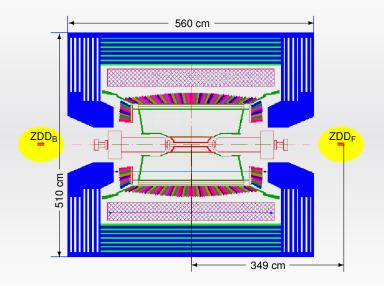
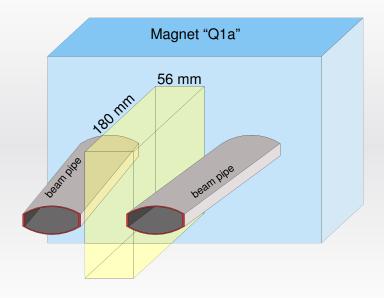
ZDDatBESIII

R. Baldini Ferroli and A. Zallo for the Italian BESIII Group

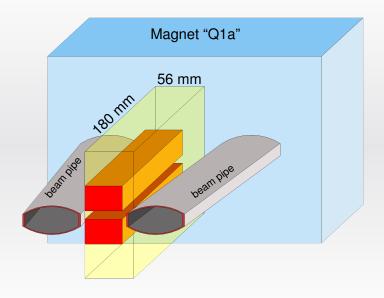


December 17, 2010 - Giessen, Germany

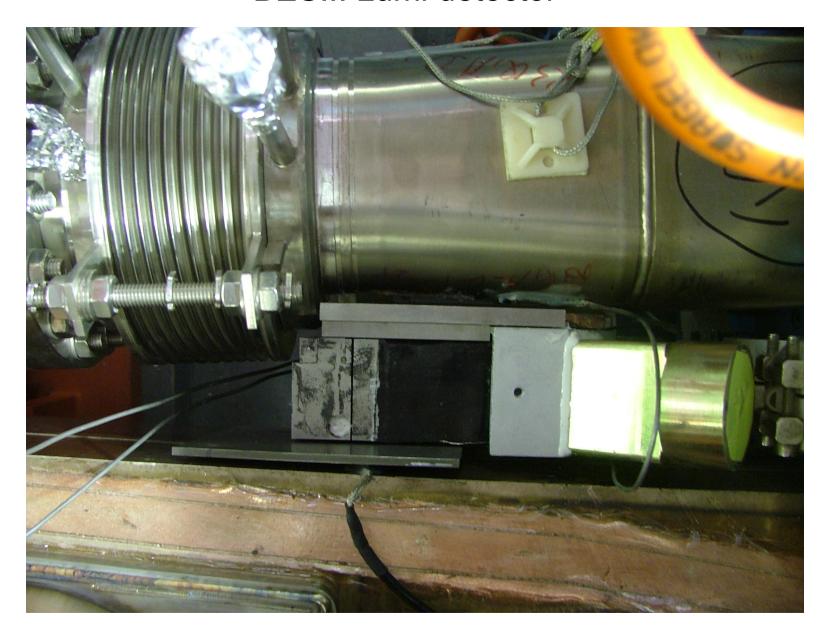
Design and Installation



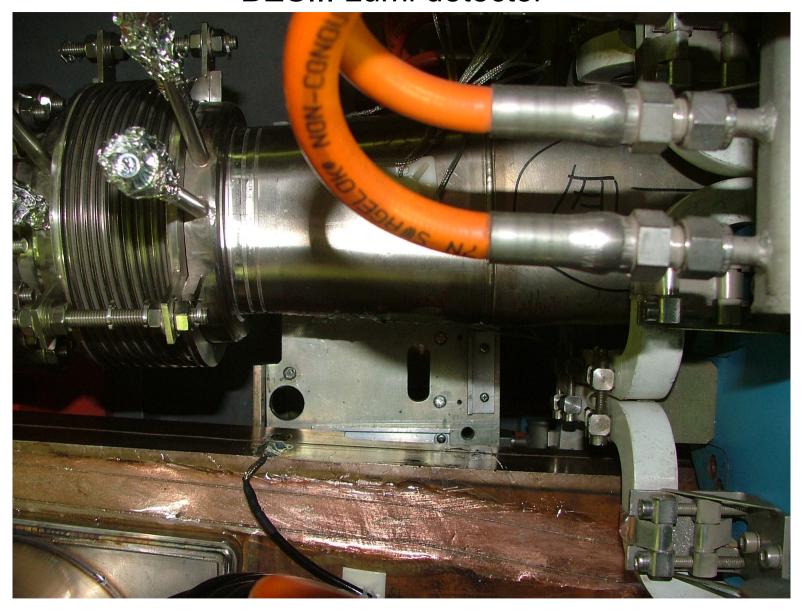
BESIII and ZDD

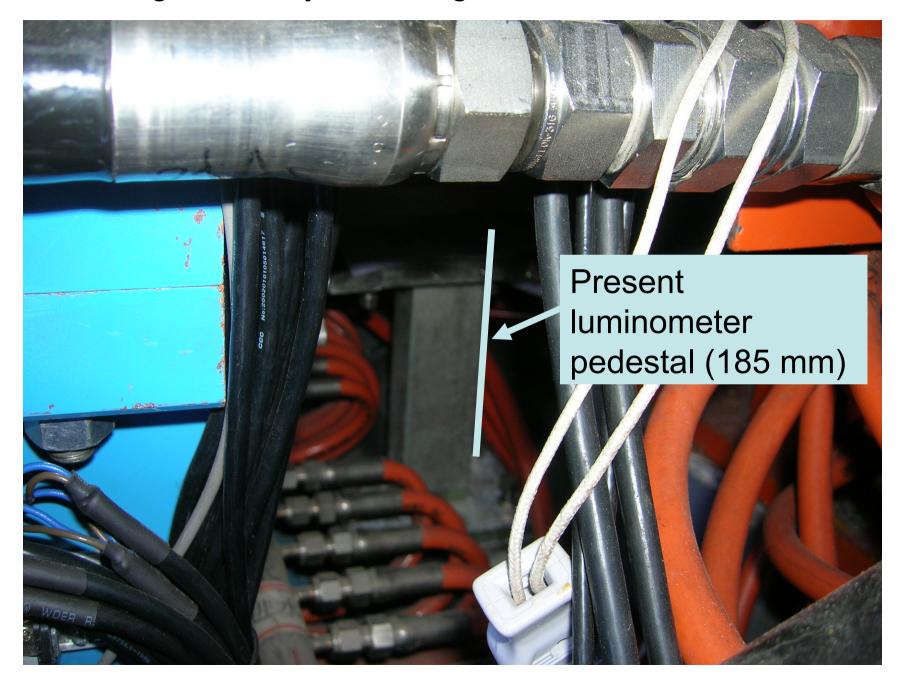


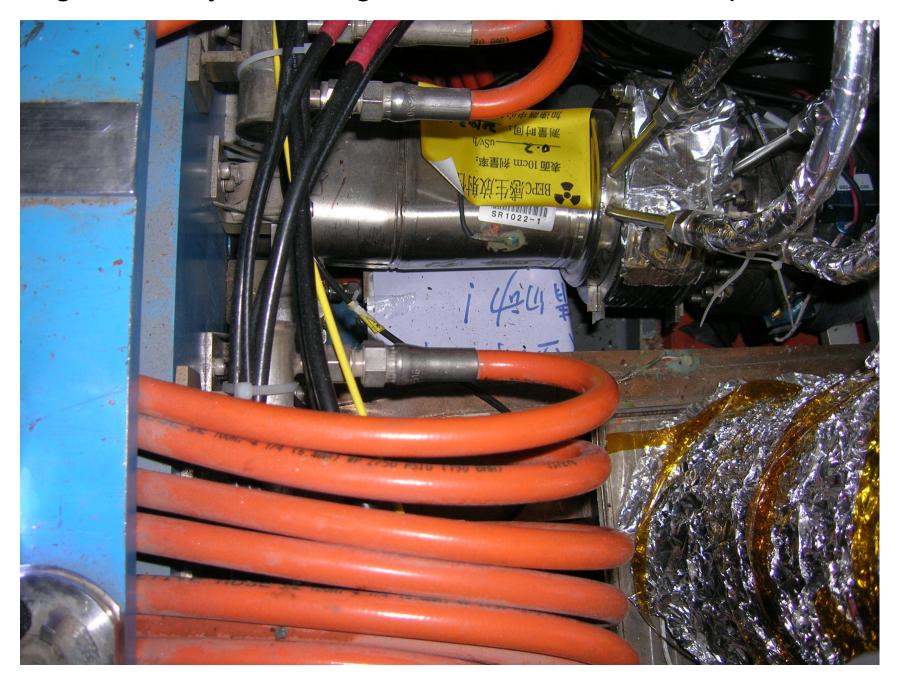
Available space



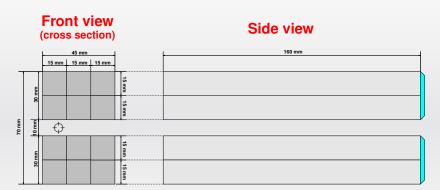
Available space



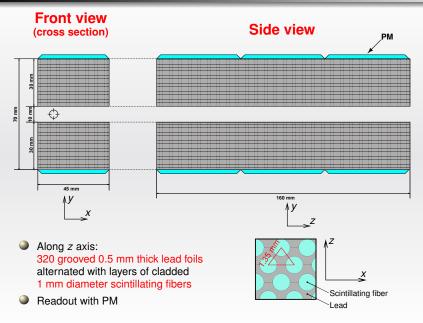

BESIII Lumi detector


BESIII Lumi detector

August survey of the region, no Lumi detector


August survey of the region, no Lumi detector, top view

Two options: LYSO and Pb-Scint


LYSO design

- Two 3×2 matrices of 1.5×1.5×16 cm³ of LYSO bars
- Total volume 864 cm³

Pb-Scintillator design à la Kloe

Physical properties of materials

Material	LYSO	Pb-Scint
Density (g/cm ³)	7.4	5.3
Radiation Length (cm)	1.1	1.6
Molière Radius (cm)	1.9	2.9
Decay Constant (ns)	40-44	2.4
Peak Emission (nm)	428	460
Radiation Hardness (rad)	$\sim 10^8$	$\sim 10^6$

Radiation hardness

- Radiation damages mostly due to Bremsstrahlung:
- $\sigma_{\mathrm{Bre}}(\mathrm{ZDD}/\mathrm{4}) = 2.6~\mathrm{mb}$

One year of data taking:

$$T=1.5\times10^7\,\mathrm{s}$$

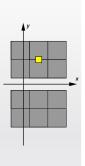
Average luminosity:

$$\overline{\mathcal{L}} = 1.5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$$

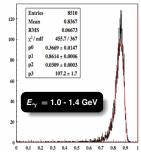
Center of mass energy:

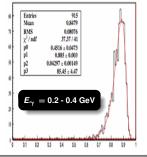
$$E_{c.m.} = 3.77 \text{ GeV}$$

$$\frac{\text{Dose absorbed}}{\text{year}} = \frac{\text{energy deposited}}{\text{year} \cdot \text{mass}} = \begin{cases} &\frac{3 \times 10^{21} \text{ eV}}{0.12 \text{ kg}} = 4 \times 10^5 \frac{\text{rad}}{\text{year}} & \text{LYSO} \\ \\ &\frac{3 \times 10^{21} \cdot \frac{2}{13} \text{ eV}}{1.8 \times 10^{-2} \text{ kg}} = 10^6 \frac{\text{rad}}{\text{year}} & \text{Scint} \end{cases}$$


Declared hardness

- LYSO $\sim 10^8$ rad
- \bullet Scint. $\sim 10^6$ rad

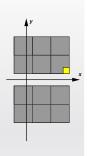

Energy Resolution



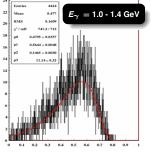
LYSO GEANT4 simulation₁

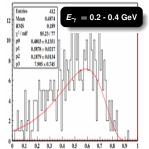
Deposited energy/ E_{γ}

Log-normal distribution


$$\frac{df}{dE} = \frac{\eta}{\sqrt{2\pi}\sigma_E\sigma_0}e^{-\frac{1}{2}\left[\frac{\ln^2\left(1-\frac{\eta(E-E_0)}{\sigma_E}\right)}{\sigma_0^2} + \sigma_0^2\right]}$$

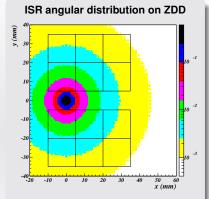
$$\sigma_0 = \frac{2}{2.35} \ln \left[\eta \, \frac{2.35}{2} + \sqrt{1 + \left(\eta \, \frac{2.35}{2} \right)^2} \right], \quad \sigma_E = \frac{\mathrm{FWHM}}{2.35}$$


E_{γ} (GeV)	$\sigma_{E_{\gamma}}/E_{\gamma}$ Central (yellow square)
1.0 - 1.4	3.6%
0.2 - 0.4	4.9%

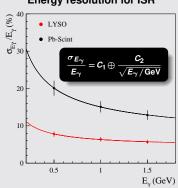


LYSO GEANT4 simulation₂

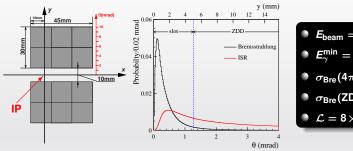
Deposited energy/ E_{γ}



E_{γ} (GeV)	$\sigma_{E_{\gamma}}/E_{\gamma}$ Central (yellow square)
1.0 - 1.4	26.0%
0.2 - 0.4	32.0%



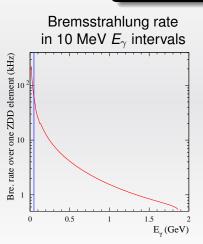
Energy resolution, the ISR case

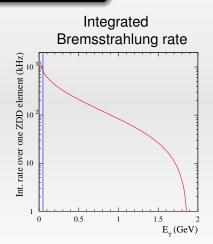

	LYSO	Pb-Scint
$ extbf{\emph{E}}_{\gamma}$ (GeV)	$\sigma_{ extsf{ extsf{E}}_{\gamma}}/ extsf{ extsf{E}}_{\gamma}$	$\sigma_{ extsf{ extsf{E}}_{\gamma}}/ extsf{ extsf{E}}_{\gamma}$
1.5	5.7%	12.9 %
1.0	6.4%	15.1 %
0.5	7.8%	20.1 %

Energy resolution for ISR

	LYSO	Pb-Scint
C ₁	4.3%	6.9 %
C ₂	4.6%	13.4 %

Bremsstrahlung simulation

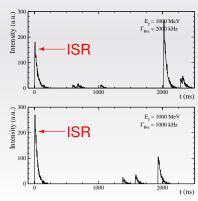

- $E_{\text{beam}} = 1.89 \text{ GeV}$
- $E_{\sim}^{\min} = 50 \text{ MeV}$
- $\sigma_{\rm Bre}(4\pi)=353~{\rm mb}$
- $\sigma_{\rm Bre}({\rm ZDD})=10~{\rm mb}$
- $\mathcal{L} = 8 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

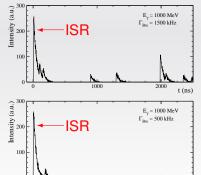

- ISR in ZDD 13.7% of total solid angle
- Bremsstrahlung in ZDD 2.8% of total solid angle
- Bremsstrahlung rate in a single ZDD element (upper or lower):

800 kHz at
$$\mathcal{L}=3\times 10^{32}~\text{cm}^{-2}~\text{s}^{-1}$$
 2.1 MHz at $\mathcal{L}=8\times 10^{32}~\text{cm}^{-2}~\text{s}^{-1}$

Bremsstrahlung rate

$$\mathcal{L} = 3 \times 10^{32} \ \text{cm}^{-2} \text{s}^{-1}$$

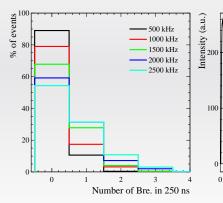

Pileup effect₁: signal generation

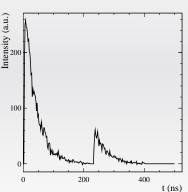

Maximum Bremsstrahlung rate expected 2.1 MHz (ZDD/4)

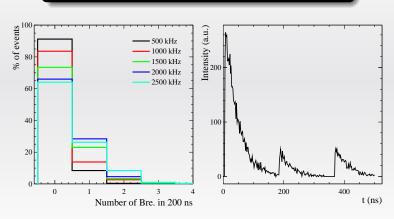
- Flash ADC: 500 MS/s, 8-bit resolution
- LYSO signal:

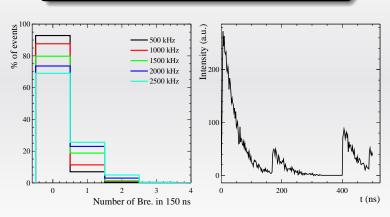
Intensity =
$$e^{-t/\tau_d}(1 - e^{-t/\tau_r})$$

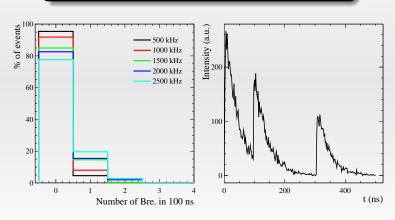
rising time $\tau_r = 2$ ns, decay time $\tau_d = 40$ ns

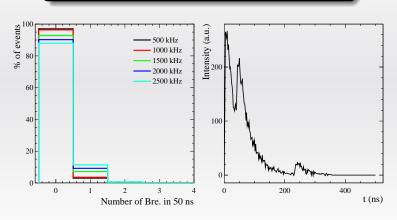


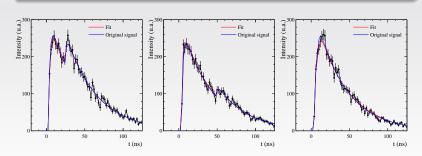



1000


2000


t (ns)

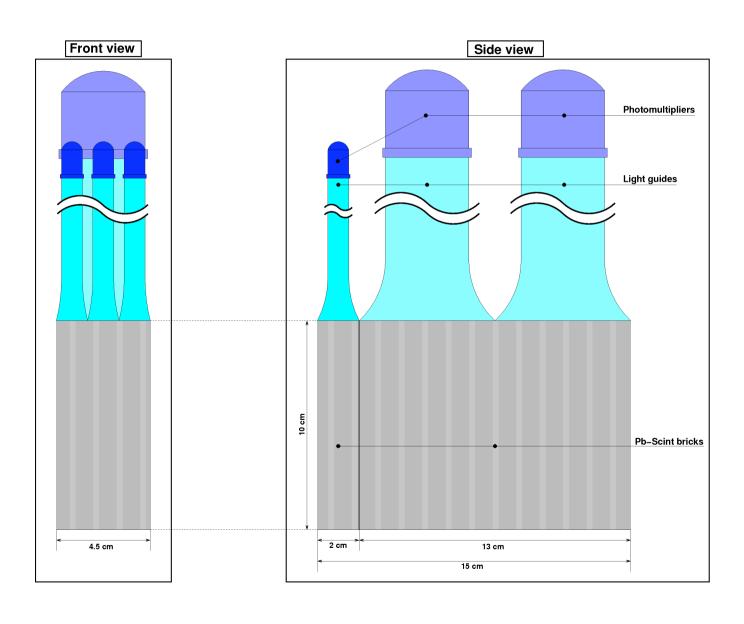




Pileup effect₃: evaluation

- 500 events have been generated at various rates
- E.g. at 2500 kHz: 158 (31.6%) have $\Delta t_{\rm ISR} <$ 160 ns \sim 4 decay times
- We fit these signals to verify our capability to distinguish ISR and Bremsstrahlung contributions

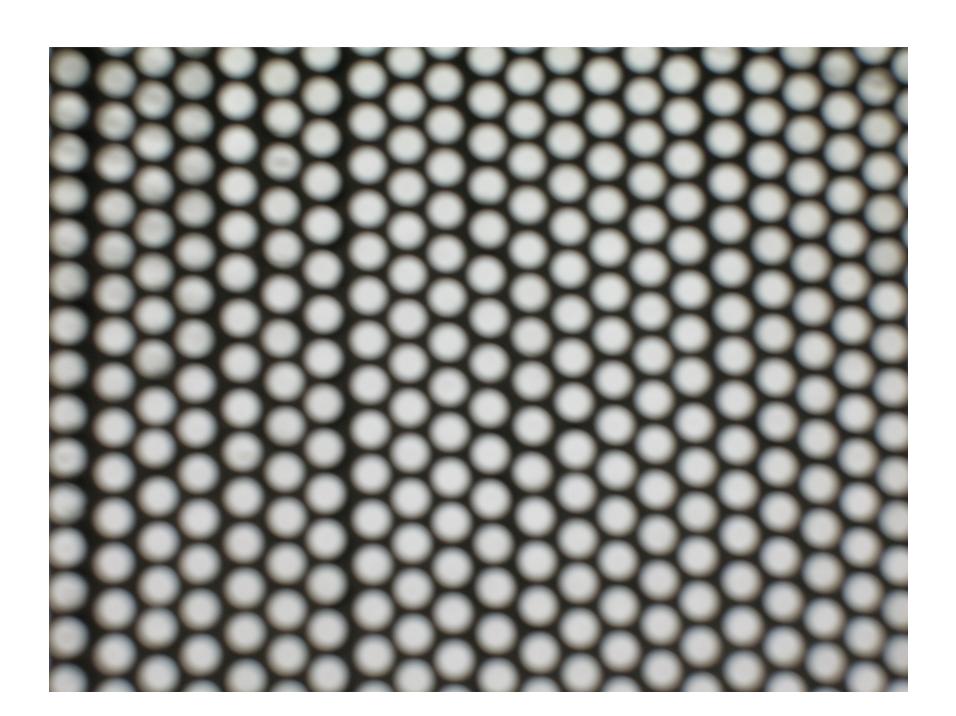
Pileup effect₄ in T = 160 ns

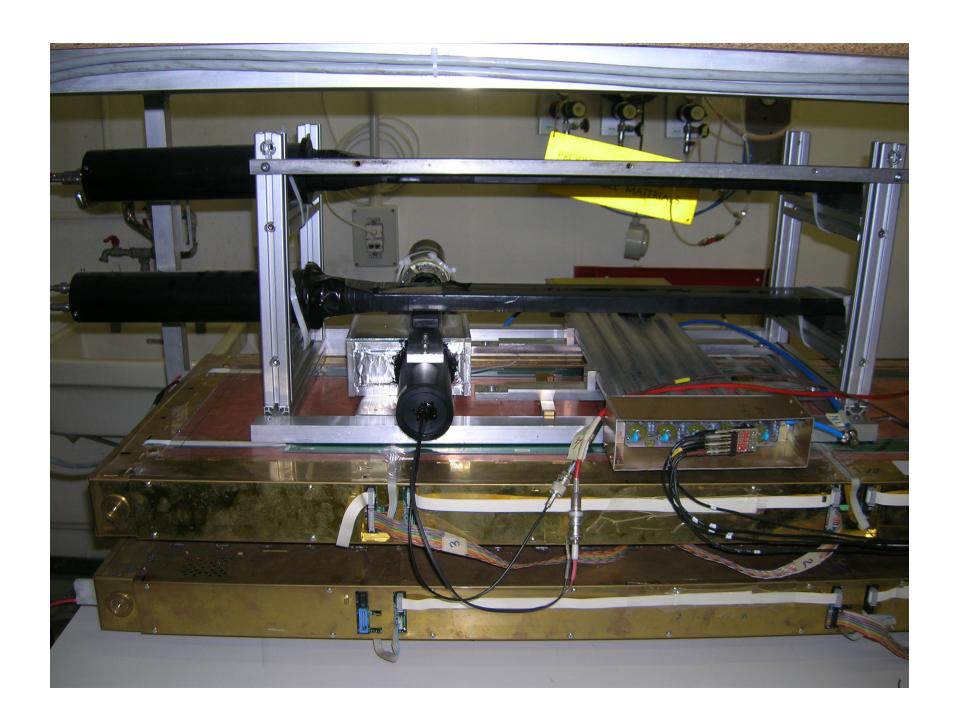

■ The fit goodness is expressed as $(\sigma_E/E)_{\text{fit}} = (E_{\text{gen}} - E_{\text{fit}})/E_{\text{gen}}$, where E_{gen} is the generated ISR amplitude and E_{fit} is its fitted value

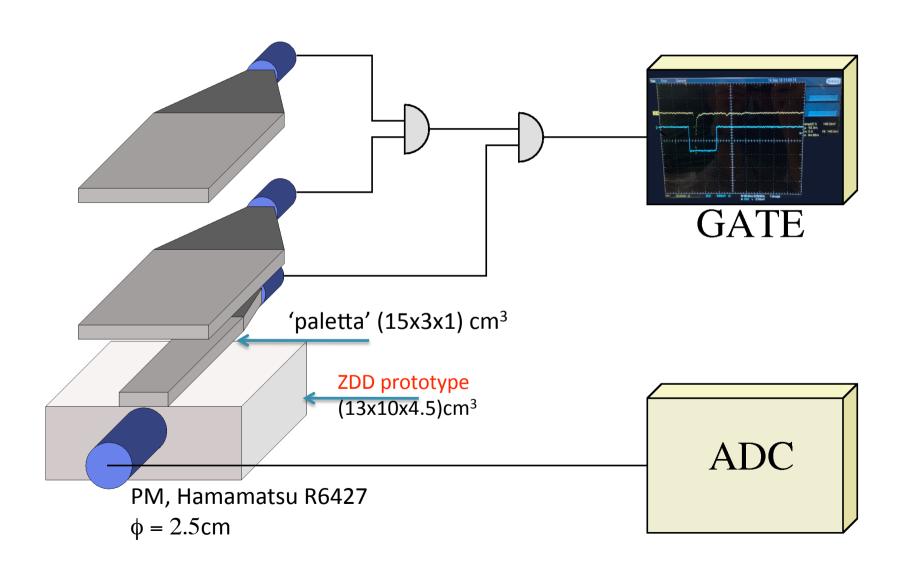
$$lacksquare$$
 We consider as a reference accuracies: $\left\{egin{array}{ll} 7\% \sim rac{\sigma_E}{E} & ext{LYSO} \ 15\% \sim rac{\sigma_E}{E} & ext{Pb-Scint} \end{array}
ight.$

lacksquare $E_{\gamma_{
m IS}}\in$ [0.5 GeV, 1.5 GeV], mild dependence on $E_{\gamma_{
m IS}}$

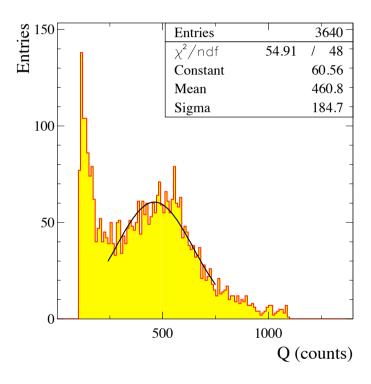
rate	Pileup in 160 ns	$(\sigma_E/E)_{\mathrm{fit}} >$ 7%	$\sigma_{E}/E)_{fit} > 15\%$
(kHz)	(%)	(%)	(%)
2500	30	9.4	4.8
2100	26	8.1	4.2
1000	14	4.3	2.2
800	10	3.2	1.6


Present ZDD Design

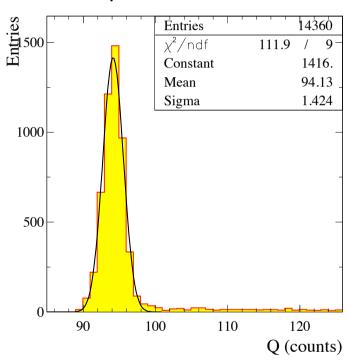

First ZDD prototype, September 2010


First prototype, September 2010

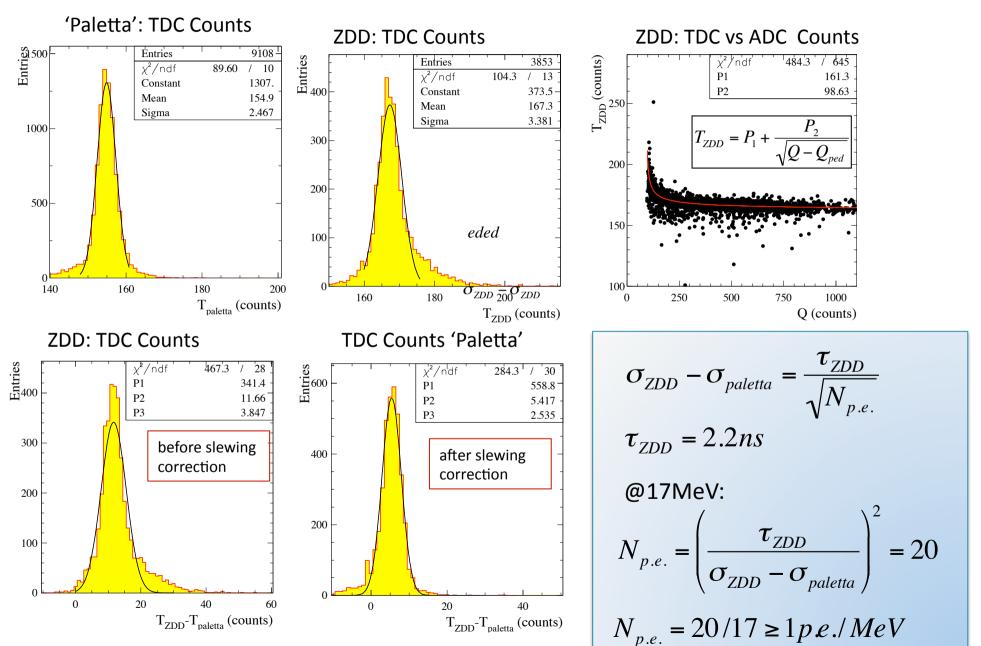
Cosmic rays test for first prototype

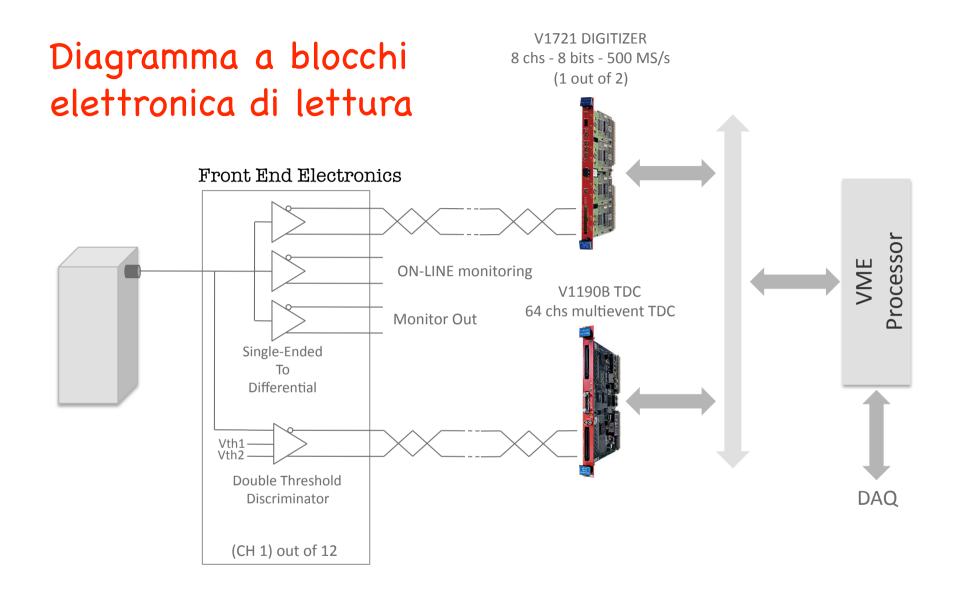


Cosmic ray setup @ LNF



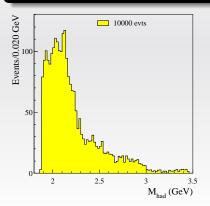
Cosmic ray test: preliminary results





ADC pedestal

Cosmic ray test: preliminary results

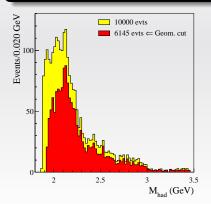


Physics

The $n\overline{n}\gamma_{\rm IS}$ physics case

- $e^+e^- \rightarrow n\overline{n}\gamma_{\rm IS}$ at a center of mass energy: $E_{c.m.}=3.77~{\rm GeV}$
- Initial state photon energy range: 50 MeV $\leq E_{\gamma_{|S|}} \leq \frac{E_{c.m.}}{2} \left(1 \frac{4M_n^2}{E_{c.m.}^2}\right)$
- lacktriangle Beam pipe suppresses sinc. rad. bkg. and $\gamma_{
 m IS}$ with $E_{\gamma_{
 m IS}} <$ 50 MeV
- $lacktriangleq \gamma_{
 m IS}$ in ZDD and $\underline{
 m only}$ antineutron detected in BESIII

10000 events with $\gamma_{\rm IS} \to {\sf ZDD}$


$$M_{\text{had}} = E_{c.m.} \sqrt{1 - \frac{2E_{\gamma_{\text{IS}}}}{E_{c.m.}}}$$

Geometrical cut:

$$oldsymbol{o}$$
 \overline{n} \rightarrow BESIII

The $n\overline{n}\gamma_{\rm IS}$ physics case

- $e^+e^- \rightarrow n\overline{n}\gamma_{\rm IS}$ at a center of mass energy: $\overline{E}_{c.m.}=3.77~{\rm GeV}$
- Initial state photon energy range: 50 MeV $\leq E_{\gamma|S} \leq \frac{E_{c.m.}}{2} \left(1 \frac{4M_n^2}{E_{c.m.}^2}\right)$
- lacktriangle Beam pipe suppresses sinc. rad. bkg. and $\gamma_{
 m IS}$ with $E_{\gamma_{
 m IS}} <$ 50 MeV
- $lacktriangleq \gamma_{
 m IS}$ in ZDD and $\underline{
 m only}$ antineutron detected in BESIII

10000 events with $\gamma_{IS} \rightarrow ZDD$

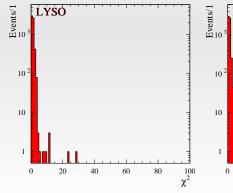
$$M_{\text{had}} = E_{c.m.} \sqrt{1 - \frac{2E_{\gamma_{\text{IS}}}}{E_{c.m.}}}$$

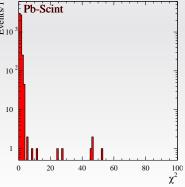
- Geometrical cut:
 - lacktriangledown $\overline{n} o \mathsf{BESIII}$
 - No constraint in n

The $n\overline{n}\gamma_{IS}$ physics case: kinematic fit

Inputs (6)

- \overline{n} 3-momentum (TOF)
- $\gamma_{\rm IS}$ 3-momentum (ZDD)


Constraints (4)


4-momentum cons.

Unknowns (3)

n 4-momentum

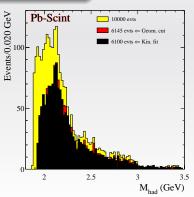
$$\chi^2 = \sum_{\text{tracks}} \sum_{i} \frac{\left(p_i^{\text{exp}} - p_i^{\text{fit}}\right)^2}{\sigma_{p_i}^2}$$

The $n\overline{n}\gamma_{IS}$ physics case: kinematic fit

Inputs (6)

- \overline{n} 3-momentum (TOF)
- γ_{IS} 3-momentum (ZDD)


Constraints (4)


4-momentum cons.

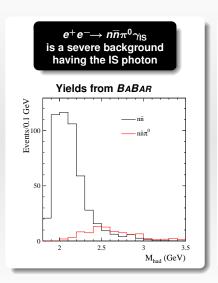
Unknowns (3)

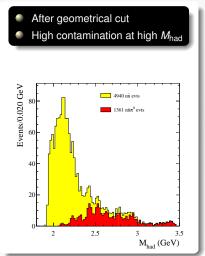
n 4-momentum

$$\chi^2 = \sum_{\mathrm{tracks}} \sum_i \frac{\left(p_i^{\mathrm{exp}} - p_i^{\mathrm{fit}}\right)^2}{\sigma_{p_i}^2}$$

The $n\overline{n}\pi^0$ background

- $e^+e^- \rightarrow n\overline{n}\pi^0$ is one of the main backgrounds
- Assuming $\sigma(e^+e^- \to n\overline{n}\pi^0) \simeq \sigma(e^+e^- \to p\overline{p}\pi^0)$:

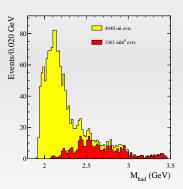

$$\frac{\mathsf{Ev}(n\overline{n}\pi^0)}{\mathsf{Ev}(n\overline{n}\gamma)}\left[\mathit{M}_{\Upsilon(4S)}\right] \simeq \mathit{R}_{\mathsf{BABAR}} = \frac{\mathsf{Ev}(p\overline{p}\pi^0)}{\mathsf{Ev}(p\overline{p}\gamma)}\left[\mathit{M}_{\Upsilon(4S)}\right] = 0.06$$


• In **BESIII**, directly at the ψ (3770) mass:

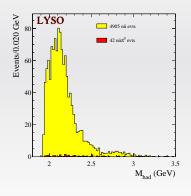
$$R_{\text{BESIII}} = 0.06 \times \underbrace{\left(\frac{0.012}{3 \times 10^{-6}}\right)}_{p\bar{p}\pi^0 \text{ cross section ratio}} \times \underbrace{\left(\frac{1}{10.7}\right)}_{\text{Lum. ratio}} = 22.4$$

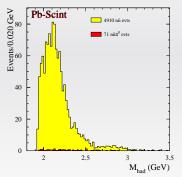
$$\frac{\gamma_{\text{IS}} \rightarrow \text{ZDD}}{\frac{\text{ZDD solid angle}}{\text{BESIII solid angle}}} \Longrightarrow \frac{\frac{\text{Ev}(n\overline{n}\pi^0, \ \pi^0 \rightarrow \ 0^o)}{\text{Ev}(n\overline{n}\gamma, \ \gamma \rightarrow \ 0^o)} = 0.0008}{\frac{2 \cdot (2 \cdot 4.5 \cdot 3/349^2)}{4\pi \cos \theta_{\text{min}}} = 3.8 \cdot 10^{-5}}$$

The $n\overline{n}\pi^0\gamma_{\rm IS}$ background

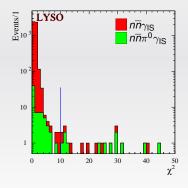


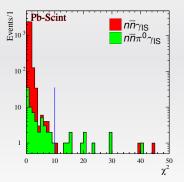
The $n\overline{n}\pi^{\overline{0}}\gamma_{\rm IS}$ background reduction


- π^0 detection in BESIII: at least one of the π^0 photons with E_γ >50 MeV in BESIII not in a 200 mrad cone around \overline{n} direction
- Kinematic fit:

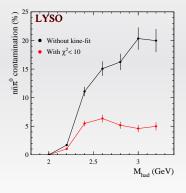

$$\chi^2 \le 10$$

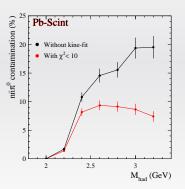
The $n\overline{n}\pi^{\overline{0}}\gamma_{\rm IS}$ background reduction


- π^0 detection in BESIII: at least one of the π^0 photons with E_γ >50 MeV in BESIII not in a 200 mrad cone around \overline{n} direction
- $Minematic fit: \chi^2 \le 10$

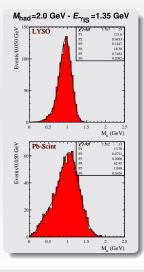


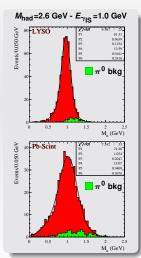
The $n\overline{n}\pi^{\overline{0}}\gamma_{\mathsf{IS}}$ background reduction

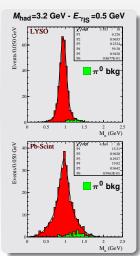

- π^0 detection in BESIII: at least one of the π^0 photons with E_γ >50 MeV in BESIII not in a 200 mrad cone around \overline{n} direction



The $n\overline{n}\pi^{\overline{0}}\gamma_{\mathsf{IS}}$ background reduction

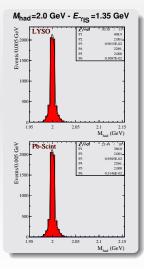

- π^0 detection in BESIII: at least one of the π^0 photons with E_γ >50 MeV in BESIII not in a 200 mrad cone around \overline{n} direction

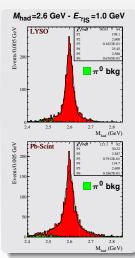


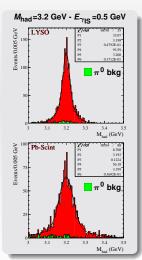


Energy resolution in $\overline{n}\gamma_{\rm IS}$ missing mass

- Events are generated with fixed value of $M_{had} = E_{c.m.} \sqrt{1 2E_{\gamma_{IS}}/E_{c.m.}}$
- lacktriangle The $\overline{n}\gamma_{\rm IS}$ missing mass is obtained only from experimental data

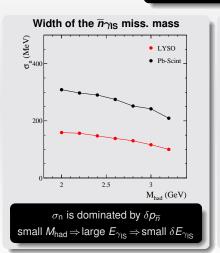


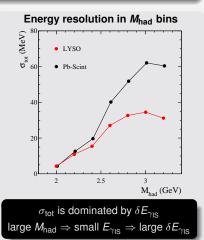




Energy resolution in M_{had} slices

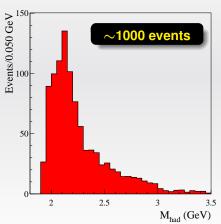
- Events are generated with fixed value of $M_{had} = E_{c.m.} \sqrt{1 2E_{\gamma_{IS}}/E_{c.m.}}$
- M_{had} is reconstructed using the kinematic fit procedure





Energy resolutions

• Two-gaussian fit: σ =


half width of the area, symmetric w.r.t. the center of mass of the distributions, which contains the 68% of events

Expected events

- One year of data taking: $T = 1.5 \times 10^7 \text{ s}$
- Average luminosity: $\overline{\mathcal{L}} = 1.5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
 - Detection efficiency: $\epsilon = 0.5$
- Oenter of mass energy: $E_{c.m.} = 3.77 \text{ GeV}$

Other possible physics items R_{had} in the 1-3 GeV region

- Accessible had-CoM energy: $E_{\text{had}} = \sqrt{E_{\text{coll}}^2 2E_{\text{coll}}E_{\gamma_{\text{is}}}}$
- $lackbox{ PDG: } \gamma\gamma$ 2 and BESII (2-3 GeV) only
- ISR: small systematic error versus E_{had}
- ISR on ZDD: negligible π^0 background

• $|\Delta E_{\mathsf{had}}| = |\Delta E_{\gamma_{\mathsf{IS}}}|E_{\mathsf{coll}}/E_{\mathsf{had}}$: feasible only if $E_{\mathsf{coll}}/E_{\mathsf{had}} \sim 1$ (not for *B*-factories)

- BESIII: $E_{\text{coll}} \sim 3.5 \text{ GeV} \Rightarrow E_{\text{had}} \simeq 1 3 \text{ GeV}$
- LYSO: $|\Delta E_{\mathsf{had}}| \simeq 150 \; \mathsf{MeV}$
- Pb-Scint: $|\Delta E_{\mathsf{had}}| \simeq 300 \ \mathsf{MeV}$
- |ΔE_{had}| reduced by deconvolution techniques

Radiation hardness

- Radiation damages mostly due to Bremsstrahlung:
- $\sigma_{\mathsf{Bre}}(\mathsf{ZDD}/4) = \mathsf{2.6}\;\mathsf{mb}$

One year of data taking:

$$T=1.5\times10^7\,\mathrm{s}$$

Average luminosity:

$$\overline{\mathcal{L}} = 1.5\times 10^{32}~\text{cm}^{-2}\text{s}^{-1}$$

Center of mass energy:

$$E_{c.m.} = 3.77 \text{ GeV}$$

$$\frac{\text{Dose absorbed}}{\text{year}} = \frac{\text{energy deposited}}{\text{year} \cdot \text{mass}} = \begin{cases} &\frac{3 \times 10^{21} \text{ eV}}{0.12 \text{ kg}} = 4 \times 10^5 \frac{\text{rad}}{\text{year}} & \text{LYSO} \\ \\ &\frac{3 \times 10^{21} \cdot \frac{2}{13} \text{ eV}}{1.8 \times 10^{-2} \text{ kg}} = 10^6 \frac{\text{rad}}{\text{year}} & \text{Scint} \end{cases}$$

Declared hardness

- LYSO $\sim 10^8$ rad
- \bullet Scint. $\sim 10^6$ rad