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HARD-PHOTON EMISSION IN e*e” REACTIONS
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Abstract: The radiative corrections to lowest order for the reactions e*e~ giving any
final state f, different from e*e™, are calculated, taking into account the contri-
butions coming from the photons emitted by the electrons. Then an application of
these results to the process ete™ — 7’7 is done in the experimental conditions of
ACO. The difference with previous results arises from: (i) a rigorous calculation
of Feynman diagrams without using the "quasi-réel" process approximation, (ii)
the error in the Coulomb terms, and (iii) a precise evaluation of the photon phase
space.

1. INTRODUCTION

Since the time experiments have been performed with storage rings,
people have calculated radiative corrections to ete™ reactions. Most of
them use a soft-photon approximation. Some take into account the hard-
photon contribution. For example in ref. [1], Mosco calculates the radia-
tive corrections to lowest order to the total cross section of ete” giving
p¥”, taking into account the contribution of the high-energy photons emit-
ted by the electrons. In ref. [2], Tavernier calculates the radiative correc-
tions for e*e” giving 7*r~ using an approximation for the photon phase space
and the "quasi-réels" processes approximation (ref, [3]) for the photon
emitted by the electrons. '

In this paper, considering only the photon emitted by the initial elec-
trons, we establish a general formula for the radiative corrections in a3 to
the process e*e” giving any final state f (except ete”), the cross section of
this process being calculated in the one-photon-exchange approximation
(fig. 1). Then we apply the general formula to a particular case: e’e” giving
7+7~ in the experimental conditions of ACO. The resolution of the photon
phase space and the calculations have been done with a good accuracy, us-
ing a computer. In section 2, we establish, as a rigorous result of quan-
tum electrodynamics, a formula for the differential cross section of
ete” — yf, coming from the two graphs of fig. 2 (subsect. 2.2.1).

We show, in particular ultra relativistic conditions, the validity of the
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"quasi-réels" processes approximation (ref. [3]). We show that in that case
there is a factorization of the differential cross section, factorization in
e~ ey and ete” — f (subsect. 2.2.2). But these ultrarelativistic conditions
are not realized in the storage rings where for a p-experiment the energy
of one beam is around 400 MeV. So we study the error made, if we use that
factorized formula instead of the rigorous one, for the differential cross
section. We find that the error is less than 14%. It can reach 14% in par-
ticular cases (subsect. 2.2.1). However as a result, we find that for the to-
tal cross section (when the integration on the final lines f has been per-
formed in the whole space), the factorization of the "quasi-réels" approxi-
mation is really valid (subsect. 2.3).

In subsect. 2.2.3 we study the angular distribution of the emitted photon.
We find that even in the "quasi-réels" processes approximation, it is wrong
to say that most of the photons are emitted with an angle 6 less than 1/y =
m/E (where 6 is the angle between the direction of flight of the electron and
the direction of flight of the photon, m the mass of the electron and E its
energy). For E =400 MeV, 1/y = 10-3, and we find that 25% of the photons
are emitted with 6 > %7 and 60% with 6 > 1557.

After, we establish a general formula do = doo(l + 0) for the radiative
corrections desired (subsect. 2.4.3). For this we have to take into account
the renormalization diagrams of the fourth order in e for the vertex ete™ v.
(subsect. 2.4.1). The contribution of these diagrams has been calculated in
two different ways: by Feynman rules, and by dispersion relations and ana-
lytic continuation (ref. [4]). The results which are the same in the two
cases, are in disagreement with the results given in refs. [5,6]. In the ul-
trarelativistic limit, the difference is between the terms in 72: (2a/7) (-372)
for the ref. [5], (2a/7) (£ 72) for the ref. [6] and (2a/7) (%712) for us.

In section 3, we apply the results of the first part to the process ete™ —
7t7~, using for 7 form factor the model of Gounaris-Sakurai. This experi-
ment has been done at ACO [10].

We shall study the consequence of the angular cuts done over the angle
of the projection of the tracks on the transverse plane and "diffusion plane".
(See ref. [10].) One finds that the percentage of events with tracks making
on angle of more than 10% in the transverse view is very small (less than
10%: see table 2) and one compares this result with those obtained in the
general treatment of the first part. Then we have compared our results
with those given inrefs. [2,10]. The discrepancy comes from three reasons:
an error about the renormalization graphs (terms in 172) already mentioned;
an error coming from the use of a spherical phase space for the photon [2];
a theoretical difference due to the use by Tavernier of the "quasi-réels”
Bremsstrahlung process approximation. (We see in part one that this is
really an approximation when the integration over the final-state particles
is not done in the whole space.)

Then we study the radiative correction as a function of the angular cuts,
in order to see if their choice is a crucial one. A nearly symmetrical va-
riation is found when the cuts are moved within the experimental error of
+£3° (figs. 9 and 10). At last we draw the curves giving the consequences on
the radiative correction of some variation of the p-meson parameters (figs.
11 and 12).
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2. DERIVATION OF THE GENERAL FORMULA

2.1. Generalities. Notations
2.1.1, p,s p_, q are the energy-momentum vectors respectively for et, e”

and the photon, = (q,q ), m is the electron mass, p; is the total energy
momentum v ctor of the fmal state £, and the Lorentz metric is (+++-) so
p+ pe = . The differential cross sections for the processes e*e™ — f
and ete” — yf, calculated with the graphs of figs. 1 and 2 can be written:
- 1 et o v
dog(ete 1) = A H
ofe : [(0,p_)2-m4]1/2 452" 1y 7,
*
Y = E (2 84(p-p, -p) dp FHF (1)
with
- em _ . 2
F, o=t o), s == +p )7,
o _ 1g
AMV = {p+u‘b-v+‘b+v _u+2 o uv} see ref. [7],
1 8 90%,9% uv
B [(p,0.)2-m4)1/24s2 2(27)8 Tmv
ForA“Vsee subsect. 2.2.1, § = -(p++p_-q)2. (2)
In the following we consider the case where ‘:7,J can be written as
\i
?7“ = k“' F,

where & is a real vector with positive k2 (as a consequence of the conserva-
tion of the electromagnetic current k- pg = 0), and F' is a complex scalar.
Let us define F“ = k |F'], then ¥ ?7’,*, F p.FV and there is a simplification
of notations.

For instance we can write:

A= o (20 4(0,-, )20, F) 0_F)+ s F7l.  (3)

Notice that it is really the case when the final state f is composed of two
spinless particles. For the general case note that A “y{f}#V is a symmetric

Fig. 1, ete™ — f in the one-photon-ex-
change approximation. Fig. 2. Graphs contributing to ete™ — +f.
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bilinear form k(%, F*). So if we write the vector Fas F = FR + F | where
FR and Fy are real vectors then:

h(g, 9'*) = h’(FR’FR) + h(FI, FI)'

So the formula for the general case is obtained by summing the two formu-
las where F equals respectively to Fy and Fy.

2.1.2, In storage rings the laboratory system is the ete™ c.m. system.
So we shall apply all our formulas in that system.

In that frame

b, =(E,xp), F=(F_,F), q=0,9q),
pl=p, IFI<F, lqi-q_.
We define the angles as follows (fig. 3):
=(p, q), ¥ =(p, F), ¢ =(q, F),

®g and ®f are the azimuthal angles. We have the angular relation:

cosg = cosy cost + siny sind cos(®q - 2F ).
In storage rings, we are also in an ultrarelativistic limit. For E = 300
MeV, % =1.7 X 10'3, so we can neglect, with a very good approximation,
mz/ E2 compared with unity. In that case do, can be written as

4
e 2 . 2 4
9% = gapt p?f'F sin"y (2n)" 8,(b¢-p -p )dp;. @

2.2. Differential cross section for eTe™ — yf

2.2.1. The calculation of the two graphs of fig. 2, by Feynman techniques
and the use of the conservation of the electromagnetic current (pf- F =
(b, +b_-q) F = 0), give for A,y of formula (2):

Fig. 3. Polar system of reference.



HARD-PHOTON EMISSION 385

wo_giv(Ps B g P B\ L P z
ol <qp_+qp+)+ 2 <q~b- qp+)(qp_ qP+> ) (p++p_-q)
LoV ULV
il %”’ii &)
2 gp, ab. (gp,) (qp) }*

In the e*e™ c.m, system and in the ultrarelativistic case of storage rings
(m2/E2 « 1) we have

02
18 sin<g
A"'F F = o)
KV (1- (p2/E2)cos26)2
m2 glo) sinZ0

o 8)- F0)], 6

with
. o A2 ena i 2 encd
76) =F2[2(1+c0529)—w QE—%)—FC—;——S ‘—bf—qggos w'lf]’
a8 (2E-g4)2 - g2 cos2gp
10y - P -0 (1 (ao/ 2502 (1 - (go/B) + (@d/2%) 5
a2 (1- (g0/E) + (g%/4E2) sin2y) ’
4(1 - 2E)2
£(0) = F2 (1 - (ap/2E) in2y.

6=0 (1 - (¢o/E)+ (qg/4E2)sin21,D)Sl

This formula is valid for 8 between 0 ahd :m. For 6 between 47 and 7 we
must change f(0) and g(0) by f(r) and g(r), that is tg say Fg_q by Fg_,. No-
tice that in the general case we have not F§., = Fyg.g, nevertheless in the

case of a two spinless particles final state F2 depends only on

s = -(p++p_ - q)2 =4E(E -qo) so0 ngﬂ = Fz= .

Formula (6) is written in such a way that the first term is the prepon-
derant one. This is due to the fact that sin26/(1 -(p2/E2) cos20)2 has two
peaks very near 6 = 0 and 6 = 7. To understand the preponderance one can
compare the different integrals given in appendix 1.

Let us study now the preponderance of the first term in front of the
others, When E/m is great enough that we neglect 1 in front of logE/m we
must keep only the first term in formula (6). But let us remark that to
have logE/m > 103 we must have E/m = e10% which is gigantic. At the en-
ergies of storage rings let us look at the error made if we keep only the
first term. For example at E = 300 MeV, for a two spinless particles final
state, for ¢ = 37 and after integration in d(cos) we find that the error can
reach 14% if the emitted photon is very hard (g, close to E).

2.2.2. Factorization. We show that if we keep only the first term in for-
mula (6) there is a factorization of the differential cross section dog ((2)).
If we do this approximation, in f(0) we consider that the photon has been
emitted at & = 0 by the electron e*, because e* is "quasi-réel" after emis-
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sion:
®,-9)2 = -m? - 2(pq-Eq,) = -m? - 2(p-E)g,,,

which is of order m2,
If it has been emitted at 6 = 0 by the electron €™, e~ would not have been
"quasi-réel" because (P -q)2 = 4Eq,.
So let us define by do_, the d1fferent1al cross section doy(ete™ ~f) of for-
mula (1) where we have changed p+ by p, - q.
Considering dog of formula (2) in which we have taken for A VF“FV the
first term of formula (6), we find the followmg factor1zat10n

22 sin20 '
do 1- o . (7)
B~ @n3 (1-p¥/E cos29)2 ‘1o "< ) °
This is true for 6 between 0 and 37, we find the same result for 0 between
1
2w and 7.

2.2.3. Angular distribution of the emitted photon. If we keep only the
first term in formula (6) the angular distribution is given by
sin26/(1 - (p2/E2)cos20)2. To study it, let us consider

]
M sinzl-)
(b)) = d(cos 6)
M of (1-(192/E2)c0529)2
2E m2 COSG,M E +p cosfy
Tt - (p2/B2) cos? 198 (5 pconng) . @
m zE (1~ (p2/E2%)cos QM) ~pcosbym

At E = 400 MeV, let us look at %(6y;)/2(3) for some values of 6.

O iy i e hem
HOp)
1 0.87 0,74 0.40
hGm

A study of the angular distribution with the all formula (6) gives approxi-
mately the same results. So it is wrong to say that the greatest part of
the photons are emitted in a cone of angle 6p; < 1/y =m/E = 10-3. More-
over:

R{3m) = -3 + log2y ~logy when y— o, h(%) ~ %log2 - %,

"),

k(aﬂ)

SO

when Yy — o,
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and the previous assumption is definitely wrong when the energy E goes to
infinity.

2.3. Total cross section for ete™ - yf (integrated over the final lines f)
This total cross section is given by formula (2) where we replace {f}*V

by {f}iw = [ 1Y, {f}f'u depends only on p, = p +p_- ¢, and the conserva-

tion of the electromagnetic current implies that {f}i“’ is of the following
form:

pEpY
Y - (g“”-—izf) 180
f

Using A(I?LV of formula (1) and Ap.u of formula (5) we find respectively the
total cross section g,(s,) (for ete~ — f) and dog for ete™ — yf). In the ete~
c.m. system and in the ultra-relativistic limit m2/E2 <« 1 and s/m2 =
4E(E - qo)/m2 > 1, after an integration over dQ2q (angular variables of the
photon) we find:

T 2099

sy =22 200 (5, 45) g (4B E - 0, (©)

with

2E

2
q q
h(E,q,) = (1-~9+;;§ <—1+210g—5¢— .

E
So for the total cross section the factorization of formula (7) is valid with a
very good approximation; there is no corrective term (coming from formu-
la (6)).

2.4. Radiative corrections due to the photon emitted by the initial electrons
To the third order in @ we have to take into account all the diagrams of
figs. 2 and 4.

2.4.1. Renormalization. Using Feynmann techniques or analytic continu-
ation of the results given by Chou and Dresden (dispersive methods) (ref.
[4]), and by Schweber (ref. [9]), we find the contribution of the five dia-
grams of fig. 4. Inthe e e c.m. and in the ultrarelativistic limit, we find
that this contribution is given by:

e+ et [ad Kad e+

>’\1>—\>\ >\ -

e= e- (-l - -
Q b ¢ d

Fig. 4. Renormalization graphs,
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d(Tl = d(TO(1+Av+ASE), (10)

where

Ay = [ <1og— ~1) (1 ZIOgZE) log - ~—2<10g2E>2+%’”2J,

20 2E
Agg = ‘ﬁ[- %+210g W—'

-

Note that being in the ultrarelativistic limit, we have neglected the term
coming from the function Fo(s) of ref ]. We notice in AV the difference
with refs. [5,6]: (2a/7) (-sn ) in ref. and (2a/7) ({372) in ref. [6] when
our result is (2a/7) (311 ). One can see some details of the analytic continu-
ation in appendix 2.

2.4.2, Bremsstrahlung. To deal with the infrared divergence problem, we
consider the cross section for e"e™ — yf where the photon ¥ has a mass A,
We integrate the photon variables in the volume dp - &, between the two
spheres of centre 0 and radius A(A/E << 1) and A(A < A). Neglecting terms
like qo/E in front of 1 we obtain for the differential cross section

2 p
e +
doy =dog— 5 [ (-—T 5o -7\ Pdggdng. (1)
© 2(2m)3 wA-@A<qp++ 2 gqp_+ 1x2) SRt
In the ete”™ c.m. and in the ultra-relativistic limit, formula (11) becomes:
do, =doj Ag,
with

2 2F 22E 2
Apg = O[glogwa( 1+Zlog~~ +log*4 log P 1 . (12)

2.4.3. Results. Taking into account the previous radiative corrections
the differential cross section for ete™ — f and e*e™ — 4f (figs. 1 and 2) is:

do = doy(1 +9),
with
dO’B
5=Ay+Agg+Ag+ [ a (13)
V-SA

In do,, the phase-space differential volume is given by 64(p¢ - p, - p_) dpg,
2« 2E A 1
6, = Ay + Agg +AB_——3<1+2log )<1°gf+%)_%+§”2§' (14)

In making corrections to an experimental cross section the final lines
are integrated in the volume Vg gxp and the photon variables are integrated
in the volume q’exp - da, 80O



HARD-PHOTON EMISSION 389

Texp = O

0exp<

146+ 1 J S daB). (15)
O exp Vi oxp Vexp- dA

The corrections to the total cross section are obtained from (14) and (9):
2
. 2F é 13 max dqo qo qo
<—1+210g~h1—-) (logE+ﬁ+ s EE’— (1 -E-+2—E§)
 To4EEGoN 1 1 “

L) CEw T

70[4E2]

o= 00(4E2) [1 +»»2$

(16)

3. APPLICATION TO A PARTICULAR EXAMPLE. THE REACTION
ete™ — gtg~

We begin with a short description of the experimental set-up. Then we
write the expression for radiative corrections in that case, using the
Gounaris-Sakurai model for the charged m-meson form factor. Finally we
give our results, discuss the influence of angular cuts and form-factor pa-
rameters and compare them with those given in the "quasi-réel" process
approximation in order to check the results of the first part of this paper
(sect. 2).

3.1, Expervimental set-up

This experiment has been performed at ACO [10],

Experimental constraints:

(i) The charged mesons are detected in two semi-cones (angle v = 37) of
vertical axis normal to the beam plane (there should be a trace in each
semi-cone).

(ii) Angular cuts on the tracks angle are made to discard the processes
with more than two body final state (apart some radiative events ete™ —
7).

We shall study the influence of a cut in the transverse plane (angle be-
tween the projections of the two tracks less than DELT), of a cut in the
"diffusion plane"”, defined in ref. [10] (angle less than DELL), and of a cut
in space (angle between the tracks less than 7).

Note that as the 7-meson charge is not measured, we have not to con-
sider the two-photon-exchange graphs (fig. 5) due to a theorem proved by
Putzolu [5].

e+ -

e- -

Fig. 5. Two-photon-exchange graph for ete”™ - 777",
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3.2. Expression of the radiative corvection

Notation: k_, k_ are the moments of the 7* and 77, & = k,-k_, K=
k, +k_, and ¥ is the angle between the beam line and k.

Here we have (z 7~ ]Jﬁm(0)|0> = (k, k), Fy(s) and we use the Gounaris-
Sakural model for F_(s) (ref. [7], formula (B.28)). So in every formula of
the first part we replace FIJ by k,u fFﬂ(s)[ and 64(Ps+4q - p, - p_) dpg by
S4K+q-p,-p.) (d3k+/E+) 3k _/E_). Inthe e*e~ c.m. system we find for
64(pt+4 - py - p-) dps

|Kl(@E - q,)

2 2 2
2((2E-q )% - ¢ cos®p)

k,

with
(2B - ¢,)2k2

2 2 2
(2E-q ) - g cos” ¢

k[ - ¥ = 4E? -Eq - 1.

The formula (13) when integrated over the photon phase space becomes
do = do,(1+6), 6 = 81 (independent of ¥) + g(E, ¥),
do, = R(E)[1- (p2/E2) cos2y]d0.
Hence 0 = 04(1+ 8¢otq1) and, in the case of cones
1

37
2f 1 - @2/E2) COSZI,D)AI'C cos(cosv/siny) g(E, ¥) siny dy

bl =61 +- L e
fotal = °1 (1- (p2/3E2)) (1-cosv) + (P2/6E2) cosvsinZy

Here v = 7. (All these integrations are done with a computer.)

3.3. Results

3.3.1. Relations between photon phase-space shape and angular cuts.
One finds a surface with the axis k well approximated by the bissectrix of
the tracks, the semi major axis equal to 2E(E - M)/(2E ~- M), where M is
the pion mass, the cross section given in fig. 6 and with the longitudinal
sections generally symmetrical, being well fitted by an arc of a conic.

3.3.2. Influence of angular cuts on the radiative correction. In this ex-
periment, the photon phase space is the intersection of®and@(hachured
part in fig. 6). It is equivalent to the intersection of(3)and(4 )as can be seen
on fig. 6: the difference is very small on the transverse section, and more-
over the phase space is very long (430 MeV on the axis) so the volume con-
tributing to this difference is very small. The radiative correction for
(3)N(3)is 1abelled as(2)in the following table 1.

Commenis

(i) One finds that@and@are nearly the same. (See table 2.)

(ii) To go further, fig. 7 gives (1 + 6) integrated over photons lying in dif-

ferent parts of the photon phase space (more precisely, these numbers

are written on the "transverse section averaged over iy/'). The results
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2E = 1020 Mev

395 Mev

Fig. 6. Cross section of the photon phase space; 2E = 1020 MeV; semi major axis
2E(E-M)/(2E-M) =~ 430 MeV. (D One event in each semi cone (obtuse angle between
the tracks). (3) Angle between the projections of the two tracks in the "diffusion plane"
less than DELL = 15°, (@ Angle between the projections of the two tracks on a plane
perpendicular to the beam line less than DELT = 10° (@ = %11). @ Same fory' = im.

5

(® Angle between the tracks less than 7= 15° in space.
Table 1
Radiative correction §¢gtal
E 322,2 352.3 382.0 412.4 442.9 510.0
0 (obtuse) _
without cuts 0.,0492 - 0.0726 0.0461 0.1519 0.4119 1.112 @
8 (10,15)
DELT, DELL 0.0672 - 0.0835 - 0.0553 0.1073 0.1853 0.1104 @
6 (/,15) not not

DELL only computed computed " 0.0543 0.1126 0.2068 0.165¢ @

4 (10, /)

DELT only ~ 0-053 - 0.075 - 0.048 0.143 0.371 0.92 @
- O

G(n__ 197 0.0689 - 0.0841 - 0.0338  0.133 0.181 0.108

Mp—760

extrapolated _

to mp = 710 0.067 0.082 - 0.055 0.109 0.185 0.112 @

of table 2 are to be compared to those given in subsect. 2.2.3; there it
was found that for E = 400 MeV, 26% of the Bremsstrahlung events -
that is to say 3% of the total number of events - occur with an angle 6
greater than {;7. To make that comparison, we need a relation between
and A@transverse-

On the transverse plane we have approximately g, X0 ~ %lklA Pransverse
with % |k] ~ E for a not too hard photon. So 8/A¢T ~ E/qy ~ 4 mostly.
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392
Table 2
E 322.2 352.3 382.0 412.4 442.9 510.0

D-@ 0.004 0.002 0.002 0.009 0.041 0.19
percentage of
events with tracks ;
making an angle of <1% <1% < 1% <1% ~ 3% ~ 9%
more than 10° in a
transverse plane

DELT=10?

Mev

Fig. 7. (1+0) integrated over photons lying on different parts of the photon phase
space. (These numbers are written on "the transverse section averaged over y/".)

This equality explains why for Agp = 10°, 6 = 18° we find 1% in table 2
and 3% in the previously mentioned subsection.
(iii) We compare now our results with those given in the "quasi-réel"
process approximation in refs. [10,2]. In these references the work of
Rossi[6] is used and so there is an error as mentioned in subsect. 2.4.1

(Qa/7) % 172

is missing in §).

The difference between the two last lines of table 3 arises from two rea-

sons:

(a) Tavernier [2] uses a sphere for the Bremsstrahlung photon phase
space when we have used the exact shape for it.
(b) We have seen in subsect. 2.3 that the "quasi-réel" process approxi-
mation is not an approximation, only when the final integration is over

the whole space. In that experiment, it is not the case. The error men-

tioned in subsect. 2.2.1 was that of 10% on Spremsstrahlung

for E = 400

MeV - that is to say, 1% for (1 +08;). The difference of the two last lines
of table 3 is compatible with this error of 1%.
(iv) As an outlying result we have computed the contamination of ete™ —
@~ final state (especially 7*7~ coming from Kg decay) by efe™ - p —
7t7”. The Orsay group, in their analysis of ete™ — ¢ — final state, con-
siders that by taking into account only the events in which the tracks an-
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Table 3
E 322.2 352.3 382 412.4 442.9
(1+0g) (ref. [10]) 0.925 0.911 0.935 1.081 1.144
(1+0g) (ref. [10)) plus 0.936 0.922 0.946 1.092 1.155
(2a/m x 372 = 0.0115
(1 +0g) 0.933 0.916 0.945 1.107 1.185
our work

gle is larger than DELT =5° in transverse plane and DELL =10° in space,
they discard in the total number of events, almost all the one coming
from the p-meson.

contamination = N
=N

p
O'(t)Otal(e"'e"—»n*n') x 0.24 x efficiency X luminosity

- gtotal(e+e-~&—all) % B,I,_)KOK‘O X BKgﬁnJrﬂ_ x efficiency X luminosity ’

at 2E = 1020 MeV (0.24 comes from table 4).

Contamination =1.7% which is under the experimentalists' estimation.
Note that the variation of x-function (see fig. 8) of the transverse cut is
not very sharp, at least less than expected by the experimentalists of
Orsay who thought that 5° was a crucial value.

(v) The radiative correction as a function of angular cuts (see figs. 9 and
10). The error made by experimentalists is + 3° for each angular cut.
As a matter of fact, we can see on the curves that !5(DELL+3°) -
5(DELL)| and |6(DELL - 3°) - G(DELL)_{ are almost equal (and the same
for DELL changed to DELT). Now statistically one accepts as many
events with a too large angle (compared to the cut), as with a too small
angle. Consequently the error coming from this error is nearly neglig-
ible.

3.3.3. The radiative correction as a function of p-meson parameters.
With a first approximation for the radiative correction, the experimental-
ists have fitted the parameters of the p-meson to be mp = 770 + 4 MeV, Ty=
111 + 6 MeV (ref. [10]).

Table 4

DELT 2° 5° g°

X 0.38 0.24 0.18

X = contribution to cross section of events p — 27 with tracks in an angle greater
than DELT in the transverse plane and 7 = 10° in space (in percentage of of)o al with-
out radiative correction). E = 510 MeV.
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Fig. 8. X (contribution to cross section of events p — 27 with tracks in an angle
greater than DELT in the transverse plane and 1 = 10° in space) as a function of
DELT.
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Fig. 10. Radiative correction as a function of transverse angular cut (DELT).
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We have determined the error on our calculation coming from these im-
precisions on m and Ty (see figs. 11 and 12).

As expected, when m goes from 766 to 774 MeV we have a translation
of the curve, And when F goes from 105 to 117 MeV we have a dilatation
centered on the point E = 392 6 = 0. But these errors are correlated; the
small discrepancy between our results and those of Tavernier does not
seem to justify a new and very long fit for the p-meson parameters.

We thank Professor M. Gourdin and the experimentalists of ACO for use-
ful discussions.

APPENDIX 1.

To understand formula (6) the following integrals are useful:

1 -
d(cos0) p2 [ pZ p E+p { E2 2E:|
f (1—(p2/E2)00529)2 2E2L 10g pJ 2 2+10g—
sinfd(cosé)  _, E_
S (1-(2/E2)cos2e)2 'm'’
1 in2 2 2,52 1
sin26 d(cos6) :_E_[_l E2 4p { . _z_}
J (1- 2/E%) cos2o)?  2p2L  2Ep lg pJ g ~1+2log

1 . .
J q 5(212?;2(52(532;9)2 ~ [ sin® % d(coss) for n>3.

We see that only the three first integrals go to infinity when E goes to
infinity.

APPENDIX 2,

The function Fy(s) of refs. [4, 9] is given in a useful way for 0 <s < 4m?2.
For s = 4E2 > 4m2 we have to do an analytic continuation over the cut (fig.
)
13). The difficulty is in the analytic continuation of f x tg xdx (where
o
sin20 = s/4m2) because the function x tg x has a pole at x = i7. The result
is:
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1 1+’U
2} Elgl-v
fxtgxdx —%wlog(—zr%)+i(z‘m2— f zcothzdz),
)

i

o]

where v = p/E and

log1+v
2 1-v . 2
b 492 1:v 1+v 1.2
{ z coth zdz = 2*210g1_0210g1-1} 4(10g1-v) TeT
1-v
v
f Iog(l-y)d z
o y

The analytic continuation gives for Ay = 2 Re F1(s), whens = 4£2

AV=—~2(log%-1)<l-%‘(1-§;£2>l E*g 2‘21 E”’
%logE—i{’
4E(1-— (iﬂ2 przcothzdz)‘
o]

In the ultrarelativistic limit we find the Ay, given in formula (10).

NOTE ADDED IN PROOF

This paper was finished when we came to hear of the work of Nguyen
Ngoc Hoan (note interne du Laboratoire de 1'Accélération linéaire, RI68,
18 Orsay). His work is on the same topic and is in part similar to ours.
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