Kaonic hydrogen x rays experiments at $DA\Phi NE$

Michael Cargnelli, Stefan Meyer Institute Austrian Academy of Sciences, Vienna

The DEAR collaboration:

¹Univ. of Victoria; ²Inst. of Physics and Nuclear Engineering "Horia Hulubei"; ³Stefan Meyer Institut of the Austrian Academy of Sciences; ⁴INFN Laboratori Nazionali di Frascati;⁵Université de Neuchâtel; ⁶RIKEN; ⁷University of California; ⁸Université de Fribourg; ⁹California Institute of Technology; ¹⁰California State University The SIDDHARTA collaboration

Some of us @ coll. meeting in Frascati

PSAS 2006, Venice, Michael Cargnelli

Exotic atoms – a broad research field

Motivation

- Exotic (kaonic) atoms probes for strong interaction
 - > hadronic shift ϵ_{1s} and width Γ_{1s} directly observable
 - experimental study of low energy QCD
- Kaonic hydrogen
 - > Kp simplest exotic atom with strangeness
 - kaonic hydrogen "puzzle" solved but: precision data missing
 - kaonic deuterium never measured before
 - > atomic physics: new cascade calculations (to be tested !)
- Information on $\Lambda(1405)$ sub-threshold resonance
 - responsible for repulsive interaction
 - important for research on deeply bound kaonic states present / upcoming Experiments (KEK,GSI,DAFNE,J-PARC)
- Determination of the isospin dependent KN scattering lengths
 > no extrapolation to zero energy
- Testing chiral symmetry breaking in systems with strangeness

DAΦNE (LN Frascati)

electron – positron collider with collision energy tuned to the Φ resonance at 1.02 GeV c.m.

 Φ production cross section ~ 3000nb (corrected for radiative losses) Integrated luminosity ~ 2 pb⁻¹ per day ~ 3 × 10⁶ K⁻ per day

Kaonic hydrogen

Negative kaons stopped in $H_2 \rightarrow$ initial atomic capture \rightarrow \rightarrow electromagnetic cascade \rightarrow X-ray transitions

Scattering lengths

Relation of strong interaction shift and width to the complex Kp scattering length a_{K^-p}

$$\varepsilon + i\frac{\Gamma}{2} = \frac{2\pi}{\mu} |\psi_{1s}(0)|^2 a_{K^- p} = 2\alpha^3 \mu^2 a_{K^- p} = 412 \, fm^{-1} \cdot eV \cdot a_{K^- p}$$

(Deser-Goldberger-Baumann-Thirring)

For the determination of the **isospin dependent scattering lengths** a_0 and a_1 the hadronic shift and width of kaonic hydrogen *and* kaonic deuterium are necessary

$$a^{(0)} = \frac{1}{2} \left[a_{K^{-}p} + a_{K^{-}n} \right] = \frac{1}{4} \left[a_0 + 3a_1 \right]$$

$$a_{K^{-}p} = \frac{1}{2} [a_0 + a_1]$$

$$a_{K^{-}n} = a_1 \qquad \text{Impulse approximation term}$$

$$a_{K^{-}d} = \frac{4[m_N + m_K]}{[2m_N + m_K]} \cdot a^{(0)} + C$$

$$\uparrow \qquad \text{Correction term}$$
(3body calc.)

The challenge

to do low energy X ray spectroscopy at an accelerator !

The radiation environment produces a lot of charge in Si detectors

"Beam background" – Touschek scattering – stray 510 MeV e[±] - Showers (not correlated to e[±] collisions)

Babha scattering - Showers

Pions from Phi or K⁰ decay

Muons, pions, electrons from charged K decay - hadronic background – - trigger signal – remains in triggered setup

The DEAR experimental precision was in fact limited by the Signal vs. Background ratio. The yield for deuterium is ~ 10 times smaller then for hydrogen, so a powerfull background suppression is needed!

Actual background intensities (beam- and kaon correlated) known from DEAR

DEAR Experimental Set-up

Energy measurement of kaonic K lines with an array of 16 CCD X-ray detectors

- pixel size 22.5x22.5 µm
- total area per chip 7.24 cm²
- depletion depth ~30 µm

side:

- read-out time per CCD 2 min.
- energy resolution ~140 eV @ 5.9keV

PSAS 2006, Venice, Michael Cargnelli

Kaonic hydrogen data analysis

- Set noise threshold
- Select single and double pixel events
- Reject frames with large noise peak width and high occupancy
- Correction of charge transfer efficiency
- Energy calibration with fluorescence background lines
- Determine detector resolution

The same procedure was applied on

- Data from hydrogen with collisions (H)
- Background (B) data
 - 1) data measured in hydrogen with separatec beams (no collisions, no kaons produced)
 - 2) kaonic nitrogen data

Normalization of H vs. Background measurement (using Si fluorescence X-ray intensity)

Components of the X-ray spectra: - Continuous background due to bremsstrahlung - Fluorescence lines from structure materials - Kaonic X-ray lines (only in H)	 Challenges: - Fit of the continuous background - Disentangling of the kaonic K_α line from the Fe fluorescence line
- Kaonic X-ray lines (only in H)	Fe fluorescence line
	- Effect of Kp (n>4) line yields

Kaonic hydrogen results from DEAR

Comparison of results

From DEAR to SIDDHARTA

Need new X-ray detectors providing

- timing capability → background suppression by using the kaon - X ray time correlation
- excellent energy resolution
- high efficiency, large solid angle
- performance in accelerator environment

SDD (silicon drift detectors) arrays of large SDDs in development I3 Hadron Physics EU FP6 – Joint Research Activity: **SIDDHARTA**

in cooperation with LNF, MPG, PNSensor, Politecnico Milano, IFIN-HH.

Test measurements

In the next stage of the experiment we will achieve an improvement in the signal / background ratio of $\sim 2 - 3$ orders of magnitude !

Performance

Wireing & bonding

Wireing & bonding (cont.)

all chips will be inspected and tested at SMI !

PSAS 2006, Venice, Michael Cargnelli

Target and SDD setup

Monte Carlo results

Monte Carlo results

Expected quality of data with SIDDHARTA

Monte Carlo simulated X-ray spectra for data of 30 days. SDD array and kaon trigger.

Conclusions

DEAR finished sucessfully –

delivered most precise result on K⁻p shift an width. Theoretical efforts continue

SIDDHARTA well under way, will start physics measuremets in 2007: K⁻d K⁻p K⁻He

Further perspectives at DAFNE: LOI for a search of kaonic nuclear clusters using KLOE plus additional components