A CGEM PROTOTYPE for BESIII Inner Drift Chamber Upgrade

BESIII Italian Collaboration

Outline

- □ BESIII requirements for a CGEM Inner Tracker
- Prototype targets
- □ LNF CGEM miniworkshop
- □ Assembling a KLOE2 CGEM
- GASTONE32 analog readout

Requirements for the inner drift chamber upgrade

- Rating capability: ~10⁴ Hz/cm²
- Spatial resolution: $\sigma_{xy} \sim 100 \mu m; \sigma_z \sim 1 mm;$
- Momentum resolution: σ_{pt}/ p_t ~ 0.5% @1GeV;
- Efficiency: ε ~ 98%
- Material budget: < 1.5% all layers
- Coverage: 93% 4π
- Operation duration: ~ 5 years

Alternative Options:

- CGEM: based on KLOE-2 technology, collaboration between Italian and Chinese groups
- Monolithic pixels: CPS developed by IPHC in Strasburg

Cylindrical GEM Mini-workshop

Qun Ouyang at Frascati CGEM workshop

P _{tot} (GeV/c)	0.2	0.6	1.0
σ _p (MDC) (MeV)	0.89 (100%)	2.53 (100%)	5.59 (100%)
σ _p (CGEM 330μm*400μm)	1.76 (+98%)	2.84 (+12%)	6.50 (+16%)
σ _p (CGEM 130μm*250μm)	1.72 (+93%)	2.69 (+6.0%)	5.90 (+5.5%)
σ _p (CGEM 80μm*150μm)	1.72 (+93%)	2.62 (+3.6%)	5.58 (-0.18%)

P _{tot} (GeV/c)	0.2	0.6	1.0
σ _r (MDC) (μm)	622 (100%)	215 (100%)	168 (100%)
σ <mark>,(CGEM 330μm*400μm)</mark>	887 (+43%)	385 (+79%)	271 (+61%)
σ <mark>,(CGEM 130μm*250μm)</mark>	781 (+26%)	286 (+33%)	208 (+24%)
_Ծ ,(CGEM 80μm*150μm)	729 (+17%)	262 (+22%)	177 (+5.4%)

P _{tot} (GeV/c)	0.2	0.6	1.0
σ _z (MDC) (μm)	2020 (100%)	1531 (100%)	1539 (100%)
σ <mark>շ(CGEM 330μm*400μm)</mark>	1024 (-49%)	473 (-69%)	378 (-75%)
σ <mark>շ(CGEM 130μm*250μm)</mark>	816 (-60%)	399 (-74%)	307 (-80%)
σ _z (CGEM 80μm*150μm)	713 (-65%)	323 (-79%)	252 (-84%)

CGEM expected spatial resolution

Digital readout

KLOE2 (650 μ m pitch) $\sigma_x = 190 \ \mu$ m $\sigma_z \sim 350 \ \mu$ m

Magnetic field effect : charge spread over the readout plane 190 μ m \rightarrow 330 μ m

□Analog readout

high spatial resolution: down to 50μm COMPASS (400 μm pitch)

No magnetic Field effect since analog readout measures the centroid of the induced charge $\sigma_x \sim 650/400 \cdot 50 \sim 80 \,\mu\text{m}$ $\sigma_z \sim 80 \cdot 350/190 \sim 150 \,\mu\text{m}$

CGEM structure

Cylindrical Triple GEM

□light structure: < 0.4% X₀ /chamber

- □ high rate capability: > 50 MHz/cm²
- □ rad hard: up to 2.2 C/cm²
 - 10 years equivalent over the whole active area
 - without damages in LHCb

Material Budget

CGEM KLOE2 Layer

	Times*material*quantity	% of X ₀
CATHODE	Copper: 2*3*1 Kapton: 2*50*1 Honeycomb: 1*3000*1	0.0420 0.0350 0.0240 Total= 0.101
GEM foils	Copper: 6*3*0.8 Kapton: 3*50*0.8	0.1007 0.0420 Total= 0.143
ANODE	Copper: 3.5+1.5+3 Kapton: 1*225*1 Gold : 2*0.1*1 Epoxy: 2*10*1	0.0559 0.0787 0.0061 0.0060 Total=0.147
CF Shield	CF: 2*90 *1 Honeycomb: 1*5000*1	0.0429 0.0400 Total=0.0829
		1 Layer= 0.48 4 Layers =1.92

CGEM Prototype

	Times*material*quantity	% of X _o
CATHODE	Copper: 2*2*1 Kapton: 2*50*1 Honeycomb: 1*3000*1	0.0280 0.0350 0.0240 Total= 0.0870
GEM foils	Copper: 6*2 *0.8 Kapton: 3*50 *0.8	0.0671 0.0420 Total= 0.109
ANODE	Copper: 2.5+1.5+2 Kapton: 1*225*1 Gold : 2*0.1*1 Epoxy: 2*10*1	0.0420 0.0787 0.0061 0.0060 Total= 0.133
CF Shield	Kapton: 2*50 *1 Honeycomb: 1*3000*1	0.0350 0.0240 Total= 0.0590
		1 Layer= 0.39 4 Layers =1.56

Prototype construction targets

- Design, construction and test of a CGEM prototype, in case first layer of a new CGEM Inner Tracking
- Design, construction and test of an analog readout system to achieve < 100 µm xy and < 200 µm z resolutions</p>
- Budget requested to Foreign Affairs Ministry, following the Agreement of scientific cooperation for a Joint laboratory "INFN-IHEP ":

INFN 1st year expenditure	40000	33.3%
Italian Ministry of FA expenditure	40000	33.3%
Foreign Institution expenditure	40000	33.3%
More funds	0	0%
1st year project cost	120000	

LNF CGEM miniworkshop

- October 2012 : 2 days Cylindrical GEM workshop at LNF with Chinese collaborators, KLOE2 ,BARI,CMD3 and CERN (Rui de Oliveira) https://agenda.infn.it/conferenceDisplay.py?confld=5502
- □ G. Bencivenni and collaborators presented the status of KLOE2 Inner Tracking CGEM detector
- □ A. Ranieri (Bari University) presented the analog version of KLOE² GASTONE digital readout
- The second day was dedicated to visit the CGEM laboratory, where a practical assembly procedures demonstration was given
- □ The following slides are a summary of D. Domenici and A. Ranieri talks on CGEM construction, assembling and analog readout

Cylindrical Molds

- To obtain cylindrical electrodes we wrap the foils around molds
- There is one mold for each of the 5 electrodes needed in a triple-GEM (cathode/3 GEM/readout): 20 different molds
- Molds are realized in Aluminum with precision machined surface
- A Teflon (HST-FEP-HT) cladding 0.5 mm thick provides a low-friction and non-sticking surface.
- Tolerance on the final diameter is 0.02 mm
- Roughness is less than 0.4 μm

Algra, Bergamo, IT Cecom, Rome, IT

25/10/2012 • 4

Fiberglass rings

- At the far ends of the cylinder we place annular rings to provide mechanical support and spacing between the gaps (3/2/2/2)
- They also allow the sealing of the detector and hosts the pinholes for the positioning of the electrodes
- The material is Durostone, a stratified glass epoxy composite (EPGC22)

Manufacturing a Cathode

We place an inner cylindrical kapton layer on the mold

Cathode (made by 3 foils) is wrapped around the mold and closed with a vacuum bag

Nomex honeycomb 3 mm thick is glued on the back of the cathode

Final cathode is ready with both internal and external rings 16

GEM Foils

- GEM foils are manifactured at CERN TE-MPE-EM with a single-mask chemical etching technique tuned to produce large size GEM
- Present size 1.2m x 0.5m (active area) Future max size 2m x 0.5m
- The hole shape is double conical (70-50-70) with a slight asymmetry

GEM Foil	Thickness (µm)	Radiation Length
Copper	3	2.1E-04
Polyimide	50	1.75E-04
Copper	3	2.1E-04
	56	5.95E-04

Layout of a GEM

- Bottom side of the active area is divided in 4 Macro-Sectors (MS), each with its own HV connection tail
- Top side of MS is furthermore divided in 10 Sectors, all independentely supplied
- HV tails have 11 connections (1 bottom MS + 10 top S) ending on 0.8 mm fiberglass stiffener
- Sectorization is for minimizing damage in case of discharge
- Sector HV independance is for minimizing loss in case of damage: just a single Sector can be turned off

Manufacturing a C-GEM

Epoxy glue (Araldite 2011) is distributed by hand on a 2 mm wide line

3 GEM foils are spliced together with a 3 mm overlap and closed in a vacuum bag (0.9 bar)

Manufacturing a C-GEM

GEM is protected with a Mylar sheet and wrapped on the cylindrical mold

Transpirant tissue (PeelPly from RiBa) is placed around to distribute vacuum

Vacuum bag envelope

Final cylindrical GEM with internal and external rings

Readout Plane

Readout plane is realized at CERN TE-MPE-EM It is a kapton/copper multilayer flexible circuit Provides 2-dimensional readout with XV strips on the same plane

•X are realized as longitudinal strips
•V are realized by connection of pad through conductive holes and a common backplane
•Pitch is 650 μm for both

X pitch 650 μ m \rightarrow X res 190 μ m

V pitch 650 μ m \rightarrow Y res 350 μ m

25/10/2012 •17

Manufacturing the Readout

3 foils are spliced <u>without overlap</u>: kapton strips (6 cm) are glued on the back of head-to-head joints

Foil is wrapped on the mold

Final foil is ~1m long with three ~1mm wide dead zones

...to obtain cylindrical electrode

Readout CF Lamination

- The readout is shielded with a very ligth Carbon fiber composite structure realized by RiBa Composites, Faenza, IT
- The shield is composed by a sandwich of two 90 µm thick carbon foils prepreg with epoxy (Carbon-Epoxy 90g/m2 58% Fibra T300) spaced by a 5 mm thick Nomex honeycomb (ECA-I 4.8-48 3/16-3.0)

- A dedicated assembling machine has been designed and realized to perform the insertion of the electrodes one into the other
- It is an Aluminum structure with a bottom plate and a top flange running vertically on linear bearings
- Axial alignment has a precision of 0.1mm/1.5m
- The structure can rotate by 180° around its central horizontal axis

- 1. The second electrode (GEM3) is placed on the machine with its mold and
- 2. Fixed to the bottom plate
- 3. The top flange with Readout is moved down around the GEM

D.Domenici - LNF

25/10/2012 • 25

Sealing of the Detector

The top side of the detector is sealed with <u>epoxy adhesive</u> (Araldite 2011) flowed into the 0.35 mm reservoir with a dispencer. Curing cycle lasts 24h

D.Domenici - LNF

The top flange with both Readout and GEM3 is moved up The naked mold is left downside

D.Domenici - LNF

25/10/2012 • 29

D.Domenici - LNF

25/10/2012 • 30

Completed Detector

Cosmic rays Test

Test with final HV cables and distributors, final FEE and DAQ system

top/bottom scintillators for trigger

tracking provided by external 10x10 cm² Triple-GEM

Cosmic rays Test

KLOE-2 IT Detector Construction Status

Layer2

Built and sealed
 Tested with source
 Equipped with GASTONE-FEE
 Equipped with Blocking-Capacitor
 Tested with cosmic-ray muons

Layer1

- Built and sealed
- Tested with source in Current Mode
- Equipped with Blocking-Capacitor

Layer3

Built and sealed

- Spacer grid inserted
- Tested with source
- Equipped with Blocking-Capacitor
- Under Test with cosmic-ray muons

Layer4

- material delivery from CERN: Nov 2012
 construction completion : Jan 2013

Layers Integration

- Insertion L1/L2/L3 and test with cosmic-rays: Dec 2012
- Integration of detector w/beam pipe:

Mar 2013

Further Possible Improvements

□ CERN facilities can manufacture foils with Cu 1µm thick

□ CF shield can be replaced by kapton

□ Molds mechanical tolerances could be more permissive

Experts are investigating a new assembling procedure without molds

GASTONE32 with analog readout

GASTONE32, a 32 channels board with analog readout, already available.
 It produces an amplified and shaped output of the detector input.
 (See workshop A. Ranieri presentation)

□ Funding request to INFN for a small planar (10•10)cm² 3-GEM

GASTONE32: some test results

□ Ar/CO2=70/30 **G**~10⁴ □ 10 primary clusters/3 mm □ Clsize ~ 2.3 el/primary Charge/mip ~ 36 fC Charge/mip/strip ~9 fC

GASTONE32 Board

•GASTONE 32 Board ready to be mounted on a small planar 3-GEM with resistive 2x2 mm² pad readout; total # pad 8x8=64 total area of 16.5x16.5 mm² (*charge dispersion* readout method)

•A total of 128 channels are to be fully instrumented to readout a total area of 272 mm²

• The analog output will be read out through a "Peak Sensing" ADC for charge *center of gravity* analysis

It's a project to be further developed for what concern the readout architecture i.e.:
i.Do we need to develop an ADC per channel or for a group of channels?
ii....and something more

A preliminary guess for layer 1 prototype construction

5

BESIII CGEM layer 1 hardware needed:

- * Construction tools available
- * Molds
- * GEM planes 3
- * Anode plane 1
- * Fiberglass rings 10
- * GASTONE32 90
- * Peak sensing ADC 3000

Layer number	Internal diameter (mm)	Length (mm)	GEM foils
1	126	870	3
2	192	870	6
3	258	870	6
4	324	870	6

- Construction time : 1-2 years (starting from funding approval)
- Analog readout development should be done in parallel
- □ A 120 KE budget seems a reasonable estimation

SUMMARY

□ CGEM could be a solution for a new Inner Tracker

- □ A relevant gain is achieved in the longitudinal view
- Transverse momentum resolution worsening is at lower momenta.
 Many particle MC simulations may help to clarify this point
- □ We are confident that the funding request will be approved
- The prototype construction should be a simple task provided we rely in KLOE2 expertise

Thanks again for

谢谢

your attention

25-29 November 2012, BESIII Winter Collaboration Meeting, Guilin 38