0 outside of the star,

�0ðr; tÞ ¼ � 1

6�
ð1þ f20 þ f2R0R0 þ 3hf2R0Þ

M�

r
þ C0;

M� ¼ 4�
Z RS

0

�sðxÞ
f1R0 þ 2f2R0LmðxÞ

r2dr; (53)

with C0 an integration constant. The function �1 is
computed in Appendix A, where it is shown that, under
the additional condition�������� f1R0 þ 2f2R0Lm

f1RR0 þ 2f2RR0Lm

��������r2 � 1; (54)

assumed to be valid both inside and outside the star, we
have

�1ðr; tÞ ¼ ��
1ðr; tÞ þ C1;

j��
1ðr; tÞj � j�0ðr; tÞ � C0j;

(55)

where C1 is another integration constant. Condition
Eq. (54) is satisfied for instance by functions of the type
f1ðRÞ � Rm, f2ðRÞ � Rn, at least for a suitable range of
values of the exponents, and its meaning will be discussed
at the end of this section. By requiring that�ðr; tÞ vanishes
as r ! þ1, we obtain that C0 þ C1 ¼ 0. The validity of
the Newtonian limit requires that �ðrÞ is proportional to
MS=r, leading to the following constraint on the functions
f1ðRÞ and f2ðRÞ:

j2f2R0j�sðrÞ � jf1R0 � 2f2R0�
cosðtÞj; r � RS: (56)

We now get the solution for � outside of the star,

�ðr; tÞ ¼ � 1þ f20 þ f2R0R0 þ 3hf2R0
6�ðf1R0 � 2f2R0�

cosÞ
MS

r
; r 	 RS:

(57)

For f2ðRÞ ¼ 0, this expression reduces to the solution for
� found in Ref. [18]. The expression for � yields a
gravitational coupling slowly varying in time,

G ¼ !ðtÞ
6�ðf1R0 � 2f2R0�

cosÞ ;

!ðtÞ ¼ 1þ f20 þ f2R0R0 þ 3hf2R0:

(58)

As expected, the time scale _G=G is much longer than the
one of Solar System dynamics. Hence we have approxi-
mately G ’ const and �ðr; tÞ ’ �ðrÞ.
By comparing with available bounds on _G=G

(see Ref. [21] for an updated review), Eq. (58) can in
principle be used to constrain f1ðRÞ and f2ðRÞ.
We may now check the assumption jR1j � R0 outside

the spherical body. Using the solution Eq. (35) for R1

and the expression Eq. (58) of the effective gravitational
constant G, we have, for r 	 RS,��������R1

R0

��������� 3

2R0

GMS

RS

���������ðtÞ
!ðtÞ

��������

�������� f1R0 � 2f2R0�

cos

f1RR0 � 2f2RR0�
cos

��������: (59)

Then, the assumption jR1j � R0 used in the linearization
of the field equations places the following additional
constraint on functions f1ðRÞ and f2ðRÞ:���������ðtÞ

!ðtÞ
��������


�������� f1R0 � 2f2R0�
cos

f1RR0 � 2f2RR0�
cos

��������� R0

�
RS

GMS

�
: (60)

If the following condition is satisfied,���������ðtÞ
!ðtÞ

��������& 1; (61)

as shall be checked later, then the above amounts to�������� f1R0 � 2f2R0�
cos

f1RR0 � 2f2RR0�
cos

��������� R0

�
RS

GMS

�
� 4:7� 105R0: (62)
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Since R0r
2 �H2r2 � GMS=RS for the current Hubble

parameter H and r of the order of Solar System scales,
we find that condition Eq. (62) is much stronger than
Eq. (54).

If condition Eq. (62) is satisfied and the effective
gravitational constant G is identified with Newton’s
gravitational constant, using Eq. (60) we have jR1=R0j �
1. For f2ðRÞ ¼ 0, conditions Eqs. (54) and (62) reduce to
jf1R0=f1RR0jr2 � 1 and jf1R0=f1RR0j � R0RS=ðGMsÞ found
in Ref. [18]. This condition is satisfied for instance by the
theory of 1=Rn gravity, proposed in Ref. [19], where

f1ðRÞ ¼ 2�

�
R��2þ2n

Rn

�
; n > 0; f2ðRÞ ¼ 0: (63)

This theory satisfies also the condition jmrj � 1 at Solar
System scales [18].

VIII. SOLUTION FOR �

We now compute the solution � under condition
Eq. (54). For r 	 RS, Eq. (50) becomes

ðf1R0 þ 2f2R0L
cos
m Þ

�
� d2�

dr2
þ 2

r

d�

dr

�
� 1

2
f1R0R1

þ 2

r
ðf1RR0 þ 2f2RR0L

cos
m ÞdR1

dr
¼ 0: (64)

Using the solution Eq. (35) for R1, we have

R1

dR1dr
¼ �r: (65)

Since �cosðtÞ � �sðrÞ for r < RS and jr� RSj large
enough, using Eq. (56) we have also

j2f2R0j�cosðtÞ � jf1R0j: (66)

Using these results and Eq. (54), we have

�������� f1R0R1=2

ð2=rÞðf1RR0 þ 2f2RR0L
cos
m ÞðdR1=drÞ

��������
’ 1

4

�������� f1R0 þ 2f2R0L
cos
m

f1RR0 þ 2f2RR0L
cos
m

��������r2 � 1: (67)

It follows that the term f1R0R1=2 can be neglected in

Eq. (64), which now becomes

d�

dr
¼ r

2

d2�

dr2
�

�
f1RR0 � 2f2RR0�

cos

f1R0 � 2f2R0�
cos

�
dR1

dr
: (68)

Substituting in this equation the derivatives of functions R1

and�, computed from Eqs. (35) and (57), respectively, we
obtain

�ðr; tÞ ¼ 1þ f20 þ 4f2R0R0 þ 12hf2R0
12�ðf1R0 � 2f2R0�

cosÞ
MS

r
; (69)

for r 	 RS. As expected, setting f2ðRÞ ¼ 0 reduces this
expression to the solution for � found in Ref. [18]. Again,
we have �ðr; tÞ ’ �ðrÞ.
Using the expressions of � and �, we get the PPN

parameter �:

� ¼ 1

2

�
1þ f20 þ 4f2R0R0 þ 12hf2R0
1þ f20 þ f2R0R0 þ 3hf2R0

�
: (70)

Thus, the parameter � is completely defined by the back-
ground metric and its value can be obtained by computing
the cosmological solution of NMC gravity. Inserting
f2ðRÞ ¼ 0 yields the value � ¼ 1=2 as it has been found
in Ref. [18]. In particular, the 1=Rn gravity model given by
Eq. (63) also predicts � ¼ 1=2. However, notice that
formula (70) cannot be applied when the functions fiðRÞ
reduce to their GR expressions, since in this case the
mass parameter m, defined in Eq. (28), is ill defined (and
divergent), so that the assumptions of our computations are
not satisfied.
The obtained results show that, in order for a cosmo-

logically viable nonminimally coupled model to be com-
patible with Solar System tests, one of the following
conditions has to be satisfied:
(i) Either the condition jmrj � 1 at Solar System scales

is not satisfied, or nonlinear terms in R1 are not
negligible in the Taylor expansions Eqs. (11) (which
happens if the perturbative condition jR1j � R0 is
not satisfied), so that the present analysis does not
apply;

(ii) If both conditions of point (i) are satisfied, then the
condition Eq. (56) of validity of the Newtonian limit
has to be satisfied, and the value of � given by
Eq. (70) has to satisfy the constraint from the
Cassini measurement � ¼ 1þ ð2:1
 2:3Þ � 10�5

(cf. Ref. [1]).
The mass m2, which is a function m2 ¼ m2ðr; tÞ given by
Eq. (28), has to be computed by using the cosmological
solution R0ðtÞ, �cosðtÞ. In the following section, we imple-
ment the obtained criteria for the cosmological scenario
posited in Ref. [12].

IX. APPLICATION

Following Ref. [12], let us consider the case study

f1ðRÞ ¼ 2�R; f2ðRÞ ¼
�
R

Rn

��n
; n > 0; (71)

where Rn is a constant; the linear choice of f
1ðRÞ serves to

highlight the impact of the NMC between matter and
curvature on the dynamics. Notice that the correct GR limit
of a power-law coupling between matter and curvature is
not attained by setting n ¼ 0 [as this simply doubles the
minimal coupling, f2ðRÞ ¼ 0], but by imposing Rn ! 0
(for positive n, i.e. an inverse power law).
The above choice yields a cosmological scenario where

the contribution of the NMC dominates the dynamics and a
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constant (negative) deceleration parameter is obtained,
q < 0; this, however, is attained due to the large value of
f2R0�

cos and its temporal derivatives, not the NMC itself,

which remains subdominant, f20 � 1.
This mechanism implies a direct relation between the

exponent n and the latter [12],

q ¼ �1þ 3

2ð1þ nÞ ; (72)

that is, a de Sitter solution with exponential scale factor is
ruled out. Thus, the scale factor aðtÞ of the background
metric and the cosmological matter density �cosðtÞ follow
the temporal evolution

aðtÞ ¼ a0

�
t

t0

�
2ð1þnÞ=3

; (73)

and

�cosðtÞ ¼ �cos
0

�
t0
t

�
2ð1þnÞ

;

�cos
0 ¼ ð1þ nÞ 8

3

�

t20

�
4ð1þ nÞð1þ 4nÞ

3

�
tn
t0

�
2
�
n
;

(74)

where t0 is the current age of the Universe and tn �
1=

ffiffiffiffiffiffi
Rn

p
; the latter expression stems from the covariant

conservation of the energy-momentum tensor, which
remains valid since the Lagrangian density is given by
Lm ¼ ��cos (see Ref. [13] for a discussion).

Equation (73) yields

H ¼ _a

a
¼ 2ð1þ nÞ

3t
;

R0 ¼ 6ð _H þ 2H2Þ ¼ 4ð1þ nÞð1þ 4nÞ
3t2

;

(75)

where H � _a=a is the Hubble parameter. Since the current
value of the former is H � 70 ðkm=sÞ=Mpc [22] and the
deceleration parameter is of order q0 ��1, we get that
R0 � ð1014 AUÞ�2, to be compared with the relevant range
for the Solar System, r & RSS � 100 AU.

Inserting the expression for the scalar curvature R0 into
Eq. (71), we get

f20 ¼
�

3

4ð1þ nÞð1þ 4nÞ
�
t0
tn

�
2
�
n
: (76)

We recall that the choice for the Lagrangian density
Lm ¼ ��cos implies that the energy-momentum tensor
of matter is conserved, r�T

�� ¼ 0 ! _�cos ¼ �3H�cos.

From Eq. (75), we get

€R0 ¼ 3

2

ð _R0Þ2
R0

¼ 6

t2
R0 ¼ 9R2

0

2ð1þ nÞð1þ 4nÞ ; (77)

and, together with the expressions below, valid for a
power-law NMC,

f2R0 ¼ �n
f20
R0

; f2RR0 ¼ nðnþ 1Þ f
2
0

R2
0

; (78)

we get

hðf2R0Þ
f20

� n

f20

�
d2

dt2

�
f20
R0

�
þ 3H

d

dt

�
f20
R0

��
¼ 3

2

3þ 4n

1þ 4n
n;

(79)

as well as

hðf2RR0�cosÞ
f2RR0�

cos

� � R2
0

f20�
cos

�
d2

dt2

�
f20
R2
0

�cos

�
þ 3H

d

dt

�
f20
R2
0

�cos

��

¼ � 3

2

2nþ 3

4n2 þ 5nþ 1
R0; (80)

and

hf2RR0
f2RR0

� �R2
0

f20

�
d2

dt2

�
f20
R2
0

�
þ 3H

d

dt

�
f20
R2
0

��

¼ � 3

2

4n2 þ 13nþ 10

4n2 þ 5nþ 1
R0: (81)

As expected, the d’Alembertian terms cannot be neglected,
as they are comparable to R0 �H2.
From Eq. (79) and the definitions Eqs. (33) and (58), we

obtain

�ðtÞ ¼ � 1

3
þ 28n2 þ 21n� 1

3ð1þ 4nÞ f20 (82)

and

!ðtÞ ¼ 1þ 28n2 þ 33nþ 2

2ð1þ 4nÞ f20: (83)

In the discussion following Eq. (60), the assumption
Eq. (61) was put forward. We are now in a position to
check it directly, obtaining���������ðtÞ
!ðtÞ

�������� ¼ 1

3
; f20 � 1;

���������ðtÞ
!ðtÞ

�������� ¼ 2

3

��������28n
2 þ 21n� 1

28n2 þ 33nþ 2

��������� 2

3
; f20 � 1:

(84)

This indicates that for either a large or negligible value of
the NMC, the condition Eq. (61) holds. In Eq. (B3) of
Appendix B, it is shown that the intermediate regime
f20 � 1 (for a power-law NMC) also yields the ratio

j�ðtÞ=!ðtÞj � 0:5, so that Eq. (61) is always valid, as
assumed before.
We now show that condition Eq. (62) [and, as a result,

Eq. (54)] is valid for the chosen NMC, Eq. (71); from
Eqs. (78) and (B1) from Appendix B, we get
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�������� f1R0 þ 2f2R0Lm

f1RR0 þ 2f2RR0Lm

�������� ¼
���������R0 þ nf20�

cosð1þ �s

�cosÞ
nðnþ 1Þf20�cosð1þ �s

�cosÞ
��������R0

¼
�������� 6nþ 1þ 2n �s

�cos

2nðnþ 1Þð1þ �s

�cosÞ
��������R0: (85)

Away from the spherical body, �s ¼ 0 and the above reads

�������� f1R0 þ 2f2R0Lm

f1RR0 þ 2f2RR0Lm

��������¼ 6nþ 1

2nðnþ 1Þ �
RS

GMS

! n � 10�6:

(86)

If the contribution of �s inside the spherical body
dominates the above, this becomes

�������� f1R0 þ 2f2R0Lm

f1RR0 þ 2f2RR0Lm

��������� R0

1þ n
; (87)

which is smaller than RS=ðGMSÞ for any value of
the exponent n. If the latter is so small that the density
contributions do not dominate Eq. (85), then one falls back
into Eq. (87). Thus, one concludes that Eqs. (54) and (62)
are valid for n � 10�6, which includes the values n ¼ 4,
10 considered in Ref. [12].

Several values for the exponent n have been evaluated
in previous studies, ranging from studies of hydrostatic
equilibrium [4] or spherical collapse [15] to galactic [7]
and cluster [8] dark matter, dark energy [12] and postinfla-
tionary preheating [11]. All scenarios assumed a linear
f1ðRÞ ¼ 2�R, except for the latter—where f1ðRÞ ¼
2�ðRþ R2=6M2Þ (the so-called Starobinsky inflation).

In all of these studies, it has been argued that any
particular power-law form for the NMC represents the
dominant behavior of a more evolved function f2ðRÞ in
each regime (i.e. typical scalar curvature associated with
the context under scrutiny, from astrophysics to cosmol-
ogy). As an example, a particular set ðn; RnÞ that accounts
for e.g. galactic dark matter was shown to be irrelevant
to implement a generalized preheating after inflation
(and vice versa). This argument is also used concerning
the plethora of forms used for the curvature term in fðRÞ
theories.

The same reasoning should apply here: for
completeness, the full set of power-law contributions
considered in the mentioned studies should be used,
that is, f2ðRÞ ¼ P

iðRRi
Þ�i. However, since this quantity

(and its derivatives) must be evaluated at its cosmological
value R ¼ R0ðtÞ, it suffices to retain the cosmologically
dominant term, as studied in Ref. [12]. Thus, the results
here obtained cannot be used to constrain the power-law
NMC functions used to account for astrophysical scenarios
(including galactic and cluster dark matter).

With the above in mind, we recall the two examples
presented numerically in Ref. [12], where

n ¼ 4: t4 ¼ t0
4
! f20 ¼

�
12

85

�
4 � 4� 10�4;

n ¼ 10: t10 ¼ t0
2
! f20 ¼

�
3

451

�
10 � 10�22;

(88)

confirming that the NMC is indeed perturbative, as indi-
cated above. However, notice that due to a miscalculation
in Ref. [12] (described in Appendix B), we should instead
consider the values

n ¼ 4: t4 ¼ 0:10t0 ! f20 ¼ 0:63;

n ¼ 10: t10 ¼ 0:043t0 ! f20 ¼ 0:29:
(89)

Although the NMC is considerably higher, this does not
have an impact on any of the results described below, since
we never resort to its actual value, but instead to Eqs. (74)
and (75) and ensuing analytical results.

A. Long range regime, jmrj � 1

Using Eqs. (71), (80), and (81), we are now able to
compute the mass parameter given by Eq. (28), obtaining

m2 ¼ ��cos þ ��s

�cos þ �s R0;

� � � 8n3 þ 4n2 � 18nþ 1

6nðnþ 1Þð4nþ 1Þ ;

� � 28n2 þ 111nþ 89

6ðnþ 1Þð4nþ 1Þ :

(90)

Notice that the roots of the denominator of both � and �
are nonpositive, while the NMC used in a cosmological
setting assumes a positive exponent n [12].
Figure 1 shows the variation of�ðnÞ and �ðnÞ: for n > 0,

we see that both functions are Oð10Þ or below: since �s �
�cos inside the spherical body—except for a vanishingly
thin surface layer—the mass parameter is given inside it by
m2 � �R0 (for all values of n, since � has no roots); in the
outside, we have m2 ¼ �R0.

1 2 3 4
n

4

2

2

4

n

FIG. 1. Quantities �ðnÞ (full), �ðnÞ (long dash) and �ðnÞ
(short dash), defined in Eqs. (90) and (95) as a function of the
exponent n.
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For n� 0, the function � grows to large (negative)
values; if ��cos � ��s, the mass parameter inside the
spherical body is given by

m2 � �cos

�s �R0: (91)

Since ���1=6n for n� 0, the validity of the long-range
regime yields

jmrj � jmRSj � 1 ! n � �cos

�s

R2
SR0

6
� 10�66; (92)

using �cos � 10�27 kg=m3, �s & �s
0 � 105 kg=m3

(the central density of the Sun), R0 � ð1014 AUÞ�2 and
RS ¼ 1:4� 109 m� 5� 10�3 AU.

By the same token, away from the spherical body we get

jmrj * jmRSj � 1 ! n � R2
SR0

6
� 10�25; (93)

a stronger constraint than the one above, but extremely
mild nonetheless.

B. Newtonian regime

The previously discussed Eq. (56) provides the
condition for the validity of the Newtonian regime
adopted in this study. Using the previous expressions
Eqs. (71) and (74), we find that f2R0�

cosðtÞ=� ¼ const,
and this condition can be recast as�������� �

f2R0�
cosðtÞ � 1

���������cos ¼
�
3þ 1

2n

�
�cosðtÞ � �sðrÞ ! n

� �cos

2�s � 10�33; (94)

which is incompatible with the constraint n � 10�25

required for the long-range condition jmrj � 1 to be valid
outside the spherical body. Nevertheless, we cannot yet
conclude that the Newtonian limit is not valid for n �
10�25, since we have still to check the validity of Eq. (11),
i.e. our assumptions that terms nonlinear in R1 are negli-
gible in the Taylor expansions of fiðRÞ and fiRðRÞ. This will
be the subject of Sec. IXD.

C. PPN parameter �

If nonlinear terms in R1 were negligible in the Taylor
expansions Eqs. (11), then the result of the preceding
section implies that the Newtonian approximation would
not be valid in the Solar System, whenever jmrj � 1,
i.e. n � 10�25. Thus we cannot rely on the result presented
here for its impact at Solar System scales, i.e. the expres-
sion for the PPN � parameter, Eq. (70).

D. Perturbative regime, jR1j � R0

We now check our assumption that jR1j � R0. At the
end of Sec. VII, in order to check such an assumption
outside the spherical body, we have used the inequality
GMSRS � 1, where G is the effective gravitational

constant defined in Eq. (58). However, the result of
Sec. IXB shows that in the long-range regime jmrj � 1
we cannot rely on the validity of the Newtonian limit, so that
we are prevented from using the effective gravitational
constant G in this way. Hence, in order to estimate the ratio
R1=R0, in the sequel we resort to Newton’s gravitational
constantGN , which we recall is defined by � ¼ c4=16�GN .

1. Outer solution

We first assess the validity of the perturbative condition
jR1j � R0 outside the spherical body.
Using Eqs. (35), (74), and (75), we get

R1

R0

¼ �ðtÞ R0

8�nðnþ 1Þf20�cos

MS

r

¼ �ðtÞ 1þ 4n

6�nf20t
2
0�

cos

MS

r
¼ ��ðtÞGNMS

r
;

� � 1þ 4n

nð1þ nÞ : (95)

We see that the function �, plotted in Fig. 1, has no
positive roots, but diverges at n ¼ 0. Thus, the perturbative
condition jR1j � jR0j requires that

n � j�ðtÞjGNMS

RS

� 2:1� 10�6j�ðtÞj; (96)

and, since Eq. (B3) of Appendix B shows that �ðtÞ ¼ 6:24
for n ¼ 4 and �ðtÞ ¼ 6:68 for n ¼ 10, we conclude that
n � 10�5, a much stronger constraint that those obtained
in Eqs. (92) and (93) of the preceding section.

2. Inner solution

We now assess the validity of the perturbative condition
jR1j � R0 inside the spherical body.
We address Eq. (44): using Eqs. (43) and (78), the

former reads

R1

R0

¼ �s

�cos þ �s

1� zðtÞwðxÞ
1þ n

; (97)

defining the dimensionless form function

wðxÞ � �s
0

�s

X
i¼0

ai
iþ 2

�
1� xiþ2

iþ 3

�
; (98)

and coupling

zðtÞ � �ðtÞR2
S

2f2R0

¼ ��ðtÞ
2n

�
4ð1þ 4nÞð1þ nÞ

3

�
nþ1

�
RS

t

�
2
�
tn
t

�
2n

¼ ��ðtÞ 1þ 4n

n
4�GNR

2
S�

cosðtÞ; (99)

again using Eq. (75). The above may be recast as

zðtÞ ¼ ��ðtÞ 1þ 4n

n
4�

GNMS

RS

�cosR3
S

MS

; (100)
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clearly showing that, since GNMS=RS � 2� 10�6 and
�cosR3

S=MS � 10�31, zðtÞ is vanishingly small unless n �
10�37 [since j�ðtÞj � 7:0, as discussed in the Appendix B).

At the surface of the spherical body, x ¼ 1, we have
�s ¼ �s

0

P
i¼0ai ¼ 0, so that

R1

R0

¼ � zðtÞ�s
0

ðnþ 1Þ�cos

X
i¼0

�
ai

iþ 3

�
¼ � 1

4�

zðtÞ
ðnþ 1Þ�cos

MS

R3
S

;

(101)

and, using Eqs. (99) and (95) is matched at the surface, as
expected.

To assess the behavior inside the spherical body, we
consider the following model of the density profile of the
Sun [23]:

�sðrÞ¼�s
0ð1�5:74xþ11:9x2�10:5x3þ3:34x4Þ; (102)

depicted in Fig. 2. As discussed below, the overall result is
not qualitatively affected by the specific density model.
Notice that this fourth-order expression obeys the con-
straint �sðRSÞ ¼ 0 and ðd�s=drÞðRSÞ ’ 0.

The density �sðrÞ rises beyond �cos immediately after
the surface of the spherical body: for the chosen density
profile Eq. (102), we find numerically that �s � �cos !
x < 1–10�31. Thus, this thin surface layer may be safely
disregarded, and Eq. (97) is approximated by

R1

R0

� 1� zðtÞwðxÞ
1þ n

: (103)

Figure 3 plots the form function wðxÞ for the density
profile above. For comparison, two unrealistic cases
are also depicted: w1ðxÞ, obtained from a linear density
�s ¼ �s

0ð1� xÞ, and w0ðxÞ, derived from a constant one,

�s ¼ �s
0.

Clearly, the peak around x� 0:5 for the form function
w4ðxÞ derived from Eq. (102) appears because the density
has a minimum at x � 0:52 (which is an unphysical artifact

of the fourth-order approximation). We also see that w1ðxÞ
is an approximate envelope of w4ðxÞ, i.e. presents an
approximate behavior without the aforementioned peak.
If n � 10�37, a large coupling zðtÞ � 1 arises and we

get R1 � �zðtÞwðxÞR0. This result breaks the perturbative
condition underlying this work; moreover, in this case the
long-range condition jmrj � 1 is not satisfied.
The converse case n > 10�37 (which comprises n ¼ 4

or n ¼ 10, the two scenarios studied in Ref. [12]) leads to

R1

R0

� 1

1þ n
; (104)

which is valid for the full interior of the spherical body,
with the exception of a very thin surface layer signaling the
transition to the outer solution. Notice that this result is not
dependent on the adopted density model, as the vanishingly
small value of zðtÞ absorbs any peaks that may arise in the
form factor wðxÞ.
Equation (104) implies that the condition jR1j � R0 is

not satisfied when n� 1 or n < 1. For n ¼ 4, the value of
the curvature perturbation R1 is one fifth of the cosmologi-
cal background curvature R0, while n ¼ 10 yields a
smaller 1=11 factor. At first sight, this result allows us to
validate the perturbative condition jR1j � R0, or at least it
leads to the conclusion that n � 1, in order to get a larger
separation between jR1j and R0. However, this is not the
case: indeed, if we expand the power-law NMC Eq. (71) up
to third order and insert Eq. (104),

f2ðRÞ ’ f20

�
1� n

R1

R0

þ nðnþ 1Þ
2

�
R1

R0

�
2

� 1

6
nðnþ 1Þðnþ 2Þ

�
R1

R0

�
3
�

¼ f20

�
1� n

nþ 1
þ n

2ðnþ 1Þ �
nðnþ 2Þ
6ðnþ 1Þ2

�
; (105)

we conclude that, for any exponent n > 1, the non-
linear terms in the Taylor expansion of f2ðRÞ cannot be
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FIG. 2. Fourth-order approximation of the density profile
inside the spherical body [Eq. (102)].
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FIG. 3. Form functions wðxÞ for the density profile Eq. (102)
[w4ðxÞ, full], linear [w1ðxÞ, dashed] and constant profile
[w0ðxÞ, dotted].
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disregarded. An analogous result holds for the Taylor
expansion of the function f2RðRÞ. It follows that conditions
Eq. (11) are not respected.

A third possibility remains: that the coupling zðtÞ is
such that it enables a small numerator in Eq. (103). This
implies that zðtÞwðxÞ � 1, which requires an approximately
constant form function wðxÞ � const. However, since zðtÞ
is determined by the choice of the cosmologically relevant
NMC, this would lead to an unphysical fine-tuning of the
form function wðxÞ, and is thus deemed unfeasible.

Given the above discussion, we conclude that the
perturbative regime is not compatible with the scenario
posited in Ref. [12], and thus the method here developed
cannot be applied to constrain the latter using Solar System
observables.

E. Postinflationary reheating model

Following Ref. [11], we now consider the model

f1ðRÞ ¼ 2�

�
Rþ R2

6M2

�
; f2ðRÞ ¼ 2	

R

M2
; (106)

which adds a nonminimal coupling to the standard preheat-
ing scenario in the context of Starobinsky inflation [24]. In
Eq. (106), M has dimensions of mass and 	 is a dimen-
sionless parameter. The mass parameter m2, defined in
Eq. (28), is proportional to M2. Since M2 is large in
Starobinsky gravity, the condition jmrj � 1 is not satisfied
inside the Solar System and we cannot use the present
analysis to constraint the NMC model given by Eq. (106).

X. CONCLUSIONS AND OUTLOOK

We have analyzed the constraints that the NMC Eq. (71)
should fulfill in order to be consistent with the regimes
considered in this work. This is summarized as follows:

(i) Long-range regime jmjr � 1 within the Solar
System, leading to n � 10�25;

(ii) Newtonian approximation, leading to n � 10�33;
(iii) Perturbative regime jR1j � R0, only viable if

zðtÞwðxÞ � 1 [see Eq. (103)], thus leading to an
unphysical fine-tuning of the density profile inside
the spherical body.

The lack of validity of the perturbative regime leads us
to conclude that the mechanism proposed in Ref. [12]
cannot be constrained or excluded by the method devel-
oped in the present paper.

This result, however, is not specific to the Sun or similar
objects, but is characteristic of any relevant spherical body
of astrophysical scale for which the weak field approxima-
tion can be used.

Nevertheless, this study provides a relevant set of tools
with which to assess the local impact of proposals for a
perturbative power-law NMC driving the accelerated ex-
pansion of the Universe. Notice that the procedure can also
be applied for a NMC that does not follow a power-law

form, as long as its temporal variation (and of its deriva-
tives) is of the order of H2.
Of course, in what concerns the cosmological context,

a new set of issues associated with the treatment of cos-
mological perturbations must be considered in order to
address the impact of the NMC (see Ref. [9]).
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APPENDIX A

We compute here the solution of Eqs. (52). We set

R1ðr; tÞ ¼ AðtÞMS

r
r 	 RS;

AðtÞ ¼ 1þ f20 � 2f2R0R0 � 6hf2R0
12�ðf1RR0 � 2f2RR0�

cosÞ :

(A1)

Using the divergence theorem, for r 	 RS we have

2r2
d�1

dr
¼ 1

2
AðtÞMSðR2

S � r2Þ �
Z RS

0
R1ðr; tÞr2dr: (A2)

From the definition of functionU and the generalized mean
value theorem for integrals we haveZ RS

0
R1ðr; tÞr2dr

¼ 1

f1RR0 � 2f2RR0ð�cos þ �sð	ÞÞ
Z RS

0
Uðr; tÞr2dr; (A3)

for 	 2 ð0;RSÞ.
Using Eq. (32) and the divergence theorem, for r � RS

we have

dU

dr
¼ �ðtÞ

4�

MðrÞ
r2

þ 2f2R0
d�s

dr
; MðrÞ ¼

Z
Br

�sðxÞd3x;
(A4)

where Br is the ball of radius r centered at the center of the
star. Imposing the condition lim r!0Uðt; rÞr3 ¼ 0, repeated
integration by parts yieldsZ RS

0
Uðr; tÞr2dr

¼ 1

3
Uðt;RSÞR3

S �
�ðtÞ
12�

Z RS

0
MðrÞrdrþ 1

2�
f2R0MS:

(A5)

Substituting the previous results into Eq. (A2) yields, for
r 	 RS:
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�1ðr;tÞ¼�1

r

1

f1RR0�2f2RR0ð�cosþ�sð	ÞÞ
�
�
�ðtÞ
24�

MSR
2
Sþ

�ðtÞ
24�

Z RS

0
MðrÞrdr� 1

4�
f2R0MS

�

�1

4
AðtÞMS

�
R2
S

r
þr

�
þC1; (A6)

where C1 is an integration constant. Now we estimate the
various contributions to �1ðr; tÞ. We have

I ¼ j�ðtÞj
24�r

1

jf1RR0 � 2f2RR0ð�cos þ �sð	ÞÞj
Z RS

0
MðrÞrdr

� j�ðtÞj
48�

1

jf1RR0 � 2f2RR0ð�cos þ �sð	ÞÞj
MSR

2
S

r
; (A7)

from which, using r 	 RS, follows

I � r2

8

�������� f1R0 � 2f2R0�
cos

f1RR0 � 2f2RR0ð�cos þ �sð	ÞÞ
��������
���������ðtÞ
!ðtÞ

��������j�0 � C0j;

(A8)

where!ðtÞ has been defined in Eq. (58). Using Eq. (66), we
have

j2f2R0jð�cosðtÞ þ �sðrÞÞ � jf1R0j; r � RS: (A9)

Thus, the following approximation can be used:

jf1R0 � 2f2R0�
cosðtÞj ’ jf1R0 � 2f2R0ð�cosðtÞ þ �sð	ÞÞj;

(A10)

from which, using conditions Eqs. (54) and (61), it follows
that

I &
r2

8

�������� f1R0 þ 2f2R0Lmð	; tÞ
f1RR0 þ 2f2RR0Lmð	; tÞ

��������
���������ðtÞ
!ðtÞ

��������j�0 � C0j

� j�0ðr; tÞ � C0j; (A11)

where we have used j�ðtÞ!ðtÞj & 1 (as shown in
Appendix B). Analogously, we have

II ¼ 1

24�

j�ðtÞj
jf1RR0 � 2f2RR0ð�cos þ �sð	ÞÞj

MSR
2
S

r

� j�0ðr; tÞ � C0j: (A12)

By the same token, we get

III ¼ jAðtÞjMSR
2
S

4r
’ 1

16�

j�ðtÞj
jf1RR0 � 2f2RR0�

cosj
MSR

2
S

r

� j�0ðr; tÞ � C0j: (A13)

We can then estimate

IV ¼ 1

4
jAðtÞjMSr

’ 3

8
r2
�������� f1R0 � 2f2R0�

cos

f1RR0 � 2f2RR0�
cos

��������
���������ðtÞ
!ðtÞ

��������j�0ðr; tÞ � C0j;

(A14)

so that the estimate IV � j�0ðr; tÞ � C0j follows in the
same way as for the term I.
It remains to consider the term

V ¼ 1

4�

�������� f2R0
f1RR0 � 2f2RR0ð�cos þ �sð	ÞÞ

��������MS

r
: (A15)

Using Eq. (56) and integrating over the volume of the star,
we have

jf2R0jMS � 4�

3
jf1R0 � 2f2R0�

cosðtÞjR3
S; (A16)

from which, using Eq. (A9) and condition (62), we have,
for r 	 RS:

V � 1

3

�������� f1R0 � 2f2R0ð�cos þ �sð	ÞÞ
f1RR0 � 2f2RR0ð�cos þ �sð	ÞÞ

��������r2

¼ 1

3

�������� f1R0 þ 2f2R0Lmð	; tÞ
f1RR0 þ 2f2RR0Lmð	; tÞ

��������r2
&

1

3
R0r

2 RS

GMS

�H2r2
RS

GMS

� 10�19: (A17)

Since the quantity �0ðr; tÞ � C0 turns out to be the
Newtonian potential [see Eqs. (57) and (58)], we have
jVj � j�0ðr; tÞ � C0j for r of order of Solar System
scales. Eventually we have

j�1ðr; tÞ � C1j � I þ II þ III þ IV þ V; (A18)

and, collecting the above estimates, we find that

j�1ðr; tÞ � C1j � j�0ðr; tÞ � C0j: (A19)

APPENDIX B

In this appendix, some aspects of the results presented
in Ref. [12] are discussed, namely the relation between
the cosmological matter density �cosðtÞ, the NMC f2ðRÞ
and the characteristic time scale tn. Indeed, from
Eqs. (74)–(78), we first derive

f20�
cos ¼ 6�H2

1þ n
¼ 2�R0

1þ 4n
; (B1)

so that, using the definition of critical density �c ¼ 6�H2

and the relative matter density �m � �cos=�c ¼ 31:7%
[25], we obtain

f20 ¼
1

ð1þ nÞ�m

<
1

�m

� 3:1; (B2)

for a positive exponent n. Clearly, Eq. (88) does not obey
the above result or, equivalently, is incompatible with the

SOLAR SYSTEM CONSTRAINTS TO NONMINIMALLY . . . PHYSICAL REVIEW D 88, 064019 (2013)

064019-13



present value of �m [conversely, Eq. (89) is obtained
directly from the above, with n ¼ 4, 10].

Given the above, Eqs. (82) and (83) show that

n¼4:�¼6:24; !¼11:80!
���������

!

��������¼0:53;

n¼10:�¼6:68; !¼11:95!
���������

!

��������¼0:56;

(B3)

instead of the values �ðtÞ ¼ �1=3, !ðtÞ ¼ 1 and
j�ðtÞ=!ðtÞj ¼ 1=3 one would obtain if the contribution
from the NMC was negligible [which, however, should
not be directly interpreted as signaling the return to GR,
since Eq. (35) is ill defined if f1ðRÞ ¼ R and f2ðRÞ ¼ 0].

Notice that, as n grows large,

�ðtÞ � � 1

3
þ 7

3�m

� 7:03;

!ðtÞ � 1þ 7

2�m

� 12:04 !
���������ðtÞ
!ðtÞ

��������
� 2

3

7��m

7þ 2�m

¼ 0:583; (B4)

so that these two quantities (which grow with the exponent
n) vary within the limited ranges �1=3<�ðtÞ< 7:03 and
1<!ðtÞ< 12:04, and thus do not lead to any pathological
divergences in the results of this work. Furthermore, the
condition Eq. (61) is upheld, as assumed in this work.
These results do not change qualitatively for other values
of the exponent n.
A relevant consequence of the above discussion is that

the characteristic time scale tn cannot be freely specified,
but must be constrained by Eq. (B2). Thus, from Eq. (76),
one is led to

tn ¼ t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

½ð1þ nÞ�m�1=n
ð1þ nÞð1þ 4nÞ

s
; (B5)

which yields the values t4 ¼ 0:10t0 and t10 ¼ 0:043t0 used
in Eq. (89). Notwithstanding this correction to the numeri-
cal values considered in Ref. [12], the results presented
here remain valid, as they make full use of the analytical
relations invoked throughout this work, instead of any
specific numerical value.
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104046 (2010).

[13] O. Bertolami, F. S. N. Lobo, and J. Páramos, Phys. Rev. D
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