A proposal to tag ISR events at B ES III

M. Anelli, M. Bertani, R. Baldini Ferroli, A. Calcaterra, S. Pacetti, A. Zallo INFN-LNF
D. Alberto, M. Destefanis, M. Greco, M. Maggiora, S. Spataro INFN-Torino University

BESIII 2010 Spring Collaboration Meeting

Liaoning University, Liaoning, June 3-7, 2010

Motivations

ISR at BESIII

$$
\sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)=\frac{4 \pi \alpha^{2} \beta_{p} C}{3 q^{2}}\left[\left|G_{M}\right|^{2}+\frac{2 M_{p}^{2}}{q^{2}}\left|G_{E}\right|^{2}\right]
$$

Coulomb factor

$$
C \underset{\beta_{p} \rightarrow 0}{\sim} \frac{\pi \alpha}{\beta_{p}}
$$

At the threshold

$$
\begin{aligned}
& \sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)\left(4 M_{p}^{2}\right)=\frac{\pi^{2} \alpha^{3}}{2 M_{p}^{2}} \frac{\beta_{p}^{/ p}}{Z_{p}^{/}}\left|G^{p}\left(4 M_{p}^{2}\right)\right|^{2} \\
& \sigma\left(e^{+} e^{-} \rightarrow p \bar{p}\right)\left(4 M_{p}^{2}\right)=850\left|G^{p}\left(4 M_{p}^{2}\right)\right|^{2} \mathrm{pb}
\end{aligned}
$$

$$
\left|G^{p}\left(4 M_{p}^{2}\right)\right| \equiv 1
$$

as pointlike fermion pairs!

Using the ISR technique with only few fb^{-1} of integrated luminosity BESIII can easily achieve the BABAR statistics

PRD76, 092006 (BABAR)

Only at the J / ψ mass BESIII can increase the BABAR statistics at least by a factor of two because of a better Λ reconstruction resolution (only one \wedge reconstructed)

$$
\wedge \text { polarization for free } \Rightarrow G_{E}^{\wedge}-G_{M}^{\wedge} \text { relative phase }
$$

$e^{+} e^{-} \rightarrow n \bar{n}$

- Measured only once by FENICE at ADONE
- $\int \mathcal{L}=500 \mathrm{nb}^{-1}$ ($\mathbf{1 5}^{\prime}$ at BESIII)
- ~ 100 candidates $n \bar{n}$ events!
- $\sigma(n \bar{n})>\sigma(p \bar{p})$?
- Not zero at threshold?

BESIII has the unique possibility to measure this cross section

No other experiments at present and in near future will be able to perform such a measurement

Why Initial State Radiation

ISR: Physics Motivations

- Existing results, obtained by BABAR (ISR), show interesting and unexpected behaviors, mainly at thresholds, for

$$
\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow p \overline{\boldsymbol{p}} \quad \text { and } \quad \boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{\Lambda} \bar{\Lambda}
$$

- Only one measurement (FENICE with energy scan) for

$$
\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow n \bar{n}
$$

There are physical limits in reaching the threshold of many of these channels via energy scan (stable hadrons produced at rest can not be detected)

> The Initial State Radiation technique provides a unique tool to access threshold regions working at higher resonances

Initial State Radiation

$$
\begin{aligned}
& \frac{d^{2} \sigma}{d E_{\gamma} d \theta_{\gamma}}=W\left(E_{\gamma}, \theta_{\gamma}\right) \cdot \sigma_{e^{+} e^{-} \rightarrow x_{\text {had }}}(s) \\
& W\left(E_{\gamma}, \theta_{\gamma}\right)=\frac{\alpha}{\pi x}\left(\frac{2-2 x+x^{2}}{\sin ^{2} \theta_{\gamma}}\right)
\end{aligned}
$$

- $\boldsymbol{s}=\boldsymbol{q}^{\mathbf{2}}, \boldsymbol{q} \ldots \ldots . . \boldsymbol{X}_{\text {had }}$ momentum
- $E_{\gamma}, \boldsymbol{\theta}_{\gamma}$. CM $\gamma_{\text {Is }}$ energy, scatt. ang.
- $\boldsymbol{E}_{\mathrm{CM}} \ldots \ldots . \ldots . . \mathrm{CM} \boldsymbol{e}^{+} \boldsymbol{e}^{-}$energy
- $x=E_{\gamma} / 2 E_{\mathrm{CM}}$

Advantages

- All energies $\left(q^{2}\right)$ at the same time
\Downarrow
Better control on systematics (e.g. greatly reduced point to point)
- Detected ISR \Rightarrow full $X_{\text {had }}$ angular coverage
- CM boost $\Rightarrow\left\{\begin{array}{l}\text { at threshold } \epsilon \neq 0 \\ \text { energy resolution } \sim 1 \mathrm{MeV}\end{array}\right.$

Why ISR at zero degrees

Proposal for a zero-degree detector

- $J / \psi, \psi(2 S), \psi(3770)$ resonances decay with high BR's to final states with π^{0} and γ_{FS} (final state)
- At BESIII these decay channels represent severe backgrounds for typical ISR final states with $\gamma_{\text {IS }}$ detected at wide angle
- π^{0} and final γ angular distributions are isotropic
- ISR angular distribution is peaked at small angles

A zero-degree radiative photon tagger will suppress most of these backgrounds

We propose to upgrade (July 2011?) the present luminosity monitor with a new zero-degree detector (ZDD), with a better energy resolution, to tag ISR photons as well as to measure the luminosity

Design and Installation two options: LYSO and Pb-Scint

Available space

Available space

LYSO design

Front view

(cross section)

Side view

- Two 3×2 matrices of $1.5 \times 1.5 \times 16 \mathrm{~cm}^{3}$ of LYSO bars
- Mechanical vertical motion to vary the opening
- Total volume $432 \mathrm{~cm}^{3}$
- Readout with 2 PMmultianode
- Possible Luminosity-monitor "Slot" detector in the last 7 cm Identical structure but reduced size w.r.t. the actual one

Pb-Scintillating fibers design à la Kloe

ISR at BESIII

Physical properties of materials

Material	LYSO	Pb-Scint (Kloe prototype)
Density (g/cm$)$	7.4	5.3
Radiation Length (cm)	1.1	1.6
Molière Radius (cm)	1.9	2.9
Decay Constant (ns)	$40-44$	2.4
Peak Emission (nm)	428	460
Radiation Hardness (rad)	$\sim 10^{8}$	$\sim 10^{6}$

$\sigma_{\text {Bre }}($ ZDD $/ 4)=2.6 \mathrm{mb}$
$T=1.5 \times 10^{7} \mathrm{~s}$
$\overline{\mathcal{L}}=1.5 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
$E_{c . m .}=3.77 \mathrm{GeV}$

Energy Resolution

Energy resolution, the ISR case

	LYSO	Pb-Scint
$E_{\gamma}(\mathrm{GeV})$	$\sigma_{E_{\gamma}} / E_{\gamma}$	$\sigma_{E_{\gamma}} / E_{\gamma}$
1.5	5.7%	12.9%
1.0	6.4%	15.1%
0.5	7.8%	20.1%

Energy resolution for ISR

	LYSO	Pb-Scint
C_{1}	4.3%	6.9%
C_{2}	4.6%	13.4%

$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{e}^{+} \boldsymbol{e}^{-} \gamma$ Bremsstrahlung simulation

- $E_{\text {beam }}=1.89 \mathrm{GeV}$
- $E_{\gamma}^{\text {min }}=50 \mathrm{MeV}$
- $\sigma_{\mathrm{Bre}}(4 \pi)=353 \mathrm{mb}$
- $\sigma_{\text {Bre }}($ ZDD $)=10 \mathrm{mb}$
- $\mathcal{L}=8 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- ISR in ZDD 13.7\% of total solid angle
- Bremsstrahlung in ZDD 2.8\% of total solid angle
- Bremsstrahlung rate in a single ZDD element (upper or lower):

$$
\begin{aligned}
& 800 \mathrm{kHz} \text { at } \mathcal{L}=3 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
& 2.1 \mathrm{MHz} \text { at } \mathcal{L}=8 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

$n \bar{n}$ physics case

The $n \bar{n} \gamma_{\text {IS }}$ physics case

- $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{n} \bar{\eta} \gamma_{\text {IS }}$ at a center of mass energy: $E_{c . m .}=3.77 \mathrm{GeV}$
- IS photon energy range: $50 \mathrm{MeV} \leq E_{\gamma_{\text {IS }}} \leq\left(E_{c . m .} / 2\right)\left(1-4 M_{n}^{2} / E_{c . m .}^{2}\right)$
- Beam pipe suppresses sinc. rad. bkg. and $\gamma_{\text {Is }}$ with $E_{\gamma_{\text {IS }}}<50 \mathrm{MeV}$
- $\gamma_{\text {IS }}$ in ZDD and only antineutron detected in BESIII
- \bar{n} annihilates in the scintillator with probability $\sim 100 \%$
- \bar{n} annihilation star detected in TOF ($\Delta t_{\text {TOF }}=150 \mathrm{ps}$)

10000 events with $\gamma_{\text {IS }} \rightarrow$ ZDD
$M_{\text {had }}=E_{\text {c.m. }} \sqrt{1-2 E_{\gamma \text { Is }} / E_{\text {c.m. }}}$
Geometrical cut:
$\bar{n} \rightarrow$ BESIII
No constraint in n

The $n \bar{n} \gamma_{\text {IS }}$ physics case

- $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{n} \bar{\eta} \gamma_{\text {IS }}$ at a center of mass energy: $E_{c . m .}=3.77 \mathrm{GeV}$
- IS photon energy range: $50 \mathrm{MeV} \leq E_{\gamma_{\text {IS }}} \leq\left(E_{c . m .} / 2\right)\left(1-4 M_{n}^{2} / E_{c . m .}^{2}\right)$
- Beam pipe suppresses sinc. rad. bkg. and $\gamma_{\text {IS }}$ with $E_{\gamma_{\text {IS }}}<50 \mathrm{MeV}$
- $\gamma_{\text {IS }}$ in ZDD and only antineutron detected in BESIII
- \bar{n} annihilates in the scintillator with probability $\sim 100 \%$
- \bar{n} annihilation star detected in TOF ($\Delta t_{\text {TOF }}=150 \mathrm{ps}$)

10000 events with $\gamma_{\text {Is }} \rightarrow$ ZDD
$M_{\mathrm{had}}=E_{c . m .} \sqrt{1-2 E_{\gamma_{\mathrm{IS}}} / E_{c . m}}$

- Geometrical cut:
- $\bar{n} \rightarrow$ BESIII
- No constraint in n

$n \bar{n} \pi^{0}$ and $n \bar{n} \gamma_{\text {FS }}$ backgrounds

$\underline{\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{n} \bar{n} \pi^{0}}$ and $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{n} \bar{n} \gamma_{\text {FS }}$ (with a final state photon) are important backgrounds for $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{n} \bar{n} \gamma_{\text {IS }}$

Assuming $\sigma\left(e^{+} e^{-} \rightarrow n \bar{n} \pi^{0}\right) \simeq \sigma\left(e^{+} e^{-} \rightarrow p \bar{p} \pi^{0}\right)$:
$\frac{\operatorname{Ev}\left(n \bar{n} \pi^{0}\right)}{\operatorname{Ev}\left(n \bar{n} \gamma_{\text {IS }}\right)}\left[M_{\Upsilon(4 S)}\right] \simeq R_{B A B A R}=\frac{\operatorname{Ev}\left(p \bar{p} \pi^{0}\right)}{\operatorname{Ev}\left(p \bar{p} \gamma_{\text {IS }}\right)}\left[M_{\Upsilon(4 S)}\right]=0.06$

- In BESIII, directly at the $\boldsymbol{\psi}(\mathbf{3 7 7 0})$ mass:

$$
R_{\mathrm{BESIII}}=0.06 \times \underbrace{\left(\frac{0.012}{3 \times 10^{-6}}\right)}_{p \bar{p} \pi^{0} \text { cross section ratio }} \times \underbrace{\left(\frac{1}{10.7}\right)}_{\text {Lum. ratio }}=22.4
$$

$\gamma_{\text {IS }} \rightarrow$ ZDD

ZDD solid angle BESIII solid angle
$\frac{2 \cdot\left(2 \cdot 4.5 \cdot 3 / 349^{2}\right)}{4 \pi \cos \theta_{\min }}=3.8 \cdot 10^{-5}$

$$
\begin{aligned}
& \frac{\operatorname{Ev}\left(n \bar{n} \pi^{0}, \pi^{0} \rightarrow 0^{\circ}\right)}{\operatorname{Ev}\left(n \bar{n} \gamma_{I S}, \gamma_{I S} \rightarrow 0^{\circ}\right)}=0.0008 \\
& \frac{\operatorname{Ev}\left(n \bar{n} \gamma_{\mathrm{FS}}, \gamma_{\mathrm{FS}} \rightarrow 0^{\circ}\right)}{\operatorname{Ev}\left(n \bar{n} \gamma_{\mathrm{IS}}, \gamma_{\mathrm{IS}} \rightarrow 0^{\circ}\right)} \sim 0.0001
\end{aligned}
$$

> $e^{+} e^{-} \rightarrow n \bar{n} \pi^{0} \gamma$ IS
> is a severe background having the IS photon

Yields from BABAR

- After geometrical cut
 - High contamination at high $M_{\text {had }}$

The $n \bar{\pi} \pi^{0} \gamma_{\text {IS }}$ background reduction

Geometrical cut on \bar{n}
π^{0} detection in BESIII: at least one of the π^{0} photons with $E_{\gamma}>50 \mathrm{MeV}$ in BESIII not in a 200 mrad cone around \bar{n} direction

Kinematic fit:

The $n \bar{\pi} \pi^{0} \gamma_{\text {IS }}$ background reduction

- Geometrical cut on \bar{n}
- π^{0} detection in BESIII: at least one of the π^{0} photons with $E_{\gamma}>50 \mathrm{MeV}$ in BESIII not in a 200 mrad cone around \bar{n} direction

Kinematic fit: $\quad \chi^{2} \leq 10$

- Geometrical cut on \bar{n}
- π^{0} detection in BESIII: at least one of the π^{0} photons with $E_{\gamma}>50 \mathrm{MeV}$ in BESIII not in a 200 mrad cone around \bar{n} direction
(Kinematic fit:
$\chi^{2} \leq 10$

Energy resolution in $\bar{n} \gamma_{\text {Is }}$ missing mass

- Events are generated with fixed value of $M_{\text {had }}=E_{c . m .} \sqrt{1-2 E_{\gamma_{\text {IS }}} / E_{c . m}}$.
- The $\bar{n} \gamma_{I S}$ missing mass is obtained only from experimental data

Energy resolution in $M_{\text {had }}$ slices

- Events are generated with fixed value of $M_{\text {had }}=E_{c . m .} \sqrt{1-2 E_{\gamma_{\text {IS }}} / E_{c . m}}$.
- $M_{\text {had }}$ is reconstructed using the kinematic fit procedure

$M_{\text {had }}=2.6 \mathrm{GeV}-E_{\gamma_{\text {IS }}}=1.0 \mathrm{GeV}$

$M_{\text {had }}=3.2 \mathrm{GeV}-E_{\gamma_{\text {IS }}}=0.5 \mathrm{GeV}$

Energy resolutions in summary

(Two-gaussian fit: $\sigma=$ half width of the area, symmetric w.r.t. the center of mass of the distributions, which contains the 68% of events

Width of the $\bar{n} \gamma_{\text {IS }}$ miss. mass

σ_{n} is dominated by $\delta p_{\bar{n}}$
small $M_{\text {had }} \Rightarrow$ large $E_{\gamma_{\mid S}} \Rightarrow$ small $\delta E_{\gamma_{\mid S}}$

Energy resolution in $\boldsymbol{M}_{\text {had }}$ bins

$\sigma_{\text {tot }}$ is dominated by $\delta E_{\text {रIs }}$
large $M_{\text {had }} \Rightarrow$ small $E_{\gamma_{\mid S}} \Rightarrow$ large $\delta E_{\gamma_{\mid S}}$

Expected events

One year of data taking: $\quad T=1.5 \times 10^{7} \mathrm{~s}$
(Average luminosity: $\overline{\mathcal{L}}=1.5 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Detection efficiency:
$\epsilon \sim 0.5$

- Center of mass energy:
$E_{\text {c.m. }}=3.77 \mathrm{GeV}$

Other possible physics items $R_{\text {had }}$ in the 1-3 GeV region

- Accessible had-CoM energy: $M_{\text {had }}=\sqrt{E_{\text {coll }}^{2}-2 E_{\text {coll }} E_{\gamma_{\text {IS }}}}$
- PDG: $\gamma \gamma 2$ and BESII ($2-3 \mathrm{GeV}$) only
- ISR: small systematic error versus $M_{\text {had }}$
- ISR on ZDD: negligible π^{0} background

- $\left|\Delta M_{\text {had }}\right|=\left|\Delta E_{\text {रIs }}\right| E_{\text {coll }} / M_{\text {had }}$: feasible only if $E_{\text {coll }} / M_{\text {had }} \sim 1$ (not for B-factories)
- BESIII: $E_{\text {coll }} \sim 3.5 \mathrm{GeV} \Rightarrow M_{\text {had }} \simeq 1-3 \mathrm{GeV}$
- LYSO: $\left|\Delta M_{\text {had }}\right| \simeq 150 \mathrm{MeV}$
- Pb-Scint: $\left|\triangle M_{\text {had }}\right| \simeq 300 \mathrm{MeV}$
- $\left|\Delta M_{\text {had }}\right|$ reduced by deconvolution techniques

To sum up

We have presented the two-options proposal to INFN comittee for HEP, chaired by F. Ferroni:

- approved proposal with priority in the low cost Kloe option
- cut and test the Kloe-prototype funded
- in July we can ask for readout electronics budget
- We propose to install it in summer 2011 shutdown
- In the following years the crystals (LYSO?) option can be put ahead and eventually be installed during a following shutdown

To sum up

We have presented the two－options proposal to INFN comittee for HEP，chaired by F．Ferroni：
－approved proposal with priority in the low cost Kloe option
－cut and test the Kloe－prototype funded
－in July we can ask for readout electronics budget
－We propose to install it in summer 2011 shutdown
－In the following years the crystals（LYSO？）option can be put ahead and eventually be installed during a following shutdown
感谢您的关注!

Additional slides

Radiation hardness

Radiation damages mostly due to Bremsstrahlung:

- One year of data taking:
- Average luminosity:

$$
\begin{array}{r}
\sigma_{\text {Bre }}(\text { ZDD } / 4)=2.6 \mathrm{mb} \\
T=1.5 \times 10^{7} \mathrm{~s} \\
\overline{\mathcal{L}}=1.5 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
E_{\text {c.m. }}=3.77 \mathrm{GeV}
\end{array}
$$

Declared hardness

- LYSO ~ 10^{8} rad
- Scint. $\sim 10^{6}$ rad

Bremsstrahlung rate

$$
\mathcal{L}=3 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

Bremsstrahlung rate in $10 \mathrm{MeV} E_{\gamma}$ intervals

Integrated
Bremsstrahlung rate

LYSO GEANT4 simulation $_{1}$

Deposited energy/E ${ }_{\gamma}$

Log-normal distribution
$\frac{d f}{d E}=\frac{\eta}{\sqrt{2 \pi} \sigma_{E} \sigma_{0}} e^{-\frac{1}{2}\left[\frac{\ln ^{2}\left(1-\frac{\eta\left(E-E_{0}\right)}{\sigma_{E}}\right)}{\sigma_{0}^{2}}+\sigma_{0}^{2}\right]}$

$$
\sigma_{0}=\frac{2}{2.35} \ln \left[\eta \frac{2.35}{2}+\sqrt{1+\left(\eta \frac{2.35}{2}\right)^{2}}\right], \quad \sigma_{E}=\frac{\mathrm{FWHM}}{2.35}
$$

$E_{\gamma}(\mathrm{GeV})$	$\sigma_{E_{\gamma}} / E_{\gamma}$ Central (yellow square)
$1.0-1.4$	3.6%
$0.2-0.4$	4.9%

LYSO GEANT4 simulation $_{2}$

Deposited energy/ E_{γ}

$E_{\gamma}(\mathrm{GeV})$	$\sigma_{E_{\gamma}} / E_{\gamma}$ Central (yellow square)
$1.0-1.4$	26.0%
$0.2-0.4$	32.0%

Pileup effect: signal generation

Maximum Bremsstrahlung rate expected 2.1 MHz (ZDD/4)

(Flash ADC: $500 \mathrm{MS} / \mathrm{s}, 8$-bit resolution

- LYSO signal:

$$
\text { Intensity }=e^{-t / \tau_{r}}\left(1-e^{-t / \tau_{d}}\right)
$$

rising time $\tau_{r}=2 \mathrm{~ns}$, decay time $\tau_{d}=40 \mathrm{~ns}$

Probability of pileup as a function of the Bremsstrahlung rate

Probability of pileup as a function of the Bremsstrahlung rate

Pileup effect ${ }_{2}$: probability

Probability of pileup as a function of the Bremsstrahlung rate

37

Probability of pileup as a function of the Bremsstrahlung rate

Pileup effect ${ }_{2}$: probability

Probability of pileup as a function of the Bremsstrahlung rate

Pileup effect: evaluation

- Signals have been generated at various rates with

$$
\text { Intensity }=E_{\gamma \mathrm{s}} \cdot e^{-t / \tau_{\text {decay }}}\left(1-e^{-t / \tau_{\text {raise }}}\right)
$$

- E.g. at 2500 kHz:
31.6% has $\Delta t_{\text {SR }}<160 \mathrm{~ns} \sim 4$ decay times
- We fit these signals to verify our capability to distinguish ISR and Bremsstrahlung contributions

Pileup effect ${ }_{2}$ in $T=160 \mathrm{~ns}$

The fit goodness is expressed as $\left(\sigma_{E} / E\right)_{\text {fit }}=\left(E_{\text {gen }}-E_{\text {fit }}\right) / E_{\text {gen }}$, where $E_{\text {gen }}$ is the generated ISR amplitude and $E_{\text {fit }}$ is its fitted value

We consider as a reference accuracies: $\left\{\begin{array}{l}7 \% \sim \frac{\sigma_{E}}{E} \text { LYSO } \\ 15 \% \sim \frac{\sigma_{E}}{E} \text { Pb-Scint }\end{array}\right.$

- $E_{\gamma_{\text {IS }}} \in[0.5 \mathrm{GeV}, 1.5 \mathrm{GeV}]$, mild dependence on $E_{\gamma_{\text {IS }}}$

rate (kHz)	Pileup in 160 ns $(\%)$	$\left(\sigma_{E} / E\right)_{\mathrm{it}}>7 \%$ $(\%)$	$\left(\sigma_{E} / E\right)_{\mathrm{it}}>15 \%$ $(\%)$
2500	30	9.4	4.8
2100	26	8.1	4.2
1000	14	4.3	2.2
800	10	3.2	1.6

The $n \bar{\pi} \gamma_{\text {Is }}$ physics case: kinematic fit

Inputs (6)

- \bar{n} 3-momentum (TOF)

र/s 3 -momentum (ZDD)

Constraints (4)

4-momentum cons.

Unknowns (3)

n 4-momentum

$$
\chi^{2}=\sum_{\text {tracks }} \sum_{i} \frac{\left(p_{i}^{\mathrm{exp}}-p_{i t}^{\mathrm{fit}}\right)^{2}}{\sigma_{p_{i}}^{2}}
$$

The $n \bar{n} \gamma_{\text {Is }}$ physics case: kinematic fit

Inputs (6)

- \bar{n} 3-momentum (TOF)
- $\gamma_{\text {Is }} 3$-momentum (ZDD)

Constraints (4)

4-momentum cons.

Unknowns (3)

- $n 4$-momentum

$$
\chi^{2}=\sum_{\text {tracks }} \sum_{i} \frac{\left(p_{i}^{\text {exp }}-p_{i l}^{\text {fit }}\right)^{2}}{\sigma_{p_{i}}^{2}}
$$

