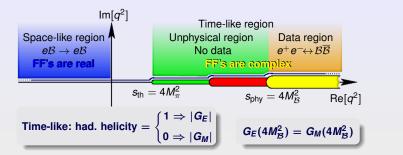
Baryon Form Factors at threshold

Rinaldo Baldini Ferroli and S. Pacetti

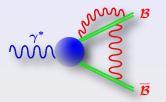
University of Science and Technology of China

January 7th, 2013 Baohe District, Hefei, Anhui, China

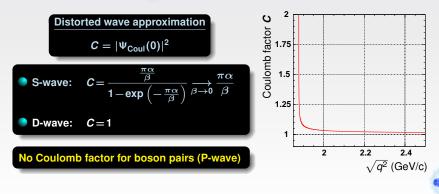
Last News on Baryon FF near threshold


• The Neutral Baryon Puzzle

- Spacelike Timelike Relationship
 - Interference Pattern in $J/\psi \rightarrow p\overline{p}$
 - Conclusions and Perspectives



Cross sections and analyticity



$$\underbrace{\begin{array}{c} \overset{e^-}{\longrightarrow} \overset{\theta^-}{\longrightarrow} \overset{\theta^-}{$$

The Coulomb Factor

pp Coulomb interaction as FSI [Sommerfeld, Sakharov, Schwinger, Fadin, Khoze]

Sommerfeld Enhancement and Resummation Factors

Coulomb Factor C for S-wave only:

• Partial wave FF:
$$G_S = \frac{2G_M\sqrt{q^2/4M^2} + G_E}{3}$$
 $G_D = \frac{G_M\sqrt{q^2/4M^2} - G_E}{3}$

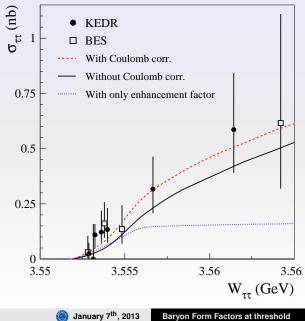
Cross section:
$$\sigma(q^2) = 2\pi \alpha^2 \beta \frac{4M^2}{(q^2)^2} \Big[\mathcal{C} |G_S(q^2)|^2 + 2|G_D(q^2)|^2 \Big]$$

$$\mathcal{C} = \mathcal{E} \times \mathcal{R}$$

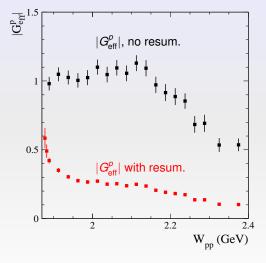
Enhancement factor:
$$\mathcal{E} = \pi lpha / eta$$

• Step at threshold:
$$\sigma(4M^2) = \frac{\pi^2 \alpha^3}{2M^2} \frac{\beta}{\beta} |G_S(4M^2)|^2 = 0.85 |G_S(4M^2)|^2$$
 nb

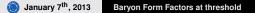
Resummation factor:


$$\mathcal{R} = 1/[1 - \exp(-\pi \alpha/\beta)]$$

 ${f D}$ Few MeV above threshold: ${f C}\simeq {f 1} \ \Rightarrow \ \sigma({m q}^2)\propto eta\,|{m G}_{{m S}}({m q}^2)|^2$

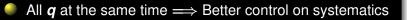


The $e^+e^- \rightarrow \tau^+\tau^-$ case



BABAR: $|G_{eff}^{p}|$ with and without resummation [PRD73, 012005]

Baryons?


Pomike

R. Baldini Ferroli, S. Pacetti, A. Zallo and A. Zichichi

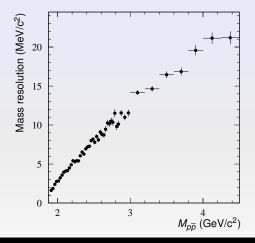
I.S.R. versus c.m.

Advantages

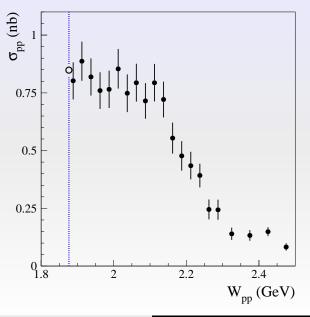
c.m. boost \implies at threshold efficiency $\neq 0 + \sigma_W \sim 1 MeV$

Detected ISR $\gamma \Longrightarrow$ full $p\overline{p}$ angular coverage

Drawbacks


 $\mathcal{L} \propto \text{invariant mass bin } \Delta w$

More background


Mass resolution

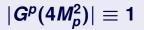
Incredibly good at threshold (\sim 1 MeV/c²), as e^+e^- c.m. $\Delta p_T/p_T \sim 0.5\% \text{ at 1 GeV}$

[PRD73, 012005]

Proton form factor at $q^2 = 4M_{p_1}^2$

$$\sigma(e^+e^-
ightarrow p\overline{p})(4M_p^2) = 0.83 \pm 0.05$$
 nb

$$\sigma(e^+e^- o p\overline{p})(4M_p^2) = rac{\pi^2 lpha^3}{2M_p^2} rac{\beta'}{\beta'} |G^p(4M_p^2)|^2 = 0.85 |G^p(4M_p^2)|^2$$
 nb


$$|G^p(4M_p^2)|\equiv 1$$

$$|G^p(4M_p^2)| = 0.99 \pm 0.04(ext{stat}) \pm 0.03(ext{syst})$$

Proton form factor at $q^2 = 4M_p^2$

At $q^2 = 4M_P^2$ protons behave as pointlike fermions!

Sommerfeld Resummation Factor Needed?

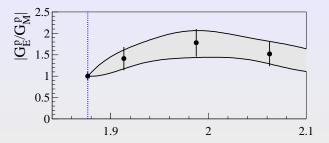
Resummation Factor Needed?

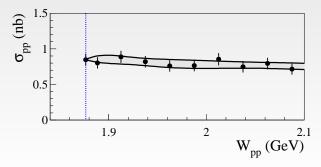
• At threshold: $G_E/G_M = 1 \Rightarrow \begin{cases} G_S \in \mathbb{R} \\ G_D = 0 \in \mathbb{R} \end{cases}$

•
$$\sigma(q^2), |G_E/G_M| \rightarrow G_S, G_D$$

•
$$G_S = \sqrt{1 - \exp(-\pi \alpha/\beta)}$$

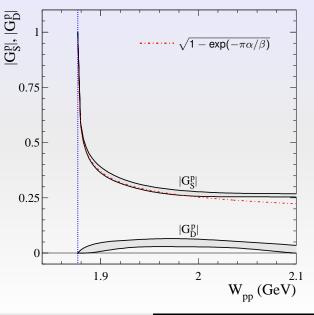
No need of Resummation Factor

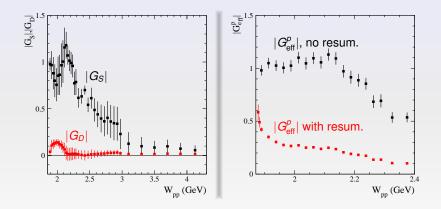

For a wide energy range ($\sim 200 \text{ MeV}$):


- Proton behaves as a pointlike particle
- e.m. dominance, no strong interaction?
- Mild sensitivity to $\mathcal{B}\overline{\mathcal{B}}$ invariant mass resolution

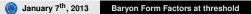
BABAR: $|G_E^{p}/G_M^{p}|$ and $\sigma(e^+e^- \rightarrow p\overline{p})$

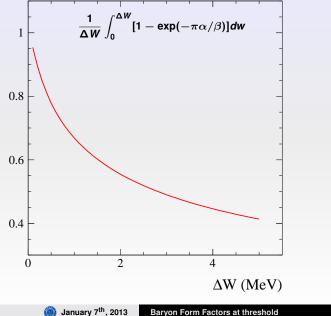
[PRD73, 012005]



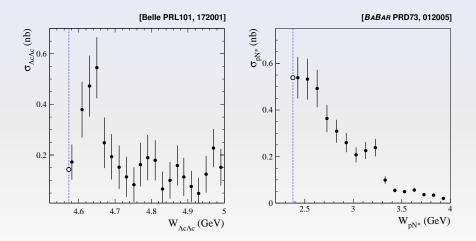


BABAR: $|G_E^{p}/G_M^{p}|$ and $\sigma(e^+e^- \rightarrow p\overline{p})$


[PRD73, 012005]

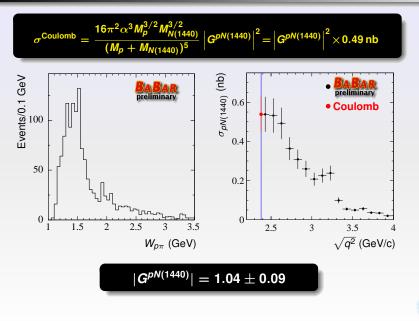


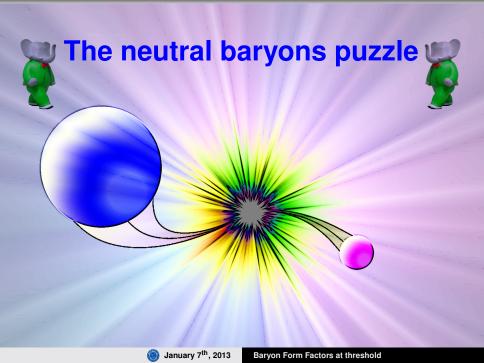
Integrated Sommerfeld factor

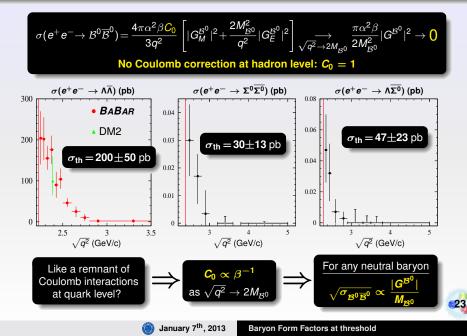


Other charged baryon FF's at threshold

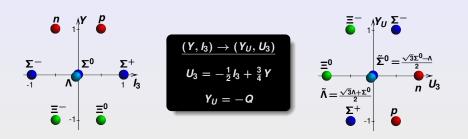
) January 7th, 2013


Baryon Form Factors at threshold


$e^+e^- ightarrow \Lambda_c^+ \overline{\Lambda}_c^-$ and $e^+e^- ightarrow p \overline{N}(1440)$ +c.c.

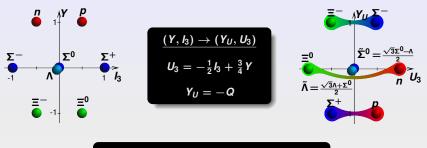


$e^+e^- ightarrow ho \overline{N}(1440)+{ m c.c.}^+$



Neutral Baryons puzzle (BABAR)

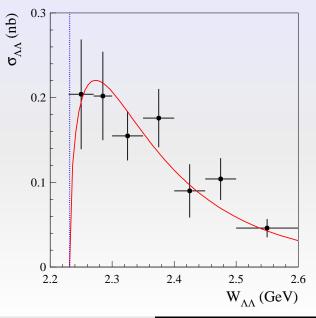
Baryon octet and U-spin

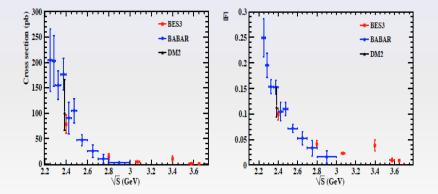

<u>U-spin relation</u>: $G^{\Sigma^0} - G^{\Lambda} + \frac{2}{\sqrt{3}}G^{\Lambda\Sigma^0} = 0$

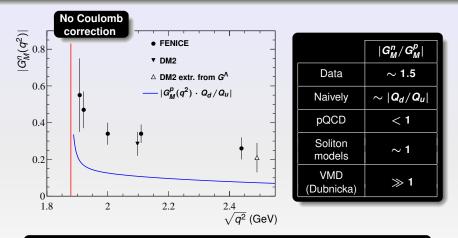
 $M_{\Sigma^{0}}\sqrt{\sigma_{\Sigma^{0}\overline{\Sigma^{0}}}} - M_{\Lambda}\sqrt{\sigma_{\Lambda\overline{\Lambda}}} + \frac{2}{\sqrt{3}}\overline{M_{\Lambda\Sigma^{0}}}\sqrt{\sigma_{\Lambda\overline{\Sigma^{0}}}} = (-0.06 \pm 6.0) \times 10^{-4}$

Baryon octet and U-spin

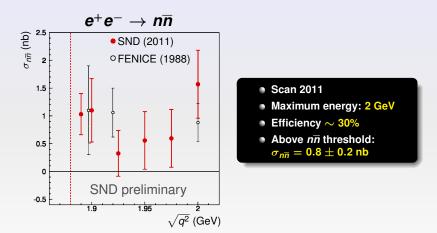
U-spin relation:
$$G^{\Sigma^0} - G^{\Lambda} + \frac{2}{\sqrt{3}}G^{\Lambda\Sigma^0} = 0$$


$$M_{\Sigma^{0}}\sqrt{\sigma_{\Sigma^{0}\overline{\Sigma^{0}}}} - M_{\Lambda}\sqrt{\sigma_{\Lambda\overline{\Lambda}}} + \frac{2}{\sqrt{3}}\overline{M_{\Lambda\Sigma^{0}}}\sqrt{\sigma_{\Lambda\overline{\Sigma^{0}}}} = (-0.06 \pm 6.0) \times 10^{-4}$$


BABAR: $e^+e^- ightarrow \Lambda\overline{\Lambda}$

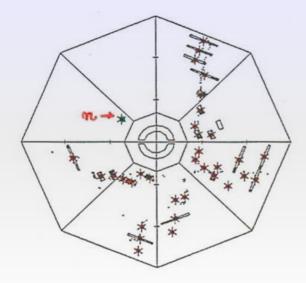

BESIII (Yan Liang) vs BABAR

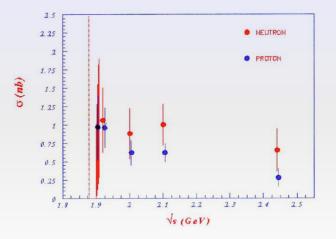
Time-like $|G_M^n|$ measurements

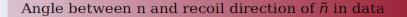


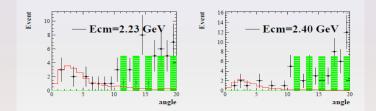
Only SND, CMD2(?) and BESIII can measure this cross section

No other experiments at present and in near future will be able to perform such a measurement

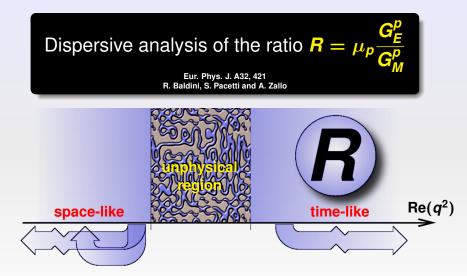

$e^+e^- \rightarrow n\overline{n}$: preliminary result from SND


$e^+e^- ightarrow n\overline{n}$

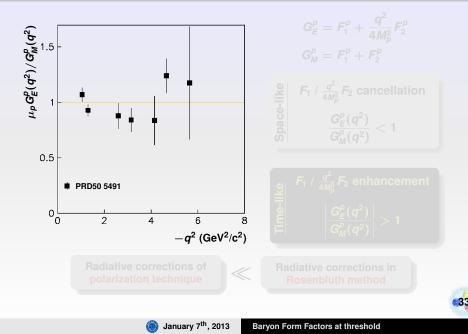

$e^+e^- ightarrow n\overline{n} \ (FENICE)^2$

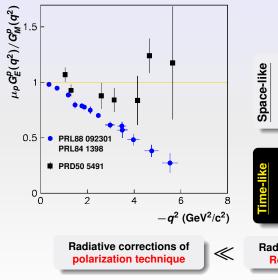


BESIII (Xiaorong Zhou)



- The dots with error bars represents collider data
- The red histogram represents MC
- The red histogram represents the data from separated beam



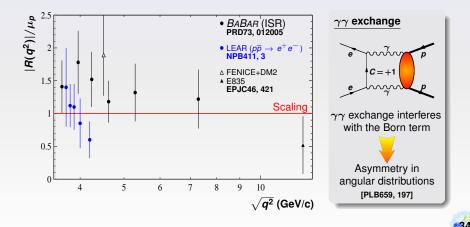


Space-like G_E^p/G_M^p measurements

Space-like G_{F}^{p}/G_{M}^{p} measurements

$$G_E^p = F_1^p + \frac{q^2}{4M_p^2}F_2^p$$
$$G_M^p = F_1^p + F_2^p$$

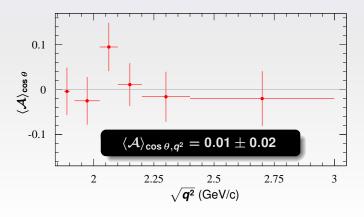
$$\frac{\Phi}{4M_p^2} \left| \begin{array}{c} F_1 / \frac{q^2}{4M_p^2} F_2 \text{ cancellation} \\ \frac{\Phi}{G_E^p(q^2)} \\ \frac{G_E^p(q^2)}{G_M^p(q^2)} < 1 \end{array} \right|$$

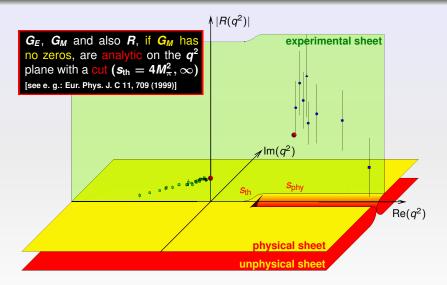

$$\begin{array}{c|c} & F_1 / \frac{q^2}{4M_p^2} F_2 \text{ enhancement} \\ & \left| \frac{G_E^p(q^2)}{G_M^p(q^2)} \right| > 1 \end{array}$$

Radiative corrections in Rosenbluth method

Time-like $|G_E^{\rho}/G_M^{\rho}|$ measurements

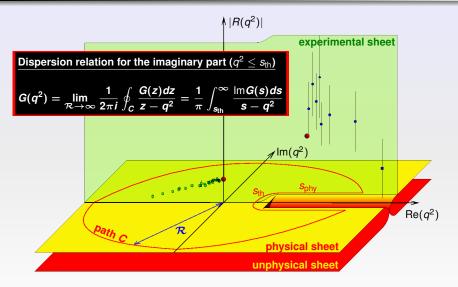
$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2\beta C}{2q^2} |G_M^p|^2 \left[(1+\cos^2\theta) + \frac{4M_p^2}{q^2\mu_p^2} \sin^2\theta |R|^2 \right] \qquad R(q^2) = \mu_p \frac{G_E^p(q^2)}{G_M^p(q^2)}$$

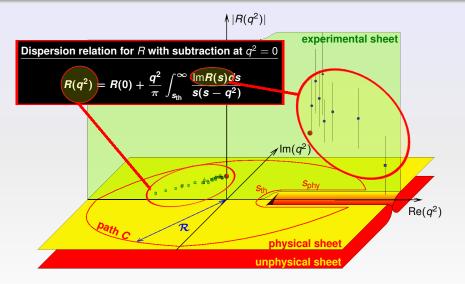


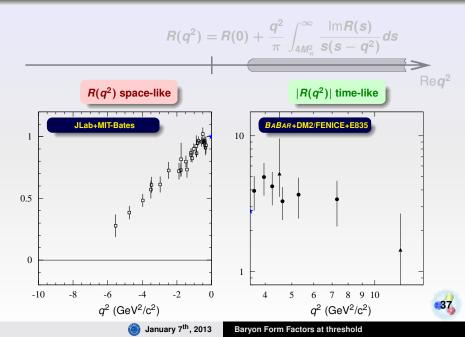

E. Tomasi-Gustafsson, E. A. Kuraev, S. Bakmaev, SP PLB659, 197

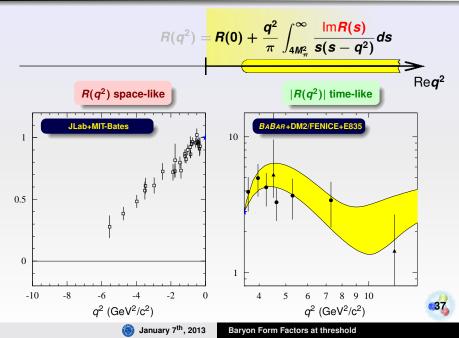
35

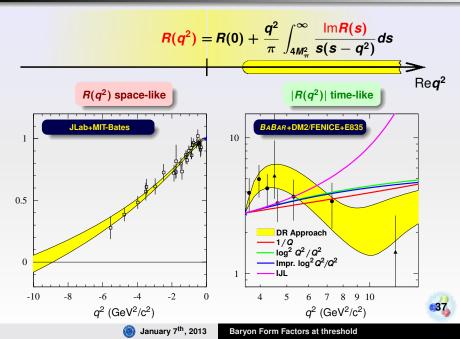
$$\mathcal{A}(\cos heta,q^2) = rac{\displaystyle rac{\displaystyle d\sigma}{\displaystyle d\Omega}(\cos heta,q^2) - \displaystyle rac{\displaystyle d\sigma}{\displaystyle d\Omega}(-\cos heta,q^2)}{\displaystyle rac{\displaystyle d\sigma}{\displaystyle d\Omega}(\cos heta,q^2) + \displaystyle rac{\displaystyle d\sigma}{\displaystyle d\Omega}(-\cos heta,q^2)}$$

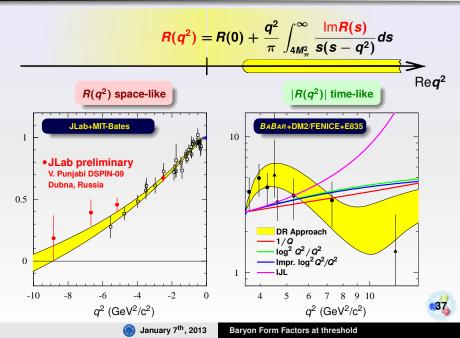

$R(q^2)$ in the complex plane


$R(q^2)$ in the complex plane

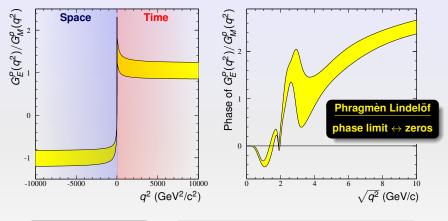

36


$R(q^2)$ in the complex plane

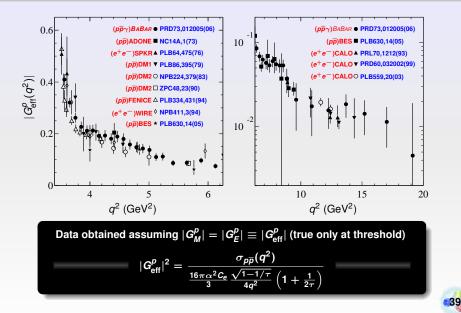




36



Asymptotic $G_E^P(q^2)/G_M^p(q^2)$ and phase



$$\frac{p\text{QCD prediction}}{\frac{G_E^p(q^2)}{G_M^p(q^2)} \underset{|q^2| \to \infty}{\longrightarrow} -1}$$

Phase from DR

$$\phi(q^2) = -rac{\sqrt{q^2-s_0}}{\pi} \Pr{\int_{s_0}^\infty rac{\ln{|R(s)|}ds}{\sqrt{s-s_0}(s-q^2)}}$$

Time-like magnetic proton form factor

The integral equation for G_M

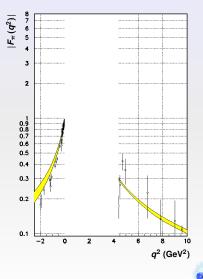
Dispersion relation subtracted at t = 0 $\ln G(t) = \frac{t\sqrt{s_{\text{th}} - t}}{\pi} \int_{s_{\text{th}}}^{\infty} \frac{\ln |G(s)| ds}{s\sqrt{s - s_{\text{th}}(s - t)}}$

- Less dependent on the asymptotic behavior of the FF
- In $G(0) = 0 \Rightarrow$ no further terms have to be considered

Splitting the integral $\int_{s_{th}}^{\infty}$ into $\int_{s_{th}}^{s'_{phy}} + \int_{s'_{phy}}^{\infty}$ we obtain the integral equation

$$\frac{\text{Data and Theory}}{\ln G(t) - I_{\text{phy}}^{\infty}(t)} = \frac{t\sqrt{s_{\text{th}} - t}}{\pi} \int_{s_{\text{th}}}^{s'_{\text{phy}}} \frac{\ln |G(s)|}{s\sqrt{s - s_{\text{th}}}(s - t)}$$

- To avoid instabilities around $s_{phy} = 4M_N^2$, the upper boundary has been shifted to $s'_{phy} = s_{phy} + \Delta$, with $\Delta \simeq 0.5 \text{ GeV}^2$
- We impose continuity of the FF at s'_{phy} and s_{th} , in addition, at the upper boundary s'_{phy} , continuity of the first derivative is also required
- A regularization, depending on a free parameter τ, is introduced by requiring the FF total curvature in the unphysical region to be limited

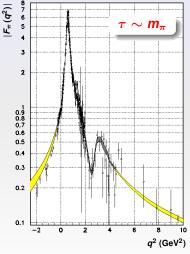


Solving procedure and test

Solving procedure

Pion FF to fix the regularization parameter τ

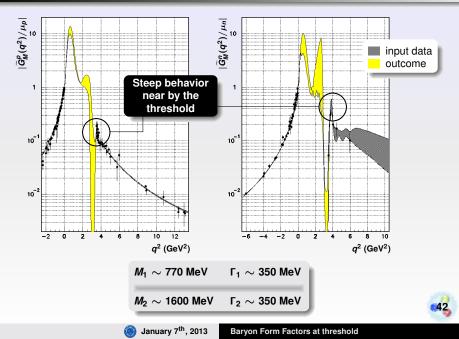
Space-like (DR) and time-like data (yellow bands) have been used as input in the integral equation to retrieve the time-like FF in the nucleon unphysical region.

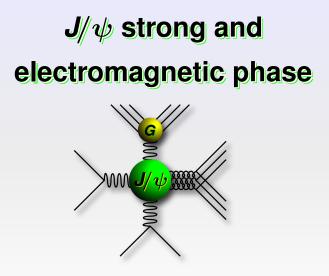

Solving procedure and test

Solving procedure

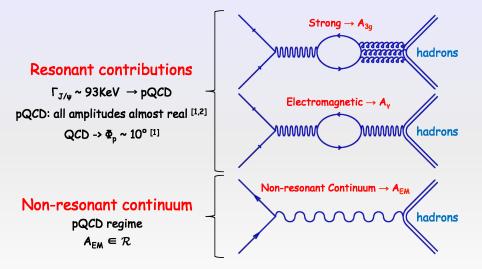
$$\begin{split} \text{Minimize: } \chi^2 &= \chi^2_{\text{data}} + \chi^2_{\text{theory}} + \tau^6 \cdot \chi^2_{\text{regu}} \\ \chi^2_{\text{regu}} &= \int_{s_{\text{th}}}^{s'_{\text{phy}}} \left[\frac{d^2 \ln |G(s)|}{ds^2} \right]^2 ds \propto \left[\begin{array}{c} \text{total curvature} \\ \ln [s_{\text{th}}, s'_{\text{phy}}] \end{array} \right] \end{split}$$

Pion FF to fix the regularization parameter au


Space-like (DR) and time-like data (yellow bands) have been used as input in the integral equation to retrieve the time-like FF in the nucleon unphysical region (gray band).



Nucleon magnetic form factors



J/ψ Strong and Electromagnetic Decay Amplitudes₁

J. Bolz and P. Kroll, WU B 95-35.
 S.J. Brodsky, G.P. Lepage, S.F. Tuan, Phys. Rev. Lett. 59, 621 (1987).

J/ψ Strong and Electromagnetic Decay Amplitudes₂

- If both real, they must interfere ($\Phi_{\rm p} \sim 0^{\circ}/180^{\circ}$)
- On the contrary $\Phi_{\rm p} \sim 90^{\circ} \rightarrow No$ interference
 - $J/\psi \to N\overline{N} (\frac{1}{2^{+1}}) \Phi_{p} = 89^{\circ} \pm 15^{\circ} [1]; 89^{\circ} \pm 9^{\circ} [2]$ $J/\psi \to VP (1^{-}O^{-}) \Phi_{p} = 106^{\circ} \pm 10^{\circ} [3]$ $J/\psi \to PP (0^{-}O^{-}) \Phi_{p} = 89.6^{\circ} \pm 9.9^{\circ} [4]$ $J/\psi \to VV (1^{-}1^{-}) \Phi_{n} = 138^{\circ} \pm 37^{\circ} [4]$
 - Pacults and model dependent
- Results are model dependent
- Model independent test:

interference with the non resonant continuum

[1] R. Baldini, C. Bini, E. Luppi, Phys. Lett. B404, 362 (1997); R. Baldini et al., Phys. Lett. B444, 111 (1998)
 [2] J.M. Bian, J/ψ → ppbar and J/ψ → nnbar measurement by BESIII, approved draft
 [3] L. Kopke and N. Wermes, Phys. Rep. 174, 67 (1989); J. Jousset et al., Phys. Rev. D41,1389 (1990).
 [4] M. Suzuki et al., Phys. Rev. D60, 051501 (1999).
 [5] P. Wang, arXiv:hep-ph/0410028v2 and references therein.

J/ψ Strong and Electromagnetic Decay Amplitudes₃

$J/\psi \rightarrow N\overline{N}$

Favoured channel

3g match 3qq pairs

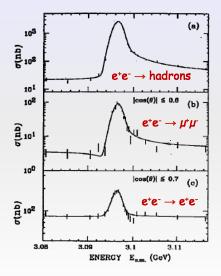
Without EM contribution p = n, due to isospin

EM contribution amplitudes have opposite sign, like magnetic moments

 BR_{nn}^{-} expected ~ $\frac{1}{2}$ BR_{pp}^{-}

$$R = \frac{Br(J/\psi \to n\overline{n})}{Br(J/\psi \to p\overline{p})} = \left| \frac{A_{3g} + A_{\gamma}^{n}}{A_{3g} + A_{\gamma}^{p}} \right|^{2} \qquad \qquad A_{3g}, A_{\gamma} \in \mathcal{R} \quad \mathsf{R} < 1$$

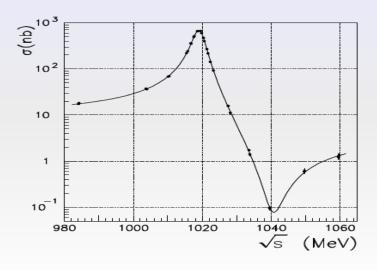
But the BR are almost equal according to BESIII^[1]:


 $BR(J/\psi \to p\bar{p}) = (2.112 \pm 0.004 \pm 0.027) \cdot 10^{-3}\%$ BR(J/\psi \to m\bar{n}) = (2.07 \pm 0.01 \pm 0.14) \cdot 10^{-3}\%

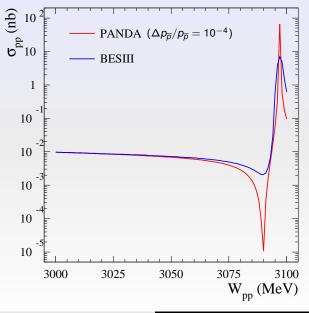
> Suggests 90° phase

[1] J.M. Bian, $J/\psi \rightarrow$ ppbar and $J/\psi \rightarrow$ nnbar measurement by BESIII, accepted for pubblication PRD

Was an Interference Already Seen?

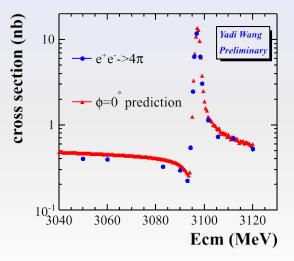

BES in $e+e- \rightarrow \mu+\mu-$ (no strong amplitude)


J.Z. Bai et al., Phys. Lett. D 355, 374-380 (1995)

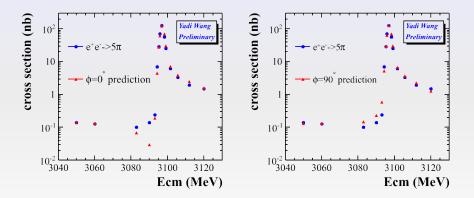


 $\phi - \omega$ interference in $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ ($\phi = 90^{\circ}$ not universal: $\phi = 180^{\circ}$ fit)

Full interference as seen by PANDA or BESIII


49

 $e^+e^-
ightarrow \mu^+\mu^-$



 $e^+e^-
ightarrow 2(\pi^+\pi^-)$

 $oldsymbol{e^+e^-}
ightarrow {2(\pi^+\pi^-)} \pi^0$

Conclusions

- Pointlike Behavior at and well above threshold
- No Sommerfeld Resummation Factor
- Neutral baryon non zero cross section at threshold?
- G_E^p space-like $\rightarrow -1$ asymptotically?
 - Imaginary J/ ψ strong decay amplitude?

Perspectives

- BESIII: ISR and scan
- Data from SND and CMD2
- PANDA could explore FFs below threshold through $p\overline{p} \rightarrow \pi^0 l^+ l^-$
 - SuperTauCharm ?

