Measurement of $J/\psi \rightarrow p\overline{p}$, $n\overline{n}$

Bian Jianming for Light Hadron Group and LNF BESIII group 2010.9

Outline

- Introduction
- DATA sample
- J/ψ→pp̄
- $J/\psi \rightarrow n\bar{n}$
- Summary

Introduction

- $J/\psi \rightarrow n\overline{n}$ has been measured with poor precision.
- The difference between $B(J/\psi \rightarrow p\overline{p})$ and $B(J/\psi \rightarrow n\overline{n})$ is a good test for the pQCD prediction.
- The final states involving baryons may take a large proportion of the missing part of J/ψ decay modes

Introduction

Comparable $B(J/\psi \rightarrow nn)$ and $B(J/\psi \rightarrow pp)$ indicate a large phase angle between the strong (A_g) and electromagnetic (A_{em}) decay amplitudes of J/ψ .

Although previous measurements have provide high precision $Br(J/\psi \rightarrow pp)$, the $Br(J/\psi \rightarrow nn)$ is still suffering from a large error.

- BESII@BEPC : Br(J/ $\psi \rightarrow$ pp) = (2.26±0.01±0.14) ×10⁻³ (PLB591,42)
- FENICE@Adone : Br($J/\psi \rightarrow nn$) = (2.31±0.49) ×10⁻³ (PLB444,111)

Data samples

Based on boss 6.5.1 at BESIII

Data samples:~226M J/ ψ data

MC J/ $\psi \rightarrow p\overline{p}$: 1 M PHSP

Control sample of $n\overline{n}$: $J/\psi \rightarrow p\overline{n}\pi^-+cc$.

Inclusive MC samples: 200 M J/ ψ inclusive MC

MC
$$e^+e^- \rightarrow \gamma \gamma$$
 MC ($|\cos\theta| < 0.8$)
N _{$\gamma\gamma$} = L X σ = 80981.43nbX19.2984nb⁻¹ = 1.56 M

5

Event Selection

Good charged tracks

- IP region: $|\mathbf{R}_{xy}| \leq 1$ cm, $|\mathbf{R}z| \leq 10$ cm
- Momentum: p<2.0GeV
- Polar angle: |cosθ|<0.93

Particle Identificatioin

- TOF+dE/dX
- p $Prob(p) > Prob(\pi)$
- p Prob(p) > Prob(K)

Event level

- Two tracks opening angle > 178°
- |P(p) 1.232|<0.05GeV
- |P(p) 1.232|<0.05GeV
- $|\cos\theta| < 0.8$, polar angle of p

The selection of $J/\psi \rightarrow p\overline{p}$ does not depend on information of the calorimeter, and the energy deposit in EMC of $J/\psi \rightarrow p\overline{p}$ is also used to verify efficiency of $J/\psi \rightarrow n\overline{n}$

Data/MC

Angular distribution

 $N_{side}/N = 0.1\%$

Inclusive MC background

No.	decay chain	final states	iTopo	nEvt	nTot
0	$J/\psi \rightarrow \gamma \eta_c, \eta_c \rightarrow p\bar{p}$	$\bar{p}\gamma p$	0	13	13
1	$J/\psi \rightarrow \mu^+\mu^-$	$\mu^{-}\mu^{+}$	8	7	20
2	$J/\psi \rightarrow e^+e^-$	e^-e^+	4	5	25
3	$J/\psi \rightarrow \Sigma^0 \bar{\Lambda}, \Sigma^0 \rightarrow \gamma \Lambda, \bar{\Lambda} \rightarrow \bar{p}\pi^+, \Lambda \rightarrow \pi^- p$	$\pi^- \bar{p} \pi^+ \gamma p$	14	3	28
4	$J/\psi \rightarrow \gamma_{FSR} e^+ e^-$	$e^{-}e^{+}$	17	2	30
5	$J/\psi \rightarrow \pi^0 \pi^+ \pi^-$	$\pi^{-}\pi^{0}\pi^{+}$	19	2	32
6	$J/\psi \rightarrow \bar{K}^0 \pi^- K^+, K_S \rightarrow \pi^0 \pi^0$	$\pi^{-}\pi^{0}\pi^{0}K^{+}$	6	1	33
7	$J/\psi \to \rho^+ \pi^- b_1^0 \rho^0, \rho^+ \to \pi^+ \pi^0, b_1^0 \to \omega \pi^0, \rho^0 \to \pi^+ \pi^-, \omega \to \pi^- \pi^0 \pi^+$	$\pi^{-}\pi^{-}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\pi^{+}$	7	1	34
8	$J/\psi \to K^{*+}\bar{K}^*\rho^-, K^{*+} \to \pi^+K^0, \bar{K}^* \to \pi^+K^-, \rho^- \to \pi^-\pi^0, K_S \to \pi^+\pi^-$	$\pi^{-}\pi^{-}K^{-}\pi^{0}\pi^{+}\pi^{+}\pi^{+}$	2	1	35
9	$J/\psi \to a_2^+ \rho^-, a_2^+ \to \pi^+ \rho^0, \rho^- \to \pi^0 \pi^-, \rho^0 \to \pi^- \pi^+$	$\pi^{-}\pi^{-}\pi^{0}\pi^{+}\pi^{+}$	9	1	36
10	$J/\psi \to \gamma \bar{K}^* K_1^0, \bar{K}^* \to K^- \pi^+, K_1^0 \to \pi^0 K^0 \pi^0, K_S \to \pi^0 \pi^0$	$K^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\gamma$	10	1	37
11	$J/\psi \to \pi^0 \gamma \pi^0 \pi^+ \pi^-$	$\pi^-\pi^0\pi^0\pi^+\gamma$	11	1	38
12	$J/\psi \to \pi^+ f_1(1285)\rho^-, f_1(1285) \to K^0\pi^0\bar{K}^0, \rho^- \to \pi^0\pi^-, K_S \to \pi^-\pi^+$	$\pi^{-}\pi^{-}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}$	12	1	39
13	$J/\psi \to K_2^{*+}K^{*-}\omega, K_2^{*+} \to \pi^+K^0, K^{*-} \to \pi^0K^-, \omega \to \pi^+\pi^0\pi^-$	$\pi^{-}K^{-}\pi^{0}\pi^{0}K_{L}\pi^{+}\pi^{+}$	13	1	40
14	$J/\psi \to \pi^- \gamma \rho^0 \rho^+, \rho^0 \to \gamma_{FSR} \pi^- \pi^+, \rho^+ \to \pi^0 \pi^+$	$\pi^{-}\pi^{-}\pi^{0}\pi^{+}\pi^{+}\gamma$	3	1	41
15	$J/\psi \to \bar{\Sigma}^0 \Lambda, \bar{\Sigma}^0 \to \bar{\Lambda}\gamma, \Lambda \to \pi^- p, \bar{\Lambda} \to \bar{p}\pi^+$	$\pi^- \bar{p}\pi^+ \gamma p$	15	1	42
16	$J/\psi \rightarrow \bar{p}\pi^0 p$	$\bar{p}\pi^0 p$	16	1	43
17	$J/\psi \to h_1(\underline{1}170)\rho^-\rho^+, h_1(\underline{1}170) \to \rho^+\pi^-, \rho^- \to \pi^-\pi^0, \rho^+ \to \pi^+\pi^0, \rho^+ \to \pi^+\pi^0$	$\pi^{-}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}$	1	1	44
18	$J/\psi \to \Sigma^+ \overline{\Sigma}^-, \Sigma^+ \to \pi^0 p, \overline{\Sigma}^- \to \pi^0 \overline{p}$	$\bar{p}\pi^0\pi^0p$	18	1	45
19	$J/\psi \to \pi^- \phi \pi^+ \pi^-, \phi \to K_L K_S, K_S \to \pi^+ \pi^-$	$\pi^{-}\pi^{-}\pi^{-}K_{L}\pi^{+}\pi^{+}\pi^{+}$	5	1	46
20	$J/\psi \to \gamma \eta_c, \eta_c \to f_1(1285)b_1^0, f_1(1285) \to K^+ \pi^- \bar{K}^0, b_1^0 \to \pi^0 \omega, K_S \to \pi^- \pi^+, \omega \to \pi^+ \pi^- \pi^0$	$\pi^{-}\pi^{-}\pi^{-}\pi^{0}\pi^{0}\pi^{+}\pi^{+}\gamma K^{+}$	20	1	47
21	$J/\psi \rightarrow a_2^0 \rho^0, a_2^0 \rightarrow \pi^+ \rho^-, \rho^0 \rightarrow \pi^+ \pi^-, \rho^- \rightarrow \pi^0 \pi^-$	$\pi^{-}\pi^{-}\pi^{0}\pi^{+}\pi^{+}$	21	1	48
22	$J/\psi \rightarrow K^- K^0 \pi^+$	$K^-K_L\pi^+$	22	1	49
23	$J/\psi \to a_2^- \pi^+ \pi^0, a_2^- \to \rho^- \pi^0, \rho^- \to \pi^0 \pi^-$	$\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{+}$	23	1	50
24	$J/\psi \to \eta \pi^0 \rho^0, \eta \to \pi^- \pi^+ \pi^0, \rho^0 \to \pi^+ \pi^-$	$\pi^{-}\pi^{-}\pi^{0}\pi^{0}\pi^{+}\pi^{+}$	24	1	51
25	$J/\psi \to \rho^- \pi^+, \rho^- \to \pi^0 \pi^-$	$\pi^{-}\pi^{0}\pi^{+}$	25	1	52
26	$J/\psi \to \pi^- K_0^{*+} K_0^{*-} \pi^+, K_0^{*+} \to \pi^+ \gamma_{FSR} K^0, K_0^{*-} \to \pi^0 K^-$	$\pi^{-}K^{-}\pi^{0}K_{L}\pi^{+}\pi^{+}$	26	1	53
27	$J/\psi \to \omega \rho^- \rho^+, \omega \to \pi^- \pi^+ \pi^0, \rho^- \to \pi^- \pi^0, \rho^+ \to \pi^0 \pi^+$	$\pi^{-}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}$	27	1	54
28	$J/\psi \rightarrow a_0^- \pi^+ \omega, a_0^- \rightarrow \eta \pi^-, \omega \rightarrow \pi^0 \pi^- \pi^+, \eta \rightarrow \pi^0 \pi^0 \pi^0$	$\pi^{-}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{+}$	28	1	55
29	$J/\psi \rightarrow K^+ K^- \eta, \eta \rightarrow \gamma \gamma$	$K^- \gamma \gamma K^+$	29	1	56

N=303190
N_{incbkg}=104
N_{incbkg}/N =
$$0.03\%$$

Efficiency correction

 $\varepsilon(\cos\theta) = C_0 + C_1 \cos q + C_2 \cos^2\theta$

Fit to angular distribution

Branching ratio

Correction for angular acceptance

$$N_{cor} = N_i(\cos\theta)/\epsilon_i(\cos q) \cdot \left[\int_{-1}^{1} (1 + \alpha \cos^2\theta) d\theta / \int_{-0.8}^{0.8} (1 + \alpha \cos^2\theta) d\theta\right]$$

Ν	303190±551
α	0.628±0.013
N _{cor}	492191±894
Eff.	61.6%
N(J/ψ)	2.26×10 ⁸
Br	(2.179±0.004)×10 ⁻³

Systematic errors and results

	α=0.628±0.013	Br = (2.179 ± 0.004) ×10 ⁻³
Tracking (1%)	0.021	0.022
PID (1%)	0.021	0.022
Background	0.004	0.002
Eff. Correction	0.010	0.008
Error of α (tot 0.035)	-	0.007
N(J/ψ) (1.2%)	-	0.026
Total	0.032	0.042

Br(J/ ψ \rightarrow pp) = (2.179 \pm 0.004 \pm 0.042)×10⁻³ α =0.628 \pm 0.013 \pm 0.032 PDG: Br(J/ ψ \rightarrow pp) = (2.17 \pm 0.07)×10⁻³ BESII: α =0.676 \pm 0.036 \pm 0.042

Event selection for $J/\psi \rightarrow n\overline{n}$

Good Shower

- Barrel($|\cos\theta| < 0.8$): $E_{\gamma} > 25 MeV$
- Endcap(0.86<|cosθ|<0.92):E_γ>50MeV
- EMC time: |t-t_{emax}|≤10*50ns

nbar identification

- Most energetic shower
- E>0.6 GeV, E<2.0 GeV
- SecondMoment>20
- Total hits nearby 50° the most energetic shower : Nhit50>40

n identification

• 0.6GeV>E>0.06GeV

Event level

- No good charged tracks
- The most energetic shower which pass nbar ID criteria is taken as the nbar candidate
- The shower which is most near the recoil direction of nbar and passes n ID criteria is taken as n
- $E_{miss}=E_{tot} E(nbarsum50) E(n)=0$, E_{tot} is the total deposit energy in the calorimeter, E(nbarsum50) is the energy deposit in a 50° cone nearby the nbar candidate
- |cosθ| < 0.8 (the polar angle of the nbar candidate)
- The signal will be an enhancement nearby zero in the distribution of the the angle between n and recoil 16 direction of nbar.

$n\overline{n}(red cross)$ vs γ (histogram)

Distributions in the data(dot) and inclusive MC(hist)

Deposit energy of n vs n candidate in the data

Inclusive MC background

Events/0.05

Topology in inclusive MC

No.	decay chain	final states	iTopo	nEvt	nTot	
0	$J/\psi \rightarrow \pi^0 \bar{n} n$	$\bar{n}\pi^0 n$	2	1024	1024	Main hko
1	$J/\psi \rightarrow p\bar{p}$	$\bar{p}p$	3	445	1469	main ong.
2	$J/\psi ightarrow ar{K}^0 K^0$	$K_L K_L$	5	176	1645	
3	$J/\psi \rightarrow K^* \bar{K}^0, K^* \rightarrow \pi^0 K^0$	$\pi^0 K_L K_L$	1	130	1775	
4	$J/\psi ightarrow K^0 ar{K}^*, ar{K}^* ightarrow \pi^0 ar{K}^0$	$\pi^0 K_L K_L$	46	106	1881	
5	$J/\psi ightarrow K^0 \pi^0 ar K^0$	$\pi^0 K_L K_L$	4	82	1963	Will be taken into account
6	$J/\psi \to \bar{\Delta}^- \Delta^- \pi^0, \bar{\Delta}^- \to \pi^+ \bar{n}, \Delta^- \to n\pi^-$	$\pi^- \bar{n} \pi^0 \pi^+ n$	23	81	2044	will be taken into account
7	$J/\psi \rightarrow \pi^- \pi^0 \pi^+$	$\pi^{-}\pi^{0}\pi^{+}$	0	62	2106	, , .
8	$J/\psi \rightarrow \bar{p}\pi^+ p\pi^-$	$\pi^- \bar{p} \pi^+ p$	15	55	2161	as systematic error.
9	$J/\psi \rightarrow K^0 K^0 \gamma$	$K_L K_L \gamma$	11	54	2215	5
10	$J/\psi \to \overline{\Lambda}\Lambda, \overline{\Lambda} \to \pi^+ \overline{p}, \Lambda \to \pi^- p$	$\pi^- \bar{p} \pi^+ p$	8	49	2264	
11	$J/\psi \rightarrow K_L K_S, K_S \rightarrow \pi^0 \pi^0$	$\pi^0 \pi^0 K_L$	12	44	2308	
12	$J/\psi \rightarrow \pi^+ n \bar{p}$	$\bar{p}\pi^+n$	42	25	2333	
13	$J/\psi \rightarrow K^+K^-$	K^-K^+	137	25	2358	Forhidden
14	$J/\psi \to \Lambda\Lambda\gamma, \Lambda \to p\pi^-, \Lambda \to \bar{p}\pi^+$	$\pi^- \bar{p} \pi^+ \gamma p$	25	24	2382	1 01010001
15	$J/\psi \to \gamma f_4(2050), f_4(2050) \to \pi^0 \pi^0$	$\pi^0\pi^0\gamma$	26	23	2405	
16	$J/\psi \to \pi^0 \bar{p} p$	$\bar{p}\pi^0 p$	21	23	2428	
17	$J/\psi \to f_0(1710)\gamma, f_0(1710) \to K^0 K^0$	$K_L K_L \gamma$	40	22	2450	
18	$J/\psi \to \Lambda \Sigma^0, \Lambda \to p\pi^-, \Sigma^0 \to \Lambda \gamma, \Lambda \to \pi^+ \bar{p}$	$\pi^- \bar{p} \pi^+ \gamma p$	59	22	2472	
19	$J/\psi \to K^0 K^0, K_S \to \pi^0 \pi^0$	$\pi^0 \pi^0 K_L$	32	22	2494	
20	$J/\psi \to \Lambda\Lambda, \Lambda \to \pi^0 n, \Lambda \to \pi^+ \bar{p}$	$\bar{p}\pi^0\pi^+n$	48	21	2515	
21	$J/\psi \rightarrow K^* K^0, K^* \rightarrow K^+ \pi^-$	$\pi^- K_L K^+$	65	20	2535	
22	$J/\psi \to \Lambda \Sigma^0, \Lambda \to \pi^+ \bar{p}, \Sigma^0 \to \gamma \Lambda, \Lambda \to \pi^- p$	$\pi^- \bar{p} \pi^+ \gamma p$	16	18	2553	
23	$J/\psi \rightarrow K^+K^{*-}, K^{*-} \rightarrow \pi^-K^0$	$\pi^- K_L K^+$	30	18	2571	
24	$J/\psi \rightarrow K^0 K^- \pi^+$	$K^-K_L\pi^+$	9	17	2588	
25	$J/\psi ightarrow ho^- \pi^+, ho^- ightarrow \pi^0 \pi^-$	$\pi^{-}\pi^{0}\pi^{+}$	52	17	2605	
26	$J/\psi \rightarrow K^- K^{*+}, K^{*+} \rightarrow K^0 \pi^+$	$K^-K_L\pi^+$	128	17	2622	
27	$J/\psi \to \pi^- \rho^+, \rho^+ \to \pi^0 \pi^+$	$\pi^-\pi^0\pi^+$	58	17	2639	
28	$J/\psi \to \bar{p}\Delta^{++}\pi^-, \Delta^{++} \to p\pi^+$	$\pi^- \bar{p} \pi^+ p$	109	16	2655	
29	$J/\psi \rightarrow \pi^0 \bar{n} \pi^0 n$	$\bar{n}\pi^0\pi^0n$	13	14	2669	

Use bkg shape of Monte Carlo J/ $\psi \rightarrow \pi^0$ nnbar to estimate number of bkg events in signal region

Bkg shape obtained from J/psi $\rightarrow \pi^0$ nnbar in MC. Normalize data and Bkg in sideband 10~20° signal region: angle<10°

Number of signal extraction in every polar angle region

Event selection for $J/\psi \rightarrow p\overline{n}\pi^- + cc.$ (calibration channel)

- Identify P: Prob(p)>Prob(π), Prob(p)>Prob (K), Prob(p)>0.001
- Identify π: Prob(π)>Prob(p), Prob(π)>Prob (K), Prob(π)>0.001
- Recoil mass of $p\pi \sim |M-M_n| \le 0.05 GeV$
- Recoil momentum of $p\pi \sim (1.1 \sim 1.2)$ GeV (near by momentum of $n\overline{n}$ in $J/\psi \rightarrow n\overline{n}$)
- Angle between recoil direction and N(Nbar) candidate shower ~ 10°

Distributions of $J/\psi \rightarrow p\bar{n}\pi^- + cc$.

Comparisons of \overline{n} samples in $J/\psi \rightarrow \overline{n}\overline{n}$ (red cross) and $J/\psi \rightarrow pn\overline{\pi}$ (hist)

Comparisons of n samples in $J/\psi \rightarrow n\overline{n}$ (red cross), $J/\psi \rightarrow \overline{p}n\pi^+$ and $\psi' \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \overline{p}n\pi^+$

 $J/\psi \rightarrow \overline{p}n\pi^+$ is used to calibrate efficiency of n selection, $\psi' \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \overline{p}n\pi^+$ is used to estimate systematic error.

E_{miss} in $J/\psi \rightarrow n\overline{n}$ and $J/\psi \rightarrow p\overline{p}$

The $J/\psi \rightarrow p\bar{p}$ sample is selected by means of MDC information only. It is used to calibrate the efficiency of E_{miss} cut. We select showers in EMC in $J/\psi \rightarrow p\bar{p}$ sample with the same method as $J/\psi \rightarrow n\bar{n}$.

Efficiency corrections

Corrected number of events vs. polar angle and the fitting

Branching ratio

Correction for angular acceptance

 $N_{cor} = N_i(\cos\theta)/\epsilon_i(\cos q) \cdot \left[\int_{-1}^{1} (1 + \alpha \cos^2\theta) d\theta / \int_{-0.8}^{0.8} (1 + \alpha \cos^2\theta) d\theta\right]$

α	0.59±0.16
N _{cor}	471795±11721
N(J/ψ)	2.26×10 ⁸
Br	(2.01±0.05)×10 ⁻³

Systematic errors and results

	α= 0.59±0.16	Br = $(2.01 \pm 0.005) \times 10^{-3}$
Trigger(2%)	0.03	0.04
Eff (nbar)	0.02	0.02
Eff (n)	0.05	0.06
Error of α	-	0.03
Background	0.08	0.04
N(J/ψ) (1.2%)	-	0.02
Total	0.10	0.09 (Preliminary)

Br($J/\psi \rightarrow nn$) = (2.01±0.05±0.09)×10⁻³ α =0.59±0.16±0.10

Summary

We have measured

```
Br(J/\psi \rightarrow p\bar{p}) = (2.179±0.004±0.042)×10<sup>-3</sup>

\alpha=0.628±0.013±0.032

PDG: Br(J/\psi \rightarrow p\bar{p}) = (2.17±0.07)×10<sup>-3</sup>

BESII: \alpha=0.676±0.036±0.042
```

Br(J/ $\psi \rightarrow n\bar{n}$) = (2.01±0.05±0.09)×10⁻³ α =0.59±0.16±10 PDG: Br(J/ $\psi \rightarrow n\bar{n}$) = (2.2±0.4)×10⁻³

Our Br($J/\psi \rightarrow n\overline{n}$) is much larger than ~1.5×10⁻³ which is expected with 0 phase angle assumption.

The consistency between $Br(J/\psi \rightarrow p\overline{p})$ and $Br(J/\psi \rightarrow n\overline{n})$ suggests a large phase angle (~90°) between the strong and the em amplitude.

Backup

Estimation for real A_g , A_{em} (0 phase)

• $|A_{em}|^2 = B(J/\psi \rightarrow \mu\mu) R(3.1 \text{ GeV}) \sigma(pp)/\sigma(tot)$ $= B(J/\psi \rightarrow \mu\mu) R(3.1 \text{GeV}) \sigma(pp)/$ $(\sigma(\mu\mu) R(3.1 \text{GeV})/3.1^2)$ = B(J/ $\psi \rightarrow \mu\mu$)* $\sigma(pp)/\sigma(\mu\mu)$ *1/9.61 $= (5.9 \times 10^{-2}) * (4nb/86.8nb) * 1/9.61$ $= 0.28 \times 10^{-4} (|A_{em}| = 0.53 \times 10^{-2})$ $|A_{o} + A_{em}|^{2} = B(J/\psi \rightarrow pp)$, if real, $A_{o} = 4.2 \times 10^{-2}$ $B(J/\psi \rightarrow nn) = |A_g - (1/2)A_{em}|^2 = 1.5 \times 10^{-3}$

DATA/MC for Nbar

DATA/MC for N

