Status of Cylindrical-GEM project for the KLOE-2 Inner Tracker

G.Bencivenni (INFN-LNF)

and possible Cylindrical-GEM in BESIII BESIII Italian Collaboration

8 – 13 June 2012, BESIII Collaboration 2012 Spring Meeting, Suzhou (China)

GEM: principle of operation

The GEM (Gas Electron Multiplier) [F.Sauli, NIM A386 (1997) 531] is a thin (50 μ m) metal coated by a kapton foil perforated by a high density of holes (70 μ m diameter, pitch of 140 μ m) \rightarrow standard photo-lithographic technology.

By applying 400-500 V between the two copper sides, an electric field as high as ~100 kV/cm is produced into the holes which act as multiplication channels for electrons produced in the gas by a ionizing particle.

Gains up to 1000 can be easily reached with a single GEM foil. Higher gains (and/or safer working conditions) are usually obtained by cascading two or three GEM foils.

A Triple-GEM detector is built by inserting three GEM foils between two planar electrodes, which act as the cathode and the anode.

GEM detector features

 \Box flexible geometry \rightarrow arbitrary shape: rectangular, cylindrical ...

- ultra-light structure → very low material budget: <0.5% X0/chamber</p>
- □ gas multiplication separated from readout stage → arbitrary readout pattern: pad, strips (XY, UV), mixed …
- high rate capability: >50 MHz/cm2
- high safe gains: > 10⁴
- □ high reliability: low discharge, P_d < 10⁻¹² per incoming particle
- rad hard: up to 2.2 C/cm² integrated over the whole active area without permanent damages (corresponding to 10 years of operation at LHCb1)
- high spatial resolution: down to 60µm (COMPASS with analog readout Nucl.Phys.Proc.Suppl. 125 (2003) 368-373)
- good time resolution: down to 3 ns (with CF₄)

KLOE at <u>upgraded</u> DAFNE f-factory (1020 MeV)

- 4 m diameter × 3.3 m length
- 90% helium, 10% isobutane
- 12582/52140 sense/tot wires
- All-stereo geometry

$$s_{rf} = 150 \text{ mm} \quad s_z = 2 \text{ mm}$$

 $s_v = 3 \text{ mm} \quad s_p/p = 0.4 \%$

 $\mathbb{K}_{KS} = 0.6$ cm $\mathbb{K}_{KL} =$ 340 cm

- Lead/scintillating fiber
- 98% coverage of solid angle
- 88 modules (barrel + end-caps)
- 4880 PMTs (two side read-out)

Å 100 ps(calib)

KLOE-2 Inner Tracker

To improve vertex reconstruction of K_s , η and η' and K_s - K_L interference measurements:

1. $\mathbb{K}_{r\phi} \mathbb{K}$ 200 µm and $\mathbb{K}_{z} \mathbb{K}$ 350µm 2. low material budget: < 2% X₀

Cylindrical GEM detector is the adopted solution

4 CGEM layers :from IP to DC Inner wall
700 mm active length
XV strips-pads readout (~40° stereo angle)
2%X₀ total radiation length in the active region

 $K_{S} \rightarrow p^{+}p^{-}$ vertex resolution will improve of about a factor 3 from present 6mm

KLOE - IT dimensions

	Ext diam (mm)	Int diam (mm)	
Layer 1	290	244	
Layer2	340	294	
Layer3	390	344	
Layer4	440	394	

Total lenght 945,16 mm

The Large GEM Foils

Before gluing each GEM foil, it is tested with HV (up to 600V) in a N_2 flushed plexiglass box, to reduce RH below 10%

700 mm active length

3 GEM foils spliced and envelopped in a vacuum bag

Cylindrical-GEM Project

8 – 13 June 2012, Suzhou

Anode Readout

2-D readout with XV strips on the same plane

X pitch 650µm ເ⊯ X res 190µm V pitch 650µm ເ⊯ Y res 350µm

Multilayer Kapton circuit realized at CERN

Costruction toolings (I)

Special molds for cylindrical electrodes (cathode, GEMs, anode readout) constructions. N.5 molds per layer (total 20 molds)

Costruction toolings (II)

Layer 1 & Layer2

Up to now, the first two layers have been made, and will be tested with cosmics.

The manufacture of the other two layers should be completed in October 2012. The installation in KLOE is foreseen by the end of 2012

GASTONE: the IT dedicated FEE chip

Sensitivity (pF)	20 mV/fC		
Z _{IN}	400 Ω (low frequency)		
C _{DET}	1 – 50 pF		
Peaking time	90 – 200 ns (1-50 pF)		
Noise (erms)	800 e ⁻ + 40 e ⁻ /pF		
Channels/chip	64*		
Readout	LVDS/Serial		
Power consum.	≈ 0.6 mA/ch		

Mixed analog-digital circuit (KLOE-2 dedicated);

Low input equivalent noise, low power consumption and high integrated chip;

4 blocks:

- charge sensitive preamplifier
- shaper
- Ieading-edge discriminator (prog. thr.)
- monostable (stretch digital signal to match the trigger timing of the experiment)

Cylindrical-GEM Project 8 – 13 June 2012, Suzhou

0.35 CMOS technology- no Rad-Hard

Efficiency vs B field and Gain

increasing the spread of the charge over

the readout strips (less charge is collected by each single pre-amp channel) results in an efficiency drop, thus **requiring for higher gain to efficiently operate the detector.**

Spatial resolution: X-view (r-φ)

Spatial resolution : Z-coordinate

The Z coordinate is determined from the crossing of X (r- ϕ) and V views (Better z resolution, if lower pitch or analog readout)

15

In BESIII: Ö(s_x² + s_z²) ~ 500 mm (if analog readout ~ 150 mm)

Cylindrical-GEM Project 8 – 1

8 – 13 June 2012, Suzhou

A Cylindrical_GEM at BESIII in case a new inner chamber is needed ?

The manifacture of a Cylindrical_GEM, which fulfills many BESIII needs, is on going at LNF and will be installed in KLOE-2 by the end of this year

BESIII inner chamber is a bit smaller:
makes a Cylindrical_GEM easier to be built,
enough space to allocate 4 triple-GEM,
equivalent to the present 8 layers,
however, new tools (molds) are needed

BESIII GEM possible geometrical parameters

Layer	Int.diam	Ext.diam	Length	Foils
	(mm)	(mm)	(mm)	
1	120	166	789+46	3 • 1 5 • 1
2	176	222	813+46	1
3	232	278	837+46	2
4	288	334	861+46	2

BESIII GEM vs KLOE2 possible improvements

Expertise from KLOE2 and CERN
Faster construction, if better molds technique
Lower high voltage, if higher readout gain
Better spatial res, if reduced pitch or analog readout (COMPASS analog readout sx = 60 mm)

Less material budget

Thanks for

谢谢

your attention