Measurement of $\mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathrm{p}}, \mathrm{n} \overline{\mathrm{n}}$

Bian Jianming
for Light Hadron Group and LNF BESIII group 2010.9

Outline

- Introduction
- DATA sample
- $\mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathrm{p}}$
- $\mathrm{J} / \psi \rightarrow \mathrm{n} \bar{n}$
- Summary

Introduction

- $\mathrm{J} / \psi \rightarrow \mathrm{n} \bar{n}$ has been measured with poor precision.
- The difference between $\mathrm{B}(\mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathrm{p}})$ and $\mathrm{B}(\mathrm{J} /$ $\psi \rightarrow \mathrm{n} \overline{\mathrm{n}}$) is a good test for the pQCD prediction.
- The final states involving baryons may take a large proportion of the missing part of J / ψ decay modes

Introduction

Comparable $\mathrm{B}(\mathrm{J} / \psi \rightarrow \mathrm{nn})$ and $\mathrm{B}(\mathrm{J} /$ $\psi \rightarrow \mathbf{p p}$) indicate a large phase angle between the strong (A_{g}) and electromagnetic (A_{em}) decay amplitudes of \mathbf{J} / ψ.

Although previous measurements have provide high precision $\operatorname{Br}(\mathrm{J} / \psi \rightarrow \mathrm{pp})$, the $\operatorname{Br}(\mathrm{J} / \psi \rightarrow \mathrm{nn})$ is still suffering from a large

$$
R=\frac{\mathrm{BR}(J / \psi \rightarrow n \bar{n})}{\operatorname{BR}(J / \psi \rightarrow p \bar{p})}=\frac{\left|A_{g}+A_{\mathrm{em}}^{\mathrm{n}}\right|^{2}}{\left|A_{g}-0.03 A_{g}+A_{\mathrm{em}}^{\mathrm{p}}\right|^{2}} .
$$ error.

- BESII@BEPC : $\operatorname{Br}(\mathrm{J} / \psi \rightarrow \mathrm{pp})=(2.26 \pm 0.01 \pm 0.14) \times 10^{-3}(\mathrm{PLB591}, 42)$
- FENICE@Adone : $\operatorname{Br}(\mathrm{J} / \psi \rightarrow \mathrm{nn})=(2.31 \pm 0.49) \times 10^{-3}(\mathrm{PLB} 444,111)$

Data samples

Based on boss 6.5.1 at BESIII

Data samples: $\sim 226 \mathrm{M} \mathrm{J} / \psi$ data
$\mathrm{MC} \mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathrm{p}} 1 \mathrm{M} \mathrm{PHSP}$
Control sample of $n \bar{n}: J / \psi \rightarrow p \overline{n \pi}-+c c$.
Inclusive MC samples: $200 \mathrm{M} \mathrm{J} / \psi$ inclusive MC
MC e ${ }^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma \mathrm{MC}(|\cos \theta|<0.8)$

$$
\mathrm{N}_{\gamma \gamma}=\mathrm{L} \times \sigma=80981.43 \mathrm{nb} \times 19.2984 \mathrm{nb}^{-1}=1.56 \mathrm{M}
$$

$\mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathrm{p}}$

Event Selection

Good charged tracks

- IP region: $\left|\mathrm{R}_{\mathrm{xy}}\right| \leq 1 \mathrm{~cm},|\mathrm{Rz}| \leq 10 \mathrm{~cm}$
- Momentum: $\mathbf{p}<\mathbf{2 . 0 G e V}$
- Polar angle: $|\cos \theta|<0.93$

Particle Identificatioin

- TOF + dE/dX
- p $\operatorname{Prob}(p)>\operatorname{Prob}(\pi)$
- p $\operatorname{Prob}(\mathrm{p})>\operatorname{Prob}(K)$

Event level

- Two tracks opening angle $>\mathbf{1 7 8}^{\circ}$
- $|\mathbf{P}(\mathrm{p})-1.232|<0.05 \mathrm{GeV}$
- $|\mathbf{P}(\mathrm{p})-1.232|<0.05 \mathrm{GeV}$
- $|\cos \theta|<0.8$, polar angle of p

The selection of $\mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathrm{p}}$ does not depend on information of the calorimeter, and the energy deposit in EMC of $\mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathrm{p}}$ is also used to verify efficiency of $\mathrm{J} / \psi \rightarrow \mathrm{n} \bar{n}$

Data/MC

Angular distribution

polar angle of p

$$
\begin{aligned}
& \mathbf{N}=303190 \\
& \mathbf{N}_{\text {side }}=294 \\
& \mathbf{N}_{\text {side }} / \mathbf{N}=\mathbf{0 . 1 \%}
\end{aligned}
$$

polar angle of \mathbf{p} in $\mathbf{p} \overline{\mathbf{p}}$ momentum sideband

Normalized with signal area

Inclusive MC background

No.	decay chain	final states	iTopo	nEvt	nTot
0	$J / \psi \rightarrow \gamma \eta_{c}, \eta_{c} \rightarrow p \bar{p}$	$\bar{p} \gamma p$	0	13	13
1	$J / \psi \rightarrow \mu^{+} \mu^{-}$	$\mu^{-} \mu^{+}$	8	7	20
2	$J / \psi \rightarrow e^{+} e^{-}$	$e^{-} e^{+}$	4	5	25
3	$J / \psi \rightarrow \Sigma^{0} \bar{\Lambda}, \Sigma^{0} \rightarrow \gamma \Lambda, \bar{\Lambda} \rightarrow \bar{p} \pi^{+}, \Lambda \rightarrow \pi^{-} p$	$\pi^{-} \bar{p} \pi^{+} \gamma p$	14	3	28
4	$J / \psi \rightarrow \gamma_{F S R} e^{+} e^{-}$	$e^{-} e^{+}$	17	2	30
5	$J / \psi \rightarrow \pi^{0} \pi^{+} \pi^{-}$	$\pi^{-} \pi^{0} \pi^{+}$	19	2	32
6	$J / \psi \rightarrow \bar{K}^{-0} \pi^{-} K^{+}, K_{S} \rightarrow \pi^{0} \pi^{0}$	$\pi^{-} \pi^{0} \pi^{0} K^{+}$	6	1	33
7	$J / \psi \rightarrow \rho^{+} \pi^{-} b_{1}^{0} \rho^{0}, \rho^{+} \rightarrow \pi^{+} \pi^{0}, b_{1}^{0} \rightarrow \omega \pi^{0}, \rho^{0} \rightarrow \pi^{+} \pi^{-}, \omega \rightarrow \pi^{-} \pi^{0} \pi^{+}$	$\pi^{-} \pi^{-} \pi^{-} \pi^{0} \pi^{0} \pi^{0} \pi^{+} \pi^{+} \pi^{+}$	7	1	34
8	$J / \psi \rightarrow K^{*+} \bar{K}^{*} \rho^{-}, K^{*+} \rightarrow \pi^{+} K^{0}, \bar{K}^{*} \rightarrow \pi^{+} K^{-}, \rho^{-} \rightarrow \pi^{-} \pi^{0}, K_{S} \rightarrow \pi^{+} \pi^{-}$	$\pi^{-} \pi^{-} K^{-} \pi^{0} \pi^{+} \pi^{+} \pi^{+}$	2	1	35
9	$J / \psi \rightarrow a_{2}^{+} \rho^{-}, a_{2}^{+} \rightarrow \pi^{+} \rho^{0}, \rho^{-} \rightarrow \pi^{0} \pi^{-}, \rho^{0} \rightarrow \pi^{-} \pi^{+}$	$\pi^{-} \pi^{-} \pi^{0} \pi^{+} \pi^{+}$	9	1	36
10	$J / \psi \rightarrow \gamma \bar{K}^{*} K_{1}^{0}, \bar{K}^{*} \rightarrow K^{-} \pi^{+}, K_{1}^{0} \rightarrow \pi^{0} K^{0} \pi^{0}, K_{S} \rightarrow \pi^{0} \pi^{0}$	$K^{-} \pi^{0} \pi^{0} \pi^{0} \pi^{0} \pi^{+} \gamma$	10	1	37
11	$J / \psi \rightarrow \pi^{0} \gamma \pi^{0} \pi^{+} \pi^{-}$	$\pi^{-} \pi^{0} \pi^{0} \pi^{+} \gamma$	11	1	38
12	$J / \psi \rightarrow \pi^{+} f_{1}(1285) \rho^{-}, f_{1}(1285) \rightarrow K^{0} \pi^{0} \bar{K}^{0}, \rho^{-} \rightarrow \pi^{0} \pi^{-}, K_{S} \rightarrow \pi^{-} \pi^{+}$	$\pi^{-} \pi^{-} \pi^{0} \pi^{0} K_{L} \pi^{+} \pi^{+}$	12	1	39
13	$J / \psi \rightarrow K_{2}^{*+} K^{*-} \omega, K_{2}^{*+} \rightarrow \pi^{+} K^{0}, K^{*-} \rightarrow \pi^{0} K^{-}, \omega \rightarrow \pi^{+} \pi^{0} \pi^{-}$	$\pi^{-} K^{-} \pi^{0} \pi^{0} K_{L} \pi^{+} \pi^{+}$	13	1	40
14	$J / \psi \rightarrow \pi^{-} \gamma \rho^{0} \rho^{+}, \rho^{0} \rightarrow \gamma_{F S R} \pi^{-} \pi^{+}, \rho^{+} \rightarrow \pi^{0} \pi^{+}$	$\pi^{-} \pi^{-} \pi^{0} \pi^{+} \pi^{+} \gamma$	3	1	41
15	$J / \psi \rightarrow \bar{\Sigma}^{0} \Lambda, \bar{\Sigma}^{0} \rightarrow \bar{\Lambda} \gamma, \Lambda \rightarrow \pi^{-} p, \bar{\Lambda} \rightarrow \bar{p} \pi^{+}$	$\pi^{-} \bar{p} \pi^{+} \gamma p$	15	1	42
16	$J / \psi \rightarrow \bar{p} \pi^{0} p$	$\bar{p} \pi^{0} p$	16	1	43
17	$J / \psi \rightarrow h_{1}\left(\underline{1170)} \rho^{-} \rho^{+}, h_{1}(1170) \rightarrow \rho^{+} \pi^{-}, \rho^{-} \rightarrow \pi^{-} \pi^{0}, \rho^{+} \rightarrow \pi^{+} \pi^{0}, \rho^{+} \rightarrow \pi^{+} \pi^{0}\right.$	$\pi^{-} \pi^{-} \pi^{0} \pi^{0} \pi^{0} \pi^{+} \pi^{+}$	1	1	44
18	$J / \psi \rightarrow \Sigma^{+} \bar{\Sigma}^{-}, \Sigma^{+} \rightarrow \pi^{0} p, \bar{\Sigma}^{-} \rightarrow \pi^{0} \bar{p}$	$\bar{p} \pi^{0} \pi^{0} p$	18	1	45
19	$J / \psi \rightarrow \pi^{-} \phi \pi^{+} \pi^{+} \pi^{-}, \phi \rightarrow K_{L} K_{S}, K_{S} \rightarrow \pi^{+} \pi^{-}$	$\pi^{-} \pi^{-} \pi^{-} K_{L} \pi^{+} \pi^{+} \pi^{+}$	5	1	46
20	$J / \psi \rightarrow \gamma \eta_{c}, \eta_{c} \rightarrow f_{1}(1285) b_{1}^{0}, f_{1}(1285) \rightarrow K^{+} \pi^{-} \bar{K}^{0}, b_{1}^{0} \rightarrow \pi^{0} \omega, K_{S} \rightarrow \pi^{-} \pi^{+}, \omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$	$\pi^{-} \pi^{-} \pi^{-} \pi^{0} \pi^{0} \pi^{+} \pi^{+} \gamma K^{+}$	20	1	47
21	$J / \psi \rightarrow a_{2}^{0} \rho^{0}, a_{2}^{0} \rightarrow \pi^{+} \rho^{-}, \rho^{0} \rightarrow \pi^{+} \pi^{-}, \rho^{-} \rightarrow \pi^{0} \pi^{-}$	$\pi^{-} \pi^{-} \pi^{0} \pi^{+} \pi^{+}$	21	1	48
22	$J / \psi \rightarrow K^{-} K^{0} \pi^{+}$	$K^{-} K_{L} \pi^{+}$	22	1	49
23	$J / \psi \rightarrow a_{2}^{-} \pi^{+} \pi^{0}, a_{2}^{-} \rightarrow \rho^{-} \pi^{0}, \rho^{-} \rightarrow \pi^{0} \pi^{-}$	$\pi^{-} \pi^{0} \pi^{0} \pi^{0} \pi^{+}$	23	1	50
24	$J / \psi \rightarrow \eta \pi^{0} \rho^{0}, \eta \rightarrow \pi^{-} \pi^{+} \pi^{0}, \rho^{0} \rightarrow \pi^{+} \pi^{-}$	$\pi^{-} \pi^{-} \pi^{0} \pi^{0} \pi^{+} \pi^{+}$	24	1	51
25	$J / \psi \rightarrow \rho^{-} \pi^{+}, \rho^{-} \rightarrow \pi^{0} \pi^{-}$	$\pi^{-} \pi^{0} \pi^{+}$	25	1	52
26	$J / \psi \rightarrow \pi^{-} K_{0}^{*+} K_{0}^{*-} \pi^{+}, K_{0}^{*+} \rightarrow \pi^{+} \gamma_{F S R} K^{0}, K_{0}^{*-} \rightarrow \pi^{0} K^{-}$	$\pi^{-} K^{-} \pi^{0} K_{L} \pi^{+} \pi^{+}$	26	1	53
27	$J / \psi \rightarrow \omega \rho^{-} \rho^{+}, \omega \rightarrow \pi^{-} \pi^{+} \pi^{0}, \rho^{-} \rightarrow \pi^{-} \pi^{0}, \rho^{+} \rightarrow \pi^{0} \pi^{+}$	$\pi^{-} \pi^{-} \pi^{0} \pi^{0} \pi^{0} \pi^{+} \pi^{+}$	27	1	54
28	$J / \psi \rightarrow a_{0}^{-} \pi^{+} \omega, a_{0}^{-} \rightarrow \eta \pi^{-}, \omega \rightarrow \pi^{0} \pi^{-} \pi^{+}, \eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$	$\pi^{-} \pi^{-} \pi^{0} \pi^{0} \pi^{0} \pi^{0} \pi^{+} \pi^{+}$	28	1	55
29	$J / \psi \rightarrow K^{+} K^{-} \eta, \eta \rightarrow \gamma \gamma$	$K^{-} \gamma \gamma K^{+}$	29	1	56

$\mathrm{N}=303190$
 $\mathrm{N}_{\text {incbkg }}=104$
 $\mathrm{N}_{\text {incbkg }} / \mathrm{N}=\mathbf{0 . 0 3 \%}$

Efficiency correction

Polar angle of p of PHSP MC

Efficiency correction function

$$
\varepsilon(\cos \theta)=C_{0}+C_{1} \cos q+C_{2} \cos ^{2} \theta
$$

Fit to angular distribution

Branching ratio

Correction for angular acceptance

$$
\left.\mathbf{N}_{\text {cor }}=\mathbf{N}_{\mathbf{i}}(\cos \theta) / \varepsilon_{\mathbf{i}}(\cos q) \cdot\left[\int_{-1}^{1}\left(1+\alpha \cos ^{2} \theta\right) \mathrm{d} \theta / \int_{-0.8}^{0.8}\left(1+\alpha \cos ^{2} \theta\right) \mathrm{d} \theta\right)\right]
$$

N	$\mathbf{3 0 3 1 9 0} \pm 551$
α	0.628 ± 0.013
$\mathrm{~N}_{\text {cor }}$	$492191 \pm \mathbf{8 9 4}$
Eff.	$\mathbf{6 1 . 6 \%}$
$\mathbf{N}(\mathrm{J} / \psi)$	$2.26 \times 10^{\mathbf{8}}$
Br	$(2.179 \pm \mathbf{0 . 0 0 4}) \times 10^{-3}$

Systematic errors and results

	$\alpha=0.628 \pm 0.013$	$\begin{aligned} & \mathrm{Br}=(2.179 \pm 0.004) \\ & \times 10^{-3} \end{aligned}$
Tracking (1\%)	0.021	0.022
PID (1\%)	0.021	0.022
Background	0.004	0.002
Eff. Correction	0.010	0.008
Error of $\alpha($ tot 0.035)	-	0.007
$\mathbf{N}(\mathrm{J} / \Psi)(1.2 \%)$	-	0.026
Total	0.032	0.042
$\begin{aligned} & \operatorname{Br}(\mathrm{J} / \psi \rightarrow \mathrm{pp})=(2.179 \pm 0.004 \pm 0.042) \times 10^{-3} \\ & \alpha=0.628 \pm 0.013 \pm 0.032 \\ & \mathrm{PDG}: \operatorname{Br}(\mathrm{J} / \psi \rightarrow \mathrm{pp})=(\mathbf{2 . 1 7} \pm \mathbf{0 . 0 7}) \times 10^{-3} \\ & \text { BESII: } \alpha=\mathbf{0 . 6 7 6} \pm 0.036 \pm 0.042 \end{aligned}$		

$\mathrm{J} / \psi \rightarrow \mathrm{n} \overline{\mathrm{n}}$

Event selection for $\mathrm{J} / \psi \rightarrow \mathrm{n} \overline{\mathrm{n}}$

Event level

Good Shower

- Barrel $(|\cos \theta|<0.8): \mathrm{E}_{\gamma}>25 \mathrm{MeV}$
- Endcap(0.86<|cos $\mid<0.92): \mathrm{E}_{\gamma}>50 \mathrm{MeV}$
- EMC time: $\left|t-t_{\text {emax }}\right| \leq 10 * 50 \mathrm{~ns}$
nbar identification
- Most energetic shower
- $\mathrm{E}>0.6 \mathrm{GeV}, \mathrm{E}<2.0 \mathrm{GeV}$
- SecondMoment>20
- Total hits nearby 50° the most energetic shower : Nhit50>40
n identification
- $0.6 \mathrm{GeV}>\mathbf{E}>0.06 \mathrm{GeV}$
- No good charged tracks
- The most energetic shower which pass nbar ID criteria is taken as the nbar candidate
- The shower which is most near the recoil direction of nbar and passes n ID criteria is taken as n
- $\quad E_{\text {miss }}=E_{\text {tot }}-\mathbf{E}($ nbarsum50 $)-E(n)=0$, $E_{\text {tot }}$ is the total deposit energy in the calorimeter, $\mathrm{E}(\mathrm{nbarsum} 50$) is the energy deposit in a 50° cone nearby the nbar candidate
- $|\cos \theta|<0.8$ (the polar angle of the nbar candidate)
- The signal will be an enhancement nearby zero in the distribution of the the angle between n and recoil direction of nbar.

$\mathrm{n} \overline{\mathrm{n}}($ red cross) vs γ (histogram)

$\mathrm{n} \overline{\mathrm{n}}$ (red cross) sample: $\mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathrm{n}} \boldsymbol{\pi}^{-}+\mathrm{cc}$.

in the data (Selected by the missing mass of $p \pi$) γ (red cross) sample: $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \gamma \gamma$
The deposit energy, secondmoment and N nits in a 50° cone near the \bar{n} candidate can well discriminate $n \bar{n}$ and $\gamma \gamma$ events. Only $8 \gamma \gamma$ events in a 1.56 M sample pass our selection criteria.

Distributions in the data(dot) and inclusive MC(hist)

$\mathrm{E}_{\text {miss }}$ cut can well eliminate backgrounds as it appears in the inclusive MC

Deposit energy of n vs $\overline{\mathrm{n}}$ candidate in the data

Inclusive MC background

Topology in inclusive MC

No.	decay chain	final states	iTopo	nEvt	n'Tot
0	$J / \psi \rightarrow \pi^{0} \bar{n} n$	$\bar{n} \pi^{0} n$	2	1024	1024
1	$J / \psi \rightarrow p \bar{p}$	$\bar{p} p$	3	445	1469
2	$J / \psi \rightarrow \bar{K}^{0} K^{0}$	$K_{L} K_{L}$	5	176	1645
3	$J / \psi \rightarrow K^{*} \bar{K}^{0}, K^{*} \rightarrow \pi^{0} K^{0}$	$\pi^{0} K_{L} K_{L}$	1	130	1775
4	$J / \psi \rightarrow K^{0} \bar{K}^{*}, \bar{K}^{*} \rightarrow \pi^{0} \bar{K}^{0}$	$\pi^{0} K_{L} K_{L}$	46	106	1881
5	$J / \psi \rightarrow K^{0} \pi^{0} \bar{K}^{0}$	$\pi^{0} K_{L} K_{L}$	4	82	1963
6	$J / \psi \rightarrow \bar{\Delta}^{-} \Delta^{-} \pi^{0}, \bar{\Delta}^{-} \rightarrow \pi^{+} \bar{n}, \Delta^{-} \rightarrow n \pi^{-}$	$\pi^{-} \bar{n} \pi^{0} \pi^{+} n$		81	2044
7	$J / \psi \rightarrow \pi^{-} \pi^{0} \pi^{+}$	$\pi^{-} \pi^{0} \pi^{+}$		62	2106
8	$J / \psi \rightarrow \bar{p} \pi^{+} p \pi^{-}$	$\pi^{-} \bar{p} \pi^{+} p$	15	55	2161
9	$J / \psi \rightarrow K^{0} \bar{K}^{0} \gamma$	$K_{L} K_{L} \gamma$	11	54	2215
10	$J / \psi \rightarrow \bar{\Lambda} \Lambda, \bar{\Lambda} \rightarrow \pi^{+} \bar{p}, \Lambda \rightarrow \pi^{-} p$	$\pi^{-} \bar{p} \pi^{+} p$	8	49	2264
11	$J / \psi \rightarrow K_{L} K_{S}, K_{S} \rightarrow \pi^{0} \pi^{0}$	$\pi^{0} \pi^{0} K_{L}$	12	44	2308
12	$J / \psi \rightarrow \pi^{+} n \bar{p}$	$\bar{p} \pi^{+} n$	42	25	2333
13	$J / \psi \rightarrow K^{+} K^{-}$	$K^{-} K^{+}$	137	25	2358
14	$J / \psi \rightarrow \Lambda \bar{\Lambda} \gamma, \Lambda \rightarrow p \pi^{-}, \bar{\Lambda} \rightarrow \bar{p} \pi^{+}$	$\pi^{-} \bar{p} \pi^{+} \gamma p$	25	24	2382
15	$J / \psi \rightarrow \gamma f_{4}(2050), f_{4}(2050) \rightarrow \pi^{0} \pi^{0}$	$\pi^{0} \pi^{0} \gamma$	26	23	2405
16	$J / \psi \rightarrow \pi^{0} \bar{p} p$	$\bar{p} \pi^{0} p$	21	23	2428
17	$J / \psi \rightarrow f_{0}(1710) \gamma, f_{0}(1710) \rightarrow K^{0} \bar{K}^{0}$	$K_{L} K_{L} \gamma$	40	22	2450
18	$J / \psi \rightarrow \Lambda \Sigma^{0}, \Lambda \rightarrow p \pi^{-}, \Sigma^{0} \rightarrow \bar{\Lambda} \gamma, \bar{\Lambda} \rightarrow \pi^{+} \bar{p}$	$\pi^{-} \bar{p} \pi^{+} \gamma p$	59	22	2472
19	$J / \psi \rightarrow K^{0} \bar{K}^{0}, K_{S} \rightarrow \pi^{0} \pi^{0}$	$\pi^{0} \pi^{0} K_{L}$	32	22	2494
20	$J / \psi \rightarrow \bar{\Lambda}, \Lambda \rightarrow \pi^{0} n, \bar{\Lambda} \rightarrow \pi^{+} \bar{p}$	$\bar{p} \pi^{0} \pi^{+} n$	48	21	2515
21	$J / \psi \rightarrow K^{*} \bar{K}^{0}, K^{*} \rightarrow K^{+} \pi^{-}$	$\pi^{-} K_{L} K^{+}$	65	20	2535
22	$J / \psi \rightarrow \bar{\Lambda} \Sigma^{0}, \bar{\Lambda} \rightarrow \pi^{+} \bar{p}, \Sigma^{0} \rightarrow \gamma \Lambda, \Lambda \rightarrow \pi^{-} p$	$\pi^{-} \bar{p} \pi^{+} \gamma p$	16	18	2553
23	$J / \psi \rightarrow K^{+} K^{*-}, K^{*-} \rightarrow \pi^{-} \bar{K}^{0}$	$\pi^{-} K_{L} K^{+}$	30	18	2571
24	$J / \psi \rightarrow K^{0} K^{-} \pi^{+}$	$K^{-} K_{L} \pi^{+}$	9	17	2588
25	$J / \psi \rightarrow \rho^{-} \pi^{+}, \rho^{-} \rightarrow \pi^{0} \pi^{-}$	$\pi^{-} \pi^{0} \pi^{+}$	52	17	2605
26	$J / \psi \rightarrow K^{-} K^{*+}, K^{*+} \rightarrow K^{0} \pi^{+}$	$K^{-} K_{L} \pi^{+}$	128	17	2622
27	$J / \psi \rightarrow \pi^{-} \rho^{+}, \rho^{+} \rightarrow \pi^{0} \pi^{+}$	$\pi^{-} \pi^{0} \pi^{+}$	58	17	2639
28	$J / \psi \rightarrow \bar{p} \Delta^{++} \pi^{-}, \Delta^{++} \rightarrow p \pi^{+}$	$\pi^{-} \bar{p} \pi^{+} p$	109	16	2655
29	$J / \psi \rightarrow \pi^{0} \bar{n} \pi^{0} n$	$\bar{n} \pi^{0} \pi^{0} n$	13	14	2669

Use bkg shape of Monte Carlo $\mathrm{J} / \psi \rightarrow \pi^{0} \mathrm{nnbar}$ to estimate number of bkg events in signal region

Bkg shape obtained from
$\mathrm{J} / \mathrm{psi} \rightarrow \pi^{0} \mathrm{nnbar}$ in MC.
Normalize data and
Bkg in sideband 10~20 ${ }^{\circ}$
signal region: angle $<10^{\circ}$

Angle between n and recoil direction of $\overline{\mathrm{n}}$

Number of signal extraction in every polar angle region

Angle between a and recoil direction of \bar{n}

Event selection for $\mathrm{J} / \psi \rightarrow \mathrm{p} \bar{n} \bar{\pi}^{-}+\mathrm{cc}$. (calibration channel)

- Identify P: $\operatorname{Prob}(\mathrm{p})>\operatorname{Prob}(\pi), \operatorname{Prob}(\mathrm{p})>\operatorname{Prob}$ (K), $\operatorname{Prob}(\mathrm{p})>0.001$
- Identify π : $\operatorname{Prob}(\pi)>\operatorname{Prob}(p), \operatorname{Prob}(\pi)>\operatorname{Prob}$ $(\mathrm{K}), \operatorname{Prob}(\pi)>0.001$
- Recoil mass of $\mathrm{p} \pi \sim\left|\mathrm{M}-\mathrm{M}_{\mathrm{n}}\right|<0.05 \mathrm{GeV}$
- Recoil momentum of $\mathrm{p} \pi \sim(1.1 \sim 1.2) \mathrm{GeV}$ (near by momentum of $n \bar{n}$ in $J / \psi \rightarrow n \bar{n})$
- Angle between recoil direction and $\mathrm{N}(\mathrm{Nbar})$ candidate shower $\sim 10^{\circ}$

Distributions of $\mathrm{J} / \psi \rightarrow \overline{\mathrm{pn}} \pi^{-}+\mathrm{cc}$.

$\mathrm{p}(\mathrm{n})$ in $\mathrm{J} / \psi \rightarrow \mathrm{n} \overline{\mathrm{n}}(1.23 \mathrm{GeV})$

Comparisons of $\overline{\mathbf{n}}$ samples in $\mathrm{J} / \psi \rightarrow \overline{\mathrm{n}} \mathrm{n}$ (red cross) and $\mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathrm{n}} \bar{\pi}^{-}$(hist)

Events having small back-to-back angle (2°) are taken as $\mathbf{n} \bar{n}$ sample in $\mathrm{J} / \psi \rightarrow \mathbf{n} \bar{n}$
$\mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathrm{n}} \pi^{-}$is used to calibrate efficiency of $\overline{\mathbf{n}}$ selection

Comparisons of \mathbf{n} samples in $\mathrm{J} / \psi \rightarrow \mathbf{n} \overline{\mathbf{n}}$ (red cross), $\mathrm{J} / \psi \rightarrow \overline{\mathbf{p}} \pi^{+}$and $\psi^{\prime} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi, \mathrm{J} / \psi \rightarrow \overline{\mathbf{p}} \boldsymbol{\pi}^{+}$

Momentum of \mathbf{n} (1.1-1.2) GeV

Momentum of $\mathbf{n}(\mathbf{1 . 2 - 1 . 3}) \mathbf{G e V}$
$\mathrm{J} / \psi \rightarrow \overline{\mathrm{p}} \mathrm{n} \pi^{+}$is used to calibrate efficiency of \mathbf{n} selection, $\psi^{\prime} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi, \mathrm{J} / \psi \rightarrow \overline{\mathrm{p}} \mathrm{n} \pi^{+}$is used to estimate systematic error.

$\mathrm{E}_{\text {miss }}$ in $\mathrm{J} / \psi \rightarrow \mathrm{n} \overline{\mathrm{n}}$ and $\mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathrm{p}}$

The $\mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathrm{p}}$ sample is selected by means of MDC information only. It is used to calibrate the efficienry of $\mathbf{E}_{\text {miss }}$ cut. We select showers in EMC in $\mathrm{J} / \psi \rightarrow \mathbf{p} \overline{\mathrm{p}}$ sample with the same method as $\mathrm{J} / \psi \rightarrow \mathrm{n} \overline{\mathrm{n}}$.

Efficiency corrections

Corrected number of events vs. polar angle and the fitting

Branching ratio

Correction for angular acceptance

Systematic errors and results

	$\alpha=$ 0.59 ± 0.16	$\mathrm{Br}=$ $(2.01 \pm 0.005) \times 10^{-3}$
Trigger(2\%)	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$
Eff (nbar)	0.02	0.02
Eff (n)	0.05	$\mathbf{0 . 0 6}$
Error of α	-	0.03
Background	0.08	0.04
N(J/廿) (1.2\%)	-	0.02
Total	$\mathbf{0 . 1 0}$	$\mathbf{0 . 0 9}$ (Preliminary)

$$
\begin{aligned}
& \mathrm{Br}(\mathrm{~J} / \psi \rightarrow \mathrm{nn})=(2.01 \pm 0.05 \pm 0.09) \times 10^{-3} \\
& \alpha=0.59 \pm 0.16 \pm 0.10
\end{aligned}
$$

Summary

We have measured

```
Br}(\textrm{J}/\psi->\mathbf{p}\mathbf{p})=(2.179\pm0.004\pm0.042)\times10-3
\alpha=0.628\pm0.013 }\pm0.03
PDG: }\operatorname{Br}(\textrm{J}/\psi->\mathbf{p}\overline{\mathbf{p}})=(2.17\pm0.07)\times1\mp@subsup{0}{}{-3
BESII: }\alpha=0.676\pm0.036\pm0.04
```

$\operatorname{Br}(\mathrm{J} / \psi \rightarrow \mathbf{n} \overline{\mathbf{n}})=(2.01 \pm 0.05 \pm 0.09) \times 10^{-3}$
$\alpha=0.59 \pm 0.16 \pm 10$
PDG: $\operatorname{Br}(\mathrm{J} / \psi \rightarrow \mathbf{n} \overline{\mathrm{n}})=(2.2 \pm 0.4) \times 10^{-3}$

Our $\operatorname{Br}(\mathrm{J} / \psi \rightarrow \mathbf{n} \overline{\mathbf{n}})$ is much larger than $\sim 1.5 \times 10^{-3}$ which is expected with 0 phase angle assumption.
The consistency between $\operatorname{Br}(\mathrm{J} / \psi \rightarrow \mathrm{p} \overline{\mathbf{p}})$ and $\mathrm{Br}(\mathrm{J} / \psi \rightarrow \mathbf{n} \overline{\mathbf{n}})$ suggests a large phase angle ($\sim 90^{\circ}$) between the strong and the em amplitude.

Thanks!

Backup

Estimation for real $\mathrm{A}_{\mathrm{g}}, \mathrm{A}_{\mathrm{em}}(0$ phase $)$

$$
\begin{aligned}
& \cdot\left|\mathrm{A}_{\mathrm{em}}\right|^{2}= \mathrm{B}(\mathrm{~J} / \psi \rightarrow \mu \mu)^{*} \mathrm{R}(3.1 \mathrm{GeV})^{*} \sigma(\mathrm{pp}) / \sigma(\mathrm{tot}) \\
&= \mathrm{B}(\mathrm{~J} / \psi \rightarrow \mu \mu) * \mathrm{R}(3.1 \mathrm{GeV}) * \sigma(\mathrm{pp}) / \\
&\left(\sigma(\mu \mu) * \mathrm{R}(3.1 \mathrm{GeV}) / 3.1^{2}\right) \\
&= \mathrm{B}(\mathrm{~J} / \psi \rightarrow \mu \mu) *(\mathrm{pp}) / \sigma(\mu \mu)^{*} 1 / 9.61 \\
&=\left(5.9 \times 10^{-2}\right)^{*}(4 \mathrm{nb} / 86.8 \mathrm{nb}) * 1 / 9.61 \\
&= 0.28 \times 10^{-4}\left(\left|\mathrm{~A}_{\mathrm{em}}\right|=0.53 \times 10^{-2}\right) \\
&\left|\mathrm{A}_{\mathrm{g}}+\mathrm{A}_{\mathrm{em}}\right|^{2}=\mathrm{B}(\mathrm{~J} / \psi \rightarrow \mathrm{pm}), \text { if real, } \mathrm{A}_{\mathrm{g}}=4.2 \times 10^{-2} \\
& \mathrm{~B}(\mathrm{~J} / \psi \rightarrow \mathrm{nn})= \mid \mathrm{A}_{\mathrm{g}}-(1 / 2) \mathrm{A}_{\mathrm{em}}{ }^{2}=1.5 \times 10^{-3}
\end{aligned}
$$

DATA/MC for Nbar

DATA/MC for N

E(II) (GeV)

Eseed/E3X 3 of the first hit shower (GeV)

