DEAR - Kaonic Hydrogen: First Results

M. Cargnellid, G. Beeri, A.M. Bragadireanua,e, C. Curceanu (Petrascu)a,e, J.-P. Eggerb,c, H. Fuhrmannd, C. Guaraldoa, M. Iliescua, T. Ishiwatarid, K. Itahashig, M. Iwasakif, P. Kienled, B. Laussh, V. Lucherinia, L. Ludhovab, J. Martond, F. Mulhauserb, T. Pontaa,e, L.A. Schallerb, R. Sekij,k, D. Sirghia, F. Sirghia, P. Strasserf, J. Zmeskald

aINFN - Laboratori Nazionali di Frascati; bUniversite de Fribourg; cUniversite de Neuchâtel; dInstitute for Medium Energy Physics, Vienna; eInstitute of Physics and Nuclear Engineering, Bucharest; fRIKEN, Saitama; gTokyo Institute of Technology; hUniversity of California and Berkeley; i University of Victoria; jCalifornia Institute of Technology; kCalifornia State University

The DEAR1 experiment [1] measures the energy of X-rays emitted in the transitions to the ground states of kaonic hydrogen. The shift ϵ and the width Γ of the 1s state are related to the real and imaginary parts of the complex S-wave scattering length by the Deser Trueman formula.

Figure 1: Background subtracted energy spectrum of kaonic hydrogen. For the first time K_{β}, K_γ, K_{high} are clearly resolved.

The preliminary results are: $\epsilon = -183 \pm 62$ eV and $\Gamma = 213 \pm 138$ eV. Both values are smaller then those from the previous experiment [2] and consistent with recent theoretical studies [3].

Part of the work was supported by "Transnational access to Research Infrastructure" (TARI) Contract No. HPRI-CT-1999-00088.

References

1DAΦNE Exotic Atom Research, conducted at the Frascati electron positron collider